
Alberto De LucaUniversity Medical Center Utrecht | UMC Utrecht · Department of Radiology
Alberto De Luca
Ph.D.
About
108
Publications
18,690
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,242
Citations
Introduction
Additional affiliations
February 2017 - present
September 2015 - February 2016
September 2014 - December 2016
Publications
Publications (108)
Since the introduction of diffusion tensor imaging (DTI), the diffusion MRI community has proven particularly prolific in introducing hundreds of new approaches to address some of the limitations of DTI. Particularly, new approaches have focused on leveraging modern diffusion MRI acquisitions to extract additional tissue properties compared to DTI,...
This chapter introduces diffusion tensor imaging, which is arguably one of the most established applications of diffusion MRI. Having introduced the concept of diffusion anisotropy, we will explain the mathematical formalism behind the tensor and commonly derived metrics, such as the fractional anisotropy and the mean diffusivity. Having covered th...
This chapter deals with the complex topic of diffusion MRI, exploring its fundamental principles, technical components, and clinical relevance. It begins by elucidating the diffusion process itself, highlighting its underlying mechanisms and dynamics. The subsequent section elucidates how diffusion influences the MRI signal. Then the chapter delves...
This chapter introduces fiber tractography, a diffusion MRI technique that allows reconstructing the organization of biological tissues characterized by consistently oriented structures, or “fibers.” Examples of fibers are axonal bundles in the brain, or bundles of myocytes in the skeletal muscle. In this chapter, we first present an overview of th...
White matter (WM) free water (FW) is a potential imaging marker for cerebral small vessel disease (CSVD). This study aimed to characterize longitudinal changes in WM FW and investigate factors contributing to its elevation in CSVD. We included 80 CSVD patients and 40 normal controls (NCs) with multi-modality MRI data. Cerebral blood flow (CBF) was...
Objective
Previous retrospective studies have reported vigabatrin‐associated brain abnormalities on magnetic resonance imaging (VABAM), although clinical impact is unknown. We evaluated the association between vigabatrin and predefined brain magnetic resonance imaging (MRI) changes in a large homogenous tuberous sclerosis complex (TSC) cohort and a...
White matter hyperintensities of presumed vascular origin (WMH) are associated with cognitive impairment and are a key imaging marker in evaluating brain health. However, WMH volume alone does not fully account for the extent of cognitive deficits and the mechanisms linking WMH to these deficits remain unclear. Lesion network mapping (LNM) enables...
Peak width of skeletonized mean diffusivity (PSMD) is an emerging diffusion-MRI based marker to study subtle early alterations to white matter microstructure. We assessed PSMD over the clinical continuum in Dutch-type hereditary CAA (D-CAA) and its association with other CAA-related MRI-markers and cognitive symptoms. We included (pre)symptomatic D...
Purpose
Diffusion MRI (dMRI) data typically suffer of marked cross-site variability, which prevents naively performing pooled analyses. To attenuate cross-site variability, harmonization methods such as the rotational invariant spherical harmonics (RISH) have been introduced to harmonize the dMRI data at the signal level. A common requirement of th...
Introduction: White matter hyperintensities of presumed vascular origin (WMH) are associated with cognitive impairment and are a key imaging marker in evaluating cognitive health. However, WMH volume alone does not fully account for the extent of cognitive deficits and the mechanisms linking WMH to these deficits remain unclear. We propose that les...
Complementary aspects of tissue microstructure can be studied with diffusion‐weighted imaging (DWI). However, there is no consensus on how to design a diffusion acquisition protocol for multiple models within a clinically feasible time. The purpose of this study is to provide a flexible framework that is able to optimize the shell acquisition proto...
Advanced intraoperative MR images (ioMRI) acquired during the resection of pediatric brain tumors could offer additional physiological information to preserve healthy tissue. With this work, we aimed to develop a protocol for ioMRI with increased sensitivity for arterial spin labeling (ASL) and diffusion MRI (dMRI), optimized for patient positionin...
Background
Pediatric brain tumor patients are at risk of developing neurocognitive impairments and associated white matter alterations. In other populations, post-traumatic stress symptoms (PTSS) impact cognition and white matter. This study aims to investigate the effect of PTSS on neurocognitive functioning and limbic white matter in pediatric br...
Cerebral Amyloid Angiopathy (CAA) is characterized by cerebrovascular amyloid-β accumulation leading to hallmark cortical MRI markers, such as vascular reactivity, but white matter is also affected. By studying the relationship in different disease stages of Dutch-type CAA (D-CAA), we tested the relation between vascular reactivity and microstructu...
Magnetic Resonance Imaging (MRI) visible perivascular spaces (PVS) have been associated with age, decline in cognitive abilities, interrupted sleep, and markers of small vessel disease. Therefore, several computational methods have been developed for their assessment from brain MRI. But the limits of validity of these methods under various spatial...
Cerebral small vessel disease (SVD) is common during ageing and can present as stroke, cognitive decline, neurobehavioural symptoms, or functional impairment. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive and other symptoms and affect activities of daily living. Standards for Reporting Vascular Changes on Neur...
[This corrects the article DOI: 10.3389/fneur.2022.1005406.].
BACKGROUND AND PURPOSE: Tractography of the corticospinal tract is paramount to presurgical planning and guidance of intraoperative resection in patients with motor-eloquent gliomas. It is well-known that DTI-based tractography as the most frequently used technique has relevant shortcomings, particularly for resolving complex fiber architecture. Th...
Purpose
Diffusion-weighted MRI is a promising technique to monitor response to treatment in pediatric rhabdomyosarcoma. However, its validation in clinical practice remains challenging. This study aims to investigate how the tumor segmentation strategy can affect the apparent diffusion coefficient (ADC) measured in pediatric rhabdomyosarcoma.
Mate...
Aim
This study aims to assess the integrity of white matter in various segments of the corpus callosum in Alzheimer's disease (AD) by using metrics derived from diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI) and white matter tract integrity model (WMTI) and compare these findings to healthy controls (HC).
Methods
The study was ap...
Neurological soft signs (NSS) are minor deviations in motor performance. During childhood and adolescence, NSS are examined for functional motor phenotyping to describe development, to screen for comorbidities, and to identify developmental vulnerabilities. Here, we investigate underlying brain structure alterations in association with NSS in physi...
Diffusion kurtosis imaging (DKI) is applied to gain insights into the microstructural organization of brain tissues. However, the reproducibility of DKI outside brain white matter, particularly in combination with advanced estimation to remedy its noise sensitivity, remains poorly characterized. Therefore, in this study, we investigated the variabi...
In cerebral small vessel disease (cSVD), whole brain MRI markers of cSVD-related brain injury explain limited variance to support individualized prediction. Here, we investigate whether considering abnormalities in brain tracts by integrating multimodal metrics from diffusion MRI (dMRI) and structural MRI (sMRI), can better capture cognitive perfor...
Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) tractography have received considerable attention. While the technical advances spearheaded by the Human Connectome Project (HCP) led to significant improvements in dMRI data quality, it remains unclear how these data should be analyzed to maximize tractography accu...
Quantification methods based on the acquisition of diffusion magnetic resonance imaging (dMRI) with multiple diffusion weightings (e.g., multi-shell) are becoming increasingly applied to study the in-vivo brain. Compared to single-shell data for diffusion tensor imaging (DTI), multi-shell data allows to apply more complex models such as diffusion k...
Objectives
Diffusion-weighted MRI can assist preoperative planning by reconstructing the trajectory of eloquent fiber pathways, such as the corticospinal tract (CST). However, accurate reconstruction of the full extent of the CST remains challenging with existing tractography methods. We suggest a novel tractography algorithm exploiting unused fibe...
We investigated if network thresholding and diffusion MRI (dMRI) harmonization improve a) cross-site consistency of network architecture and b) precision and sensitivity to detect network connections disrupted in cerebral small vessel disease (SVD). Brain networks were reconstructed from dMRI in five cohorts. Consistency of network architecture was...
In cerebral small vessel disease (cSVD), whole brain MRI markers of cSVD-related brain injury explain limited variance to support individualized prediction. Here, we investigate whether considering abnormalities in brain tracts by integrating multimodal metrics from diffusion MRI (dMRI) and structural MRI (sMRI), can better capture cognitive perfor...
Friedreich's ataxia (FRDA) is an inherited neurodegenerative movement disorder with early onset, widespread cerebral and cerebellar pathology, and no cure still available. Functional MRI (fMRI) studies, although currently limited in number, have provided a better understanding of brain changes in people with FRDA. This systematic review aimed to pr...
Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) tractography have received considerable attention. While the technical advances spearheaded by the Human Connectome Project (HCP) led to significant improvements in dMRI data quality, it remains unclear how these data should be analyzed to maximize tractography accu...
While the diagnosis of high-grade glioma (HGG) is still associated with a considerably poor prognosis, neurosurgical tumor resection provides an opportunity for prolonged survival and improved quality of life for affected patients. However, successful tumor resection is dependent on a proper surgical planning to avoid surgery-induced functional def...
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
Objectives
Acquisition-related differences in diffusion magnetic resonance imaging (dMRI) hamper pooling of multicentre data to achieve large sample sizes. A promising solution is to harmonize the raw diffusion signal using rotation invariant spherical harmonic (RISH) features, but this has not been tested in elderly subjects. Here we aimed to esta...
Objective
Evidence from adult literature shows the involvement of cortical grey matter areas of the frontoparietal lobe and the white matter bundle, the superior longitudinal fasciculus (SLF) in motor planning. This is yet to be confirmed in children.
Method
A multimodal study was designed to probe the neurostructural basis of childhood motor plan...
Appropriate imaging is essential in the treatment of children and adolescents with rhabdomyosarcoma. For adequate stratification and optimal individualised local treatment utilising surgery and radiotherapy, high-quality imaging is crucial. The paediatric radiologist, therefore, is an essential member of the multi-disciplinary team providing clinic...
Understanding the relationship between human brain structure and functional outcome is of critical importance in systems neuroscience. Diffusion MRI (dMRI) studies show that fractional anisotropy (FA) is predictive of motor control, underscoring the importance of white matter (WM). However, as FA is a surrogate marker of WM, we aim to shed new ligh...
Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode s...
White matter pathology likely contributes to the pathogenesis of bipolar disorder (BD). Most studies of white matter in BD have used diffusion tensor imaging (DTI), but the advent of more advanced multi-shell diffusion MRI imaging offers the possibility to investigate other aspects of white matter microstructure. Diffusion kurtosis imaging (DKI) ex...
Background and Purpose
Diffusion MRI of the brain enables to quantify white matter fiber orientations noninvasively. Several approaches have been proposed to estimate such characteristics from diffusion MRI data with spherical deconvolution being one of the most widely used methods. Spherical deconvolution requires to define––or derive from the dat...
Background:
The immunological pathophysiologies of chronic inflammatory demyelinating polyneuropathy (CIDP) and multifocal motor neuropathy (MMN) differ considerably, but neither has been elucidated completely. Quantitative magnetic resonance imaging (MRI) techniques as diffusion tensor imaging, T2 mapping, and fat fraction analysis may indicate i...
Background
Cerebral small vessel diseases (SVDs) are a major cause of stroke and dementia. Yet, specific treatment strategies are lacking in part because of a limited understanding of the underlying disease processes. There is therefore an urgent need to study SVDs at their core, the small vessels themselves.
Objective
This paper presents the rati...
The cardiac cycle induces blood volume pulsations in the cerebral microvasculature that cause subtle deformation of the surrounding tissue. These tissue deformations are highly relevant as a potential source of information on the brain's microvasculature as well as of tissue condition. Besides, cyclic brain tissue deformations may be a driving forc...
Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode s...
PurposeAim of this study is to compare Quantitative Magnetic Resonance Imaging (qMRI) measures between Becker Muscular Dystrophy (BMD) and Healthy Subjects (HS) and to correlate these parameters with clinical scores.Methods
Ten BMD patients (mean age ±standard deviation: 38.7 ± 15.0 years) and ten age-matched HS, were investigated through magnetic...
Objectives: White matter pathology is thought to contribute to the pathogenesis of bipolar disorder (BD). However, most studies of white matter in BD have used the simple diffusion tensor imaging (DTI) model, which has several limitations. DTI studies have reported heterogenous results, leading to a lack of consensus about the extent and location o...
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
Diffusion weighted MR imaging can assist preoperative planning by reconstructing the trajectory of eloquent fiber pathways. A common task is the delineation of the corticospinal tract in its full extent because lesions to this bundle can severely affect the quality of life. However, this is challenging as existing tractography algorithms typically...
Gradient nonlinearities in magnetic resonance imaging (MRI) cause spatially varying mismatches between the imposed and the effective gradients and can cause significant biases in rotationally invariant diffusion MRI measures derived from, for example, diffusion tensor imaging. The estimation of the orientational organization of fibrous tissue, whic...
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
In diffusion MRI, spherical deconvolution approaches can estimate local white matter (WM) fiber orientation distributions (FOD) which can be used to produce fiber tractography reconstructions. The applicability of spherical deconvolution to grey matter (GM), however, is still limited, despite its critical role as start/endpoint of WM fiber pathways...
Background
We investigated added value of combining information from direction encoded color (DEC) maps with the high-resolution structural MRI images (T1WI) to improve the identification of ROIs for fiber tracking for preoperative planning in patients with brain tumors.
Methods
The dataset included 42 patients with gliomas and ten healthy subject...
Background
Diffusion-weighted ¹ H magnetic resonance spectroscopy (DW-MRS) allows to quantify creatine-phosphocreatine brain diffusivity (ADC(tCr)), whose reduction in multiple sclerosis (MS) has been proposed as a proxy of energy dysfunction.
Objective
To investigate whether thalamic ADC(tCr) changes are associated with thalamo-cortical tract dam...
Knowledge of the noise distribution in magnitude diffusion MRI images is the centerpiece to quantify uncertainties arising from the acquisition process. The use of parallel imaging methods, the number of receiver coils and imaging filters applied by the scanner, amongst other factors, dictate the resulting signal distribution. Accurate estimation b...
Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses¹. The flexibility of analytical approaches is exempl...
Spherical deconvolution is a widely used approach to quantify the fiber orientation distribution (FOD) from diffusion MRI data of the brain. The damped Richardson-Lucy (dRL) is an algorithm developed to perform robust spherical deconvolution on single-shell diffusion MRI data while suppressing spurious FOD peaks due to noise or partial volume effec...
The superoanterior fasciculus (SAF) is defined as a bilateral tract in the frontal lobe that resembles the structure of the anterior cingulum, but is located superior, anterior and lateral. In this work, we investigated the cortical projections of the structure utilizing the latest multi-shell multi tissue (MSMT) constrained spherical deconvolution...