About
14
Publications
790
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
41
Citations
Introduction
Current institution
Publications
Publications (14)
Temporal higher-order networks, where each hyperlink involving a group of nodes are activated or deactivated over time, are recently used to represent complex systems such as social contacts, interactions or collaborations that occur at specific times. Such networks are substrates for social contagion processes like the diffusion of information and...
Higher-order networks effectively represent complex systems with group interactions. Existing methods usually overlook the relative contribution of group interactions (hyperlinks) of different sizes to the overall network structure. Yet, this has many important applications, especially when the network has meaningful node labels. In this work, we p...
A social interaction (so-called higher-order event/interaction) can be regarded as the activation of the hyperlink among the corresponding individuals. Social interactions can be, thus, represented as higher-order temporal networks, that record the higher-order events occurring at each time step over time. The prediction of higher-order interaction...
Several studies have investigated human interaction using modern tracking techniques for face-to-face encounters across various settings and age groups. However, little attention has been given to understanding how individual characteristics relate to social behavior. This is particularly important in younger age groups due to its potential effects...
A social interaction (so-called higher-order event/interaction) can be regarded as the activation of the hyperlink among the corresponding individuals. Social interactions can be, thus, represented as higher-order temporal networks, that record the higher-order events occurring at each time step over time. The prediction of higher-order interaction...
Temporal networks are networks whose topology changes over time. Two nodes in a temporal network are connected at a discrete time step only if they have a contact/interaction at that time. The classic temporal network prediction problem aims to predict the temporal network one time step ahead based on the network observed in the past of a given dur...
A social interaction (so-called higher-order event/interaction) can be regarded as the activation of the hyperlink among the corresponding individuals. Social interactions can be, thus, represented as higher-order temporal networks, that record the higher-order events occurring at each time step over time. The prediction of higher-order interaction...
Human social interactions are typically recorded as time-specific dyadic interactions, and represented as evolving (temporal) networks, where links are activated/deactivated over time. However, individuals can interact in groups of more than two people. Such group interactions can be represented as higher-order events of an evolving network. Here,...
Temporal networks like physical contact networks are networks whose topology changes over time. Predicting future temporal networks is crucial e.g., to forecast and mitigate the spread of epidemics and misinformation on the network. The classic temporal network prediction problem that aims to predict the temporal network in the short-term future ba...
Human social interactions are typically recorded as time-specific dyadic interactions, and represented as evolving (temporal) networks, where links are activated/deactivated over time. However, individuals can interact in groups of more than two people. Such group interactions can be represented as higher-order events of an evolving network. Here,...
Many real-world complex systems including human interactions can be represented by temporal (or evolving) networks, where links activate or deactivate over time. Characterizing temporal networks is crucial to compare different real-world networks and to detect their common patterns or differences. A systematic method that can characterize simultane...
Many real-world complex systems including human interactions can be represented by temporal (or evolving) networks, where links activate or deactivate over time. Characterizing temporal networks is crucial to compare such systems and to study the dynamical processes unfolding on them. A systematic method to characterize simultaneously the temporal...
In this work, we explore the possibility of using a heterogeneous Susceptible- Infected-Susceptible SIS spreading process on an airline network to model airport congestion contagion with the objective to reproduce airport vulnerability. We derive the vulnerability of each airport from the US Airport Network data as the congestion probability of eac...
We model airport congestion contagion as an SIS spreading process on an airport transportation network to explain airport vulnerability. The vulnerability of each airport is derived from the US Airport Network data as its congestion probability. We construct three types of airline networks to capture diverse features such as the frequency and durat...