Alberto Alberello

Alberto Alberello
University of East Anglia | UEA · School of Mathematics

PhD

About

70
Publications
19,944
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
989
Citations
Introduction
I investigate geophysical fluid dynamics problems and interactions at the air--sea--ice interface combining theoretical, numerical and physical modelling as well as conducting field measurements. In particular, I focus on marginal ice zone processes and nonlinear ocean wave dynamics.
Additional affiliations
June 2021 - November 2021
Università degli Studi di Torino
Position
  • Research Associate
Description
  • Study of the statistical properties of waves in the Mediterranean Sea
December 2020 - June 2021
The University of Tokyo
Position
  • Fellow
Description
  • Unveiling ocean waves physics in sea ice using mathematical/numerical models and measurements
July 2020 - November 2020
Università degli Studi di Torino
Position
  • Researcher
Description
  • Unveiling ocean waves physics in sea ice using mathematical/numerical models and measurements
Education
March 2010 - April 2012
Politecnico di Milano
Field of study
  • Civil Engineering
September 2006 - February 2010
Politecnico di Milano
Field of study
  • Civil Engineering

Publications

Publications (70)
Article
Full-text available
The dynamic and thermal regimes of climate are regulated by an exchange of energy and momentum between the atmosphere and the ocean. The role exerted by surface waves on this interchange is particularly enigmatic. Waves induce turbulence in the upper ocean by breaking and through Langmuir circulations. However, waves can directly inject energy into...
Article
Full-text available
Nonlinear wave interactions affect the evolution of steep wave groups, their breaking and the associated kinematic field. Laboratory experiments are performed to investigate the effect of the underlying focussing mechanism on the shape of the breaking wave and its velocity field. In this regard, it is found that the shape of the wave spectrum plays...
Article
Full-text available
A stochastic second-order wave model is applied to assess the statistical properties of wave orbital velocity in random sea states below the water surface. Directional spreading effects as well as the dependency of the water depth are investigated by means of a Monte-Carlo approach. Unlike for the surface elevation, sub-harmonics dominate the secon...
Article
Full-text available
The size distribution of pancake ice floes is calculated from images acquired during a voyage to the Antarctic marginal ice zone in the winter expansion season. Results show that 50 % of the sea ice area is made up of floes with diameters of 2.3–4 m. The floe size distribution shows two distinct slopes on either side of the 2.3–4 m range, neither o...
Conference Paper
Full-text available
Wave breaking has large impact on stresses and loading on marine structures, but it is not yet accounted for in the design process. A numerical investigation is here presented to fully assess the three-dimensional velocity field underneath a breaking wave. The breaking onset is achieved by modulating an initial monochromatic wave with infinitesimal...
Article
This paper sets out to explore the modulational (or Benjamin-Feir) instability of a monochromatic wave propagating in the presence of damping such as that induced by sea ice on the ocean surface. The fundamental wave motion is modelled using the spatial Zakharov equation, to which either uniform or nonuniform (frequency-dependent) damping is added....
Preprint
Full-text available
The size and shape of sea ice floes play a crucial role in influencing ocean-atmosphere energy exchanges, sea ice concentrations, albedo, and wave propagation through ice-covered waters. Despite the availability of diverse image segmentation techniques for analyzing sea ice imagery, accurately detecting and measuring floes remains a considerable ch...
Article
Full-text available
Sea spray emission is the largest mass flux of aerosols to the atmosphere with important impact on atmospheric radiative transfer. However, large uncertainties still exit in constraining this mass flux and its climate forcing, in particular in the Arctic, where sea ice and relatively low wind speed in summer constitute a significantly different reg...
Article
Full-text available
The Antarctic marginal ice zone, the regularly wave‐affected outer band of the sea ice covered Southern Ocean, typically contains an unconsolidated ice cover comprised of smaller, thinner floes than the inner ice pack. Thus, it is a highly dynamic region and susceptible to rapid expansion and contraction, making it a focal area for understanding an...
Chapter
An overview of recent studies of waves propagating at the surface of a fluid covered by floating ice plates is provided in this chapter. Different models for the ice cover are considered, and experimental results with moving loads are discussed. Theoretical and numerical studies of linear solutions, weakly nonlinear models as well as fully nonlinea...
Article
Full-text available
We report direct observations of surface waves from a stereo camera system along with concurrent measurements of wind speed during an expedition across the Southern Ocean in the austral winter aboard the South African icebreaker S.A. Agulhas II. Records include water surface elevation across a range of wave conditions spanning from early stages of...
Article
Full-text available
Two ensembles of buoys, deployed in the marginal ice zone (MIZ) of the north-eastern Weddell Sea region of the Southern Ocean, are analysed to characterise the dynamics driving sea ice drift and deformation during the winter-growth and the spring-retreat seasons of 2019. The results show that although the two buoy arrays were deployed within the sa...
Preprint
Full-text available
The Antarctic marginal ice zone is the regularly wave-affected outer band of the sea ice covered Southern Ocean. The ice cover in the marginal ice zone is typically unconsolidated and contains smaller, thinner ice floes than the inner ice pack, which makes it a highly dynamic region and susceptible to rapid expansion or contraction. Here, an unsupe...
Preprint
Full-text available
We report unique direct observations of surface waves from a stereo camera system aboard the South African icebreaker S.A. Agulhas II during an expedition across the Southern Ocean in the austral winter. Records include water surface elevation across a range of wave conditions, spanning from early stages of wave growth to full development. We give...
Article
Full-text available
Insufficient in situ observations from the Antarctic marginal ice zone (MIZ) limit our understanding and description of relevant mechanical and thermodynamic processes that regulate the seasonal sea ice cycle. Here we present high‐resolution thermal images of the ocean surface and complementary measurements of atmospheric variables that were acquir...
Article
Full-text available
Wave and sea ice properties in the Arctic and Southern Oceans are linked by feedback mechanisms, therefore the understanding of wave propagation in these regions is essential to model this key component of the Earth climate system. The most striking effect of sea ice is the attenuation of waves at a rate proportional to their frequency. The nonline...
Preprint
Full-text available
Two ensembles of buoys, deployed in the north-eastern Weddell Sea region of the Southern Ocean, are analysed to characterise the dynamics driving sea ice drift and deformation during the winter-growth and the spring-retreat seasons of 2019. The results show that although the two buoy arrays were deployed within the same region of ice-covered ocean,...
Preprint
Full-text available
The Southern Ocean stores and release more heat than any other latitude band on the planet, making it a major element of the global climate. In the Antarctic, air-sea heat exchange is mediated by the seasonal sea ice cycle, which forms an unsteady and composite interface. In-situ measurements are serendipitous in the region and models are poorly co...
Article
Full-text available
Estimates of directional wave spectra and related parameters can be obtained from ship motion data through the wave-buoy analogy approach. The fundamental input is the response amplitude operator (RAO), which translates ship response into a wave energy spectrum. While ship motion is routinely measured on ocean going vessels, the RAO is not directly...
Poster
Full-text available
Waves formed in the open ocean penetrate sea ice defining an extremely dynamical sea ice region, known as marginal ice zone (MIZ), where wave and sea ice properties are intimately linked. The Southern Ocean MIZ extends 100s of km and plays a substantial role in the climate system by regulating heat and momentum exchanges between ocean and atmospher...
Article
Full-text available
A summary is given on the utility of laboratory experiments for gaining understanding of wave attenuation in the marginal ice zone, as a complement to field observations, theory and numerical models. It is noted that most results to date are for regular incident waves, which, combined with the highly nonlinear wave–floe interaction phenomena observ...
Article
Full-text available
Waves in the Marginal Ice Zone in the Okhotsk Sea are less studied compared to the Antarctic and Arctic. In February 2020, wave observations were conducted for the first time in the Okhotsk Sea, during the observational program by Patrol Vessel Soya. A wave buoy was deployed on the ice, and in situ wave observations were made by a ship-borne stereo...
Article
Full-text available
The marginal ice zone is the dynamic interface between the open ocean and consolidated inner pack ice. Surface gravity waves regulate marginal ice zone extent and properties, and, hence, atmosphere-ocean fluxes and ice advance/retreat. Over the past decade, seminal experimental campaigns have generated much needed measurements of wave evolution in...
Article
Full-text available
The Antarctic marginal ice zone (MIZ) is a highly dynamic region where sea ice interacts with ocean surface waves generated in ice-free areas of the Southern Ocean. Improved large-scale (satellite-based) estimates of MIZ extent and variability are crucial for understanding atmosphere–ice–ocean interactions and biological processes and detection of...
Article
Sea ice attenuates waves propagating from the open ocean. Here, we model the evolution of energetic unidirectional random waves in the marginal ice zone with a nonlinear Schrödinger equation, with a frequency dependent dissipative term consistent with current model paradigms and recent field observations. The preferential dissipation of high freque...
Article
Full-text available
Irregular, unidirectional surface water waves incident on model ice in an ice tank are used as a physical model of ocean surface wave interactions with sea ice. Results are given for an experiment consisting of three tests, starting with a continuous ice cover and in which the incident wave steepness increases between tests. The incident waves rang...
Article
Full-text available
Sea-ice drift in the Antarctic marginal ice zone (MIZ) is discussed using data from a 4-month- long drift of a buoy deployed on a pancake ice floe during the winter sea-ice expansion. We demonstrate increased meandering and drift speeds, and changes in the dynamical regimes of the absolute dispersion during cyclone activity, together with high corr...
Preprint
Full-text available
Sea ice attenuates waves propagating from the open ocean. Here we model the evolution of energetic unidirectional random waves in sea ice with a nonlinear Schr\"{o}dinger equation, with a frequency dependent dissipative term consistent with current model paradigms and recent field observations. The preferential dissipation of high frequency compone...
Preprint
Full-text available
Irregular, unidirectional surface water waves incident on model ice in an ice tank are used as a physical model of ocean surface wave interactions with sea ice. Results are given for an experiment consisting of three tests, starting with a continuous ice cover and in which the incident wave steepness increases between tests. The incident waves rang...
Preprint
Full-text available
The Antarctic marginal ice zone (MIZ) is a highly dynamic region where sea ice interacts with ocean surface waves generated in ice-free areas of the Southern Ocean. Improved large-scale (satellite-based) estimates of MIZ width and variability are crucial for understanding atmosphere-ice-ocean interactions and biological processes, and detection of...
Data
Supplementary Information to Landwehr, S., Volpi, M., Haumann, F. A., Robinson, C. M., Thurnherr, I., Ferracci, V., Baccarini, A., Thomas, J., Gorodetskaya, I., Tatzelt, C., Henning, S., Modini, R. L., Forrer, H. J., Lin, Y., Cassar, N., Simó, R., Hassler, C., Moallemi, A., Fawcett, S. E., Harris, N., Airs, R., Derkani, M. H., Alberello, A., Toffol...
Article
Full-text available
The Southern Ocean is a critical component of Earth's climate system, but its remoteness makes it challenging to develop a holistic understanding of its processes from the small scale to the large scale. As a result, our knowledge of this vast region remains largely incomplete. The Antarctic Circumnavigation Expedition (ACE, austral summer 2016/201...
Article
A physical model is discussed that mimics the interaction between ocean waves and a multitude of loose pancake ice floes, which form the outer edge of the Arctic and Antarctic marginal ice zones during winter sea ice formation. The pancakes were modeled by using ice cubes with different concentrations, while waves were generated mechanically. The i...
Conference Paper
Sea state conditions can be estimated from the motion of a moving ship by converting its response to incident waves through the response amplitude operator. The method is applied herein to ship motion data from the icebreaker R/V Akademik Tryosh-nikov and recorded during the Antarctic Circumnavigation Expedition across the Southern Ocean during the...
Article
Full-text available
The marginal ice zone is a highly dynamical region where sea ice and ocean waves interact. Large-scale sea ice models only compute domain-averaged responses. As the majority of the marginal ice zone consists of mobile ice floes surrounded by grease ice, finer-scale modelling is needed to resolve variations of its mechanical properties, wave-induced...
Preprint
Full-text available
The Southern Ocean is a critical component of Earth’s climate system, but its remoteness makes it challenging to develop a holistic understanding of its processes from the small to the large scale. As a result, our knowledge of this vast region remains largely incomplete. The Antarctic Circumnavigation Expedition (ACE, austral summer 2016/2017) sur...
Preprint
Full-text available
The marginal ice zone is a highly dynamical region where sea ice and ocean waves interact. Large-scale sea ice models only compute domain-averaged responses. As the majority of the marginal ice zone consists of mobile ice floes surrounded by grease ice, finer-scale modelling is needed to resolve variations of its mechanical properties, wave-induced...
Article
Full-text available
The Southern Ocean has a profound impact on the Earth's climate system. Its strong winds, intense currents, and fierce waves are critical components of the air–sea interface and contribute to absorbing, storing, and releasing heat, moisture, gases, and momentum. Owing to its remoteness and harsh environment, this region is significantly undersample...
Preprint
Full-text available
Propagation of energetic surface gravity waves over a $>40$\,km transect of the winter Antarctic marginal ice zone comprised of pancake floes and interstitial frazil ice during an explosive polar cyclone are presented, obtained with a shipborne stereo-camera system. The waves are shown to attenuate at an exponential rate over distance, but, despite...
Preprint
Full-text available
The Southern Ocean has a profound impact on the Earth's climate system. Its strong winds, intense currents, and fierce waves are critical components of the air-sea interface and contribute to absorbing, storing, and releasing heat, moisture, gasses, and momentum. Owing to its remoteness and harsh environment, this region is significantly under samp...
Conference Paper
Full-text available
Ocean waves penetrate hundreds of kilometres into the ice- covered ocean. Waves fracture the level ice into small floes, herd floes, introduce warm water and overwash the floes, accelerating ice melt and causing collisions, which concurrently erodes the floes and influences the large-scale deformation. Concomitantly, interactions between waves and...
Article
Full-text available
We examine and discuss the spatial evolution of the statistical properties of mechanically generated surface gravity wave fields, initialized with unidirectional spectral energy distributions, uniformly distributed phases, and Rayleigh distributed amplitudes. We demonstrate that nonlinear interactions produce an energy cascade towards high frequenc...
Article
Full-text available
Plain Language Summary During the Antarctic winter, small pancake ice floes, which form rapidly in wavy conditions, dominate new ice growth and create a dynamic environment. However, there are only a handful of local observations of pancake ice drift, particularly during the intense polar cyclones that frequently reshape the ice cover. More observa...
Preprint
Full-text available
We examine and discuss the spatial evolution of the statistical properties of mechanically generated wave fields, initialised with uniformly distributed phases and Rayleigh distributed amplitudes. We demonstrate that nonlinear interactions produce an energy cascade towards high frequency modes and triggers localised intermittent bursts. By analysin...
Preprint
Full-text available
High temporal resolution in--situ measurements of pancake ice drift are presented, from a pair of buoys deployed on floes in the Antarctic marginal ice zone during the winter sea ice expansion, over nine days in which the region was impacted by four polar cyclones. Concomitant measurements of wave-in-ice activity from the buoys is used to infer tha...
Article
Full-text available
Plain Language Summary The extent of Antarctic sea ice is characterized by large regional variations that are in stark contrast with the alarming decreasing trends found in the Arctic. This is partly due to the presence of severe weather events, like extratropical cyclones travelling through the Southern Ocean and reaching the marginal ice zone (MI...
Article
Full-text available
Wave breaking is the most characteristic feature of the ocean surface. Physical investigations (in the field and at laboratory scale) and numerical simulations have studied the driving mechanisms that lead to wave breaking and its effects on hydrodynamic loads on marine structures. Despite computational advances, accurate numerical simulations of t...
Article
Full-text available
The evolution of surface gravity waves is driven by nonlinear interactions that trigger an energy cascade similarly to the one observed in hydrodynamic turbulence. This process, known as wave turbulence, has been found to display anomalous scaling with deviation from classical turbulent predictions due to the emergence of coherent and intermittent...
Article
Full-text available
Hydroelastic interactions between regular water waves and floating freshwater ice are investigated using laboratory experiments for a range of incident wave periods and steepnesses. It is shown that only incident waves with sufficiently long period and large steepness break up the ice cover and that the extent of breakup increases with increasing p...
Article
Full-text available
The size distribution of pancake ice floes is calculated from images acquired during a voyage to the Antarctic marginal ice zone in the winter expansion season. Results show that 50% of the sea ice area is made up by floes with diameters 2.3–4m. The floe size distribution shows two distinct slopes on either side of the 2.3–4m range. It is conjectur...
Preprint
Full-text available
Hydroelastic interactions between regular water waves and floating freshwater ice are investigated using laboratory experiments for a range of incident wave periods and steepnesses. It is shown that only incident waves with sufficiently long period and large steepness break up the ice cover, and that the extent of breakup increases with increasing...
Poster
Full-text available
Southern Ocean waves are the largest on Earth, but their interaction with sea ice is a particularly poorly understood feedback in the climate system. Limited observations of waves in the Antarctic marginal ice zone (MIZ) show that waves can travel hundreds of kilometers into the ice and that current representations of wave decay are inappropriate i...
Preprint
Full-text available
The evolution of surface gravity waves is driven by nonlinear interactions that trigger an energy cascade similarly to the one observed in hydrodynamic turbulence. This process, known as wave turbulence, has been found to display anomalous scaling with deviation from classical turbulent predictions due to the emergence of coherent and intermittent...
Conference Paper
Full-text available
Waves penetrate deep into the ice covered seas, inducing breakup of the ice cover. Concomitantly, the ice cover attenuates the wave energy over distance, so that wave impacts die out eventually. Observations of wave attenuation and concurrent wave-induced breakup in the literature are serendipitous due to difficulties in making measurements in ice...
Article
Wave-induced turbulence due to breaking in the absence of surface shear stresses is investigated experimentally. A high-fidelity particle image velocimetry (PIV) technique is used to measure the turbulence near the water surface, inside the wave crests. The spatial velocity vector fields of the breaking waves acquired from PIV provide accurate vert...
Poster
Full-text available
In ocean engineering, wave focusing techniques are routinely adopted to deterministically reproduce rogue waves in numerical and physical wave experiments. The nonlinear Schrödinger Equation (NLSE), that accounts for the nonlinear dynamical evolution of a wave envelope, accurately describes the physical mechanism leading to the formation of rogue w...