
Minimization of Biosynthetic Costs in Adaptive Gene
Expression Responses of Yeast to Environmental
Changes
Ester Vilaprinyo1*, Rui Alves2, Albert Sorribas2
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Abstract

Yeast successfully adapts to an environmental stress by altering physiology and fine-tuning metabolism. This fine-tuning is
achieved through regulation of both gene expression and protein activity, and it is shaped by various physiological
requirements. Such requirements impose a sustained evolutionary pressure that ultimately selects a specific gene
expression profile, generating a suitable adaptive response to each environmental change. Although some of the
requirements are stress specific, it is likely that others are common to various situations. We hypothesize that an
evolutionary pressure for minimizing biosynthetic costs might have left signatures in the physicochemical properties of
proteins whose gene expression is fine-tuned during adaptive responses. To test this hypothesis we analyze existing yeast
transcriptomic data for such responses and investigate how several properties of proteins correlate to changes in gene
expression. Our results reveal signatures that are consistent with a selective pressure for economy in protein synthesis
during adaptive response of yeast to various types of stress. These signatures differentiate two groups of adaptive
responses with respect to how cells manage expenditure in protein biosynthesis. In one group, significant trends towards
downregulation of large proteins and upregulation of small ones are observed. In the other group we find no such trends.
These results are consistent with resource limitation being important in the evolution of the first group of stress responses.
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Introduction

Unicellular organisms are sensitive to environmental challenges.

Their internal milieu acts as a buffer against such changes by

mounting an adaptive response involving modifications at different

cellular levels. Appropriate adaptive responses require intracellular

signaling, changes in the conformation and activity of proteins,

changes in transcription and translation of genes, etc. [1]. Many of

the cellular modifications that characterize any adaptive response

are due to the need for acquiring new protein functionalities while

shutting down other protein functionalities that are not required in

the new conditions. These changes ultimately fine tune the

mechanisms and processes that allow the cell to function

appropriately and survive under changing environments.

Such fine tuning is shaped by various functional requirements

and physiological constraints. The functional requirements are a

result of the specific demands that are imposed on cell survival by

the environment. On the other hand, the physiological constraints

are defined by the limits within which the cell is physically capable

of changing the activity of its component parts to meet the

functional requirements. From a global point of view, adaptive

responses can be seen as a multi-optimization problem because

cells evolved appropriate responses to cope with different types of

stress, while optimizing different parts of its metabolism for each of

those responses [2,3]. For example, cells simultaneously have to

increase the concentration of specific metabolites and proteins,

while decreasing the concentration of other components to prevent

an increase in the concentration of unneeded metabolites. Such an

increase could strain cell solubility capacity or increase spurious

reactivity to dangerous levels. These and other functional

constraints are likely to provide sustained evolutionary pressures

that ultimately select a specific gene expression profile that leads to

suitable adaptive responses.

With these arguments in mind, it is thus important to identify

the functional requirements and quantitative physiological con-

straints that may significantly shape adaptive responses. Among

others, minimization of energetic expenditure plays an important

role in cells growing exponentially in a rich medium. Several

signatures that are consistent with minimization of metabolic cost

have already been identified in the properties of the set of proteins

that is expressed when cells are growing in rich media (basal

conditions).

For example, genes coding for proteins that are highly abundant

under basal conditions have a pattern of synonymous codon usage

that is well adapted to the relative abundance of synonymous

tRNAs in the yeast S. cerevisiae and in Escherichia coli [4,5].
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Another signature that is found in genes that are highly

expressed under basal conditions is a sequence bias that minimizes

transcriptional and translational costs [6]. This minimization of

metabolic cost is further observed in the relative amino acid

composition of abundant proteins under the same conditions.

These proteins are enriched with metabolically cheaper amino

acids [7].

A final example of a general signature is the codon bias of long

genes. This bias is such that the probability of missense errors is

reduced during translation [6,8,9]. These biases suggest that

reducing overall costs in metabolism, whenever possible, may

significantly increase cellular fitness. This view is consistent with

the observation that small changes in gene expression affecting the

levels of protein synthesis influence the fitness of specific E. coli

strains [10].

This body of results strongly supports the notion that metabolic

cost acts as a selective pressure in shaping the properties of cells

growing in a rich medium, in absence of environmental stresses.

Thus, one might ask if minimization of metabolic cost is also an

important factor in the evolution of adaptive responses to stress

conditions. It is predictable that this evolutionary pressure might

leave stronger signatures in adaptive responses that require the use

of higher ATP amounts by the cell, such as adaptation to heat,

weak organic acids, or NaCl. In these three cases, it has been

reported that ATP concentrations decrease due to a high energy

demand [11].

Given that protein synthesis is one of the costliest biosynthetic

efforts for the cell [12], the minimization of metabolic cost might

have biased the properties of proteins whose expression change

during adaptation. Therefore, here we ask the following questions.

Is there a signature that is consistent with a selective pressure for

minimizing metabolic cost in proteins synthesis during adaptive

responses to stress? Can one find general signatures in the

physicochemical properties proteins and in the expression patterns

of genes that are involved in the adaptive response to different

environmental challenges? If so, what physiological constraints are

consistent with those signatures?

We address these questions by investigating how is the value of

several properties of proteins (size and molecular weight of

proteins, codon adaptation index, aromaticity, average cost per

amino acid, etc.) related to changes in gene expression levels

during various environmental changes.

We find that genes whose expression is upregulated during

different types of adaptive responses tend to code for proteins that

are small, while genes whose expression is downregulated during

the same responses tend to code for proteins that are large. This is

a signature that is consistent with a selective pressure for

minimizing metabolic cost in proteins synthesis. It is more

significant in adaptive responses where changes in gene expression

levels affect a large fraction of the genome. To our knowledge, this

is the first general and global signature that has been identified for

the properties of proteins involved in adaptive responses to stress.

Materials and Methods

Databases of gene expression, protein abundance and
protein properties

Microarray data. Data from 249 published microarray

experiments that measure changes in yeast gene expression

under a battery of different environmental stresses [13,14] have

been analyzed. Changes in gene expression during responses to the

following environmental signals are considered: heat shock,

menadione, hydrogen peroxide, DTT, diamide, acid and alkali

stresses, changes of carbon sources (C Source), NaCl, diauxic shift,

nitrogen (QN) and amino acid depletion (QAA), high sorbitol

concentration (Sorbitol) and return to normal osmolarity after

being subject to high sorbitol concentrations (hereafter referred to

as QSorbitol), and stationary phase at 25u and 30uC (ST25 and

ST30 respectively). Details on the experimental conditions can be

found in the literature [13,14] and the data itself is publicly

available.

Functional classification of genes. Categorization of

protein function, biological process, and location was done using

Gene Ontology (GO) terms provided by the Saccharomyces

Genome Database (SGD, http://www.yeastgenome.org) tool Go

Ontology Slim Mapper. Higher level (Broad classification) GO

terms were identified using Super Go-Slim. The ORFs were

further classified using the Yeast Go-Slim classification. This

classification includes details about the major biological processes,

functions, and cellular components of S. cerevisiae. We do not

examine individual pathways, because in most cases such

pathways have such a small number of proteins that the

statistical significance of the changes cannot be assessed.

Protein properties, mRNA length, abundance and half-

life data. Whole-genome data for basal protein abundance

[15], basal protein half-life [16], and mRNA were obtained from

the literature (mRNA[A] from [17] and mRNA[H] from [18]). In

all cases, the data pertain to yeast growing exponentially in a rich

medium (basal conditions).

Other protein properties. The physicochemical properties

of proteins as well as the list of protein complexes in yeast were

obtained from the SGD ftp site [19]. Different properties of

proteins that we analyze are: length, molecular weight, isoelectric

point, Codon Adaptation Index (CAI) [20,21], Codon Bias Index

(CB) [22], and Frequency of Optimal Codons (FOP) [23], protein

hydropathicity (as measured by the GRAVY score) [24],

aromaticity score [25], and average amino acid cost of proteins [7].

Selecting the set of proteins to analyze. According to the

available data [15], under optimal growth conditions the

abundance of a protein ranges from fewer than 50 molecules to

more than 106 molecules per cell. The experimental methods for

determining protein amount have limited detection sensitivity at

low abundance. Because of this, determinations for proteins whose

abundance lies on the lower boundaries of detection will most

likely have the largest relative errors. To avoid that this error

influences the analysis we ranked all proteins by abundance. Then

we selected the proteins to include in our study, starting at the

most abundant in the list and moving down to less abundant

Author Summary

Although different environmental stresses trigger specific
sets of protective changes in the gene expression of yeast,
the adaptive responses to these stresses also share some
common features. We hypothesize that minimization of
metabolic costs may contribute to shaping such adaptive
responses. If this is so, then such pressure should be more
noticeable in the costliest biosynthetic processes. One of
these is protein synthesis. Thus, we analyze the set of
genes and proteins whose expression changes during the
responses and look for evidence to support or falsify our
hypothesis. We find that protein properties that are
indicative of protein cost correlate to changes in gene
expression in a way that is consistent with that hypothesis
for a large number of adaptive responses. However, if
changes in gene expression are small during the adaptive
response, we find no evidence of protein cost as a factor in
shaping the adaptive response.
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proteins. When 99.5% of all protein mass in the cell is included in

the list of proteins to analyze, we discard the remaining proteins.

Estimating maximum level of gene expression change
from microarray experiments

The microarray data we analyze provide information regarding

relative up and downregulation (UpCF and DownCF, respectively)

of gene expression with respect to a pre-stress control condition.

To facilitate comparison between upregulated and downregulated

genes, we use the inverse of the ratio for downregulated genes.

Thus, all values for the ratios of changes in gene expression

discussed below are greater than 1.

Changes in gene expression during stress responses are dynamic

and, for the most part, transient. Because of this, we take the

maximum value of up or downregulation as an approximated

measure of the maximal change in gene expression during the

transient stress response.

Changes in gene expression are underestimated for genes that

undergo very strong up or downregulation, due to intrinsic

limitations of the microarray technology [26]. To minimize any

errors that may come from this limitation we use the 98th quantile

of all the ratio values for a given gene as a proxy of its maximum

UpCF or DownCF.

Analysis of gene expression changes
Statistical comparison of gene expression changes.

Spearman rank correlations are used to characterize the

dependencies between properties of proteins and changes in

gene expression to a first approximation. However, this statistical

index has some constraints that limit its usefulness for our analysis.

First, the high number of observations may lead to statistically

significant results even with low correlation values. Second, it is

very sensitive to noisy data. Third, distributions that are

asymmetric and have heavy long tails, such as those of our

datasets, may influence the correlations and produce false results.

All these constraints may lead to erroneous interpretation of the

results. Thus, although correlation analysis gives a global

description of the possible trends, such an analysis needs to be

complemented with more detailed methods in order to support an

interpretation of the set of results.

Thus, to further assess the biological relevance of the

correlations we use the following procedure. First, and because

the distribution of each of the considered properties has long tails,

we select the values that fall within the 80% interquantile for the

property of interest. Then, we divide this range into 3 groups.

Finally, we compute the ranks of the change in gene expression

between the two extreme groups obtained by this criteria,

discarding the middle group, and test for distribution differences

by using the Mann-Whitney U rank-sum test. In the set of UpCF

proteins, a positive z for this test means that the group with high

values for the property is less upregulated than the group with low

values for the property. In the set of DownCF proteins, a positive z

for this test means that the group with high values for the property

is more downregulated than the group with low values for the

property (see for instance Tables 1–2).

Descriptive plots. Moving-quantile plots are used to smooth the

noise and allow for a visual analysis of the global tendencies in the

changes of gene expression. We use a window of 300 proteins for

the moving-quantiles.

Quantile-quantile plots are used to compare the distribution of the

values of two samples. To build such plots, one determines the

quantiles for each sample separately. Then the values of the

variable that correspond to the same quantile in each separate

sample are plotted one against each other. A reference line with a

slope of 1 helps in checking for differences between distributions. If

the two lists have a similar distribution, the points will fall near the

reference line.

Computational tools. All analyses were done using our own

functions implemented in Mathematica version 7.0.

Results

As discussed in the Introduction, previous authors report clear

trends between different properties of proteins and their basal

abundance in yeast growing exponentially on a rich medium (basal

conditions) [6,7,8,9]. In this work we evaluate the existence of

similar signatures in the proteins that are involved in the adaptive

response of yeast to stress. Before presenting the specific results,

and due to the complexity of the analysis, it is worth it to briefly

outline the strategy we follow and its rationale. There are four

main steps:

1. Characterize how the selected protein properties (see Methods)

correlate with each other. This is important because it allows us

to control later on whether a relationship between changes in

gene expression and a given property may be the result of a

secondary correlation between properties of proteins or not.

2. Use changes in gene expression as a proxy for changes in

protein level and investigate how such changes correlate with

the protein properties considered in this work. In order to

Table 1. Comparison of changes in gene expression between
low and high abundant proteins, for each of the
environmental conditions.

Environmental
condition Up- CF Down- CF Thresholds

z P z p Lower Upper

ST25 + 4.19 *** + 21.54 *** 7.79 14.91

ST30 + 7.63 *** + 19.20 *** 6.17 11.70

Heat + 8.69 *** + 10.54 *** 7.27 13.89

QN + 3.88 *** + 18.95 *** 6.90 13.12

Peroxide + 4.19 *** + 13.35 *** 6.17 11.70

NaCl + 5.23 *** + 6.49 *** 7.04 13.39

Diauxic + 1.82 *** + 16.70 *** 6.96 13.26

QAA + 1.04 0.15 + 14.88 *** 6.13 11.60

Sorbitol + 4.04 *** + 15.91 *** 7.27 13.89

Alkali + 1.74 *** + 6.54 *** 5.96 11.22

DTT 2 11.66 *** + 6.53 *** 6.98 13.31

Diamide 2 2.77 *** + 11.66 *** 8.63 16.65

Menadione 2 4.14 *** + 3.47 *** 7.56 14.49

Acid + 6.29 *** + 6.36 *** 7.37 14.07

C Source 2 12.66 *** + 6.09 *** 7.03 13.40

QSorbitol 2 7.87 *** 2 6.53 *** 5.50 10.32

We identify the extreme group values for abundance and use the Mann-
Whitney analysis for characterizing positive or negative associations with gene
expression levels, as detailed in the methods section. Lower and Upper
concentration thresholds indicates the cutoff limits for selecting low abundance
proteins and high abundance proteins. A positive z indicates that proteins in
the Lower group present higher up-expression and lower down-expression
than those in the Upper group as compared by the Mann-Whitney analysis. A
negative z indicates the opposite result. The corresponding p-values obtained
using this test are indicated as (***) if p,0.05. Abundance is divided by
103 pr/cell.
doi:10.1371/journal.pcbi.1000674.t001
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assure consistency of the results, and because the signal to noise

ratio is low for our purposes, a three tiers analysis of the data is

required. First, we perform a correlation analysis between

changes in gene expression and the different values of the

protein properties. However, even a statistically significant

correlation coefficient can be misleading because these

coefficients are almost always significant in large datasets.

Furthermore, a correlation coefficient describes an inhomoge-

neous set of data with a point measure, which is an important

limitation in our case. Second, and to overcome this limitation,

we use the Mann-Whitney test to compare the bulk differences

in gene expression between proteins that have extreme values

for the property of interest. This test enables us to appropriately

deal with the asymmetrical and heavy tailed nature of the

distributions found in our datasets. Finally, we use moving-

quantile plots to represent changes in gene expression as a

function of the different properties. This allows us to do both,

resolve any apparent contradictions that may arise between the

correlation analysis and the Mann-Whitney analysis, and have

a finer detail representation of our data.

3. Results from 2 are consistent with economy being an important

factor in shaping different stress responses. To further

investigate this issue we define a quantitative index that

estimates the cost of changing protein expression. We use

clustering analysis and discriminate analysis to investigate how

the different stress responses behave with respect to this index.

4. The results from the previous steps suggest that there are two

types of stress responses in regards to the amount of changes in

gene expression observed during the response. Therefore, we

pool together the gene expression changes in stress responses of

the same type, in order to have a stronger signal. We reanalyze

the pooled data in order to ensure consistency between this set

of responses and the results for the individual responses. Then,

we use the pooled dataset to investigate how molecular

complexes and protein function might influence our results

by analyze the proteins in different Gene Ontology (GO)

categories.

We now discuss the results of the analysis in detail.

Correlation between different protein properties
Some of the protein properties we consider are strongly

correlated (see Table S1). For example, different measures of

codon preference towards the major tRNA isoacceptors, such as

CAI, CB, and FOP, are highly correlated (r = 0.83–0.97). Length

and molecular weight of proteins are, in practice, equivalent.

Protein and mRNA abundance show a correlation of r = 0.56.

Protein abundance is also positively correlated to CAI, to CB and

to FOP (r = 0.53–0.54), and to mRNA abundance under basal

growth conditions (r = 0.60–0.64). Similarly, average amino acid

cost (ACPA) is highly correlated to aromaticity (r = 0.84), because

the most expensive amino acids are aromatic. Thus, if a protein

has a high percentage of aromatic amino acids (which is

proportional to aromaticity) it will have a larger average cost per

amino acid than proteins with lower percentage of aromatic amino

acids.

Relation between changes in gene expression and
protein properties

The only type of data that is available for both, the entire

genome and a comprehensive set of yeast adaptive responses, is

gene expression data from microarray experiments [13,27].

Thus, in order to search for trends between the adaptive

responses and the protein properties, we analyze how the value

of those properties is related to the changes in gene expression

during the response. We analyze microarray data for fourteen

stress responses and two control conditions (change in carbon

source — C Source — and return to basal conditions after

osmotic shock — QSorbitol).

Correlations between gene expression and protein

properties. As a first step in the analysis of the relationship

between changes in gene expression and each of the different

protein properties, we evaluate how the maximum change in

mRNA level for the microarray data of each stress response

correlates to the property of interest. This is done by calculating

the Spearman rank correlation coefficient. Upregulated and

downregulated genes are analyzed independently. The results

are summarized in Figure 1.

Those results reveal substantial diversity in the properties of the

proteins that are induced or repressed during the various responses

to stress. Despite this, for most adaptive responses we found a

similar pattern for the relationship between changes in gene

expression and protein abundance, protein length, codon

adaptation index, or mRNA abundance. The value for each of

these properties tends to decrease if the gene is more upregulated

and increase if the gene is more downregulated.

In 11 stress responses, the most upregulated proteins tend to be

less abundant under basal conditions. In 15 stress responses, the

more downregulated proteins tend to be more abundant under

basal conditions. As expected because of the high correlation

between protein abundance and CAI or basal mRNA abundance,

the correlation between these properties and changes in gene

expression is similar to those for abundance. Surprisingly, and

although abundance and length are negatively correlated (Table

Table 2. Comparison of changes in gene expression between
short and large proteins, for each of the environmental
conditions.

Environmental
condition Up- CF Down- CF Thresholds

z p z P Lower Upper

ST25 + 5.76 *** + 2.15 *** 408 653

ST30 + 4.23 *** 2 2.08 *** 416 665

Heat + 1.67 *** + 4.53 *** 419 672

QN + 9.91 *** + 3.69 *** 415 662

Peroxide + 4.72 *** + 8.11 *** 421 677

NaCl + 3.05 *** + 4.20 *** 415 671

Diauxic + 9.47 *** + 3.62 *** 405 639

QAA + 1.61 0.05 + 2.65 *** 416 667

Sorbitol + 1.58 0.06 2 1.19 0.12 416 666

Alkali + 2.89 *** + 2.73 *** 434 703

DTT + 13.69 *** + 5.64 *** 411 658

Diamide + 11.07 *** + 7.15 *** 408 660

Menadione + 7.51 *** 2 4.91 *** 435 702

Acid + 1.03 0.15 2 1.57 0.06 431 691

C Source 2 15.20 *** 2 8.79 *** 413 662

QSorbitol 2 7.72 *** 2 8.64 *** 415 656

We identify the extreme group values for length and use the Mann-Whitney
analysis for characterizing positive or negative associations with gene
expression levels, as detailed in the methods section. (See legend in Table 1).
doi:10.1371/journal.pcbi.1000674.t002
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Figure 1. Spearman rank correlation between properties of proteins and changes in gene expression for each stress condition. Only
the results with statistical significance (p,0.05) are shown. Green bars correspond to upregulation. Purple bars correspond to downregulation.
doi:10.1371/journal.pcbi.1000674.g001
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S1) we find that in 11 cases the most upregulated proteins tend to

be short and that in 9 cases the most upregulated tend to be large.

Correlations between changes in gene expression and GRAVY,

Aromaticity, IP, ACPA or protein half-life are either non-

significant or weak.

Comparison of expression changes between groups with

extreme values for properties. An analysis of the results

finds that the properties that are more strongly correlated to

changes in gene expression are those that can be considered as

a proxy for cost of protein synthesis. Because of this we focus

the next step of our analysis on those properties, which are

protein length, protein abundance, CAI and T1/2. The

relationship between each of these properties and cost of

protein synthesis can be explained as follows. First, abundant

proteins require more resources to synthesize and maintain

than proteins that are present in low copy numbers. The same

is true for proteins with low T1/2. Second, longer proteins are

metabolically more expensive to synthesize than shorter

proteins because they use more amino acids per peptide

chain. Third, the codon adaptation index can also be a proxy

for the rate of synthesis of a protein, given that proteins with a

high CAI are more likely to be highly expressed than proteins

with a low CAI.

If cost of protein synthesis is an issue that influences evolution of

stress response, then proteins that are more expensive should be

more strongly repressed and proteins that are cheaper should be

more strongly upregulated. Therefore, one needs to analyze if

changes in gene expression are different between the cheaper and

the most expensive proteins. The Mann-Whitney analysis of the

extreme groups for each property, although less intuitive than the

correlation analysis, allows us to perform such a comparison.

Thus, we are analyzing the groups of proteins in which the signal is

likely to be strongest.

The results for abundance and length are summarized in

Tables 1–2. They confirm that the repression of abundant and

long proteins and up-expression for low-abundant and short

proteins is observed for most stress responses. Interestingly, the two

control conditions (QSorbitol and C Source) show correlations

that are opposite to those observed for most stress responses. In

addition, adaptive responses to stresses by DTT and Diamide

(once) and Menadione and Acid (twice) show an absence of

correlation between changes in gene expression and protein

length/protein abundance.

Results for CAI are almost identical to those for abundance and

we do not find any clear trend for T1/2 (data not shown).

Visualization of trends. In order to have a finer detail

representation of our data and resolve any apparent contradictions

between the correlation analysis and the Mann-Whitney analysis

(for example compare the results for heat shock response between

Figure 1 and Table 2) we use moving-quantile plots. Changes in

gene expression vs. either protein length or abundance are shown

in Figures 2 and S1, respectively. This visualization method clearly

shows that stress responses with lower correlations in Figure 1 and

Tables 1–2 have smaller transcriptional changes. The results from

the Mann-Whitney analysis are more consistent with the slopes of

moving-quantile plots than the correlation analysis. For example,

correlations between upregulation of expression and protein length

for ST25, ST30 and heat shock are low or null (Figure 1).

However, the Mann-Whitney analysis shows that the changes in

gene expression in the group of small proteins are significantly

different from those in the group of large proteins. The moving-

quantile plots for these conditions show a negative slope for the

green lines that is stepper for quantile 0.75 (upper green band in

Figure 2).

Those plots also permit identifying responses where downreg-

ulation spans a longer range of protein lengths and abundances

than upregulation. For example, in Figure 2 for conditions

ST25, ST30, QN, NaCl, Diauxic, QAA, Alkaly, Diamide and

Menadione the green line is shorter than the purple line.

By and large, only weak relationships are found between

change-fold and T1/2 (Figure S2). As expected from their high

correlation, CAI and protein abundance correlate to change-fold

in a similar way (Figure S3).

Similarities across stress responses
Short proteins with a high relative composition of metabolically

cheaper amino acids are highly abundant under basal conditions,

which is consistent with the hypothesis that lowering protein cost is

a driving force in shaping the protein complement of yeast in those

conditions [7]. It is also well known that the process leading up to

protein synthesis is one of the costliest components of cellular

metabolism [12] and that during response to many environmental

stress signals yeast shuts down gene expression and decreases the

number of ribosomes [13,14].

It has been proposed that gene expression profiles have

signatures that are specific to the conditions under which they

have evolved [2,28]. If metabolic cost in general, and cost of

protein synthesis in particular, is a significant factor in shaping

adaptive profiles, then one might expect that the stronger the

resource limitation is, the larger its signature will be. It would then

be reasonable to expect that adaptive responses where a resource

limitation exists may have similar qualitative bulk expenditure in

protein synthesis.

To find support for this hypothesis we must estimate that cost

for the different stress responses. Changes in protein levels can be

roughly estimated over the whole genome by the changes in the

levels of gene expression [29]. Thus, an index yi that approxi-

mately estimates the changing costs of protein synthesis during a

given adaptive response i can be defined as:

yi~
Xn

k~1

Ak|Lk| UpCFik{DownCFikð Þ ð1Þ

In this equation Ak is the basal abundance of protein k and Lk is

the primary sequence length of that protein UpCFik and DownCFik

represent the change-fold of up- or downregulation of the gene

that codes for protein k.

It is likely that specific functional requirements during any given

stress response will lead to the synthesis of new proteins whose

functionality is required for survival under the new conditions. By

calculating a cost index for each of the twenty five Gene Ontology

(GO) categories of cellular components defined in the SGD Slim

Mapper Tool, we can analyze if the requirement for new functions

is restricted to specific categories of the GO classification or not.

Such a discriminating cost index can be defined as:

yij~
Xn

k~1

Ak|Lkj| UpCFijk{DownCFijk

� �
j~1,:::,25 ð2Þ

The index yij refers to stress condition i and GO category j. For

each protein k within the GO category j, the up- (UpCFijk) or

down-change fold (DownCFijk) is multiplied by its length Ljk. If in

the GO category j the expression of genes coding for small

proteins is preferably upregulated and the expression of genes

coding for large proteins is preferably downregulated, the index yij

Minimization of Biosynthetic Costs
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will be negative. This index provides a rough bulk estimate of how

much a cell invests in synthesizing new proteins (the upregulation

term) subtracting how much the cell saves by decreasing the

synthesis of other proteins (the downregulation term). The index

under basal conditions is 0 because the difference between up- and

down-expression is null in that case.

A cluster analysis of the twenty five dimensional vectors built for

each adaptive response with the index yij calculated for each GO

category is shown in Figure 3. Four clusters can be distinguished

from this analysis. Responses to QSorbitol, C source, Menadione

and Acid cluster together with basal conditions (Basal Cluster) and

apart from the other responses. Interestingly, this Basal Cluster

includes stress responses in which the previous analytical methods

find a low correlation between protein cost and changes in gene

expression (Tables 1–2 and Figures 1–2 and S1). Because we could

not find an accurate bootstrap statistical test to calculate

significance for the clusters in Figure 3 we further tested similitude

between the conditions using a discriminant analysis of the data

used to build the clusters. Two dimensions explain 99.9% of the

variance in the data and separate all four groups found in the

cluster analysis (Figure S4).

The normalized values of each component of the vector yij for

each type of adaptive response plotted in Figure 4 show the

similarity between the different responses. For reference purposes,

Figure 2. Change-folds of genes with respect to their length. Plots show the moving-median using a window of 300 elements. Colors: Green
for upregulation and purple for downregulation. Length unit is 102 amino acids. The lines represent the moving median plots. The shaded areas
represent the regions from quantile 0.25 to quantile 0.75. Note that in most cases there is an upper limit to the length of upregulated proteins. This
limit is smaller than the limit found for to the length of downregulated proteins.
doi:10.1371/journal.pcbi.1000674.g002
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the basal condition is represented by a dashed circle in each of the

panels of that figure. Lines below that circle indicate negative

values for yij while any lines above the basal condition circle

indicate positive values for yij . Conditions included in the Basal

Cluster show low absolute values for this index in all GO

categories. This is different for the other groups that, overall, have

larger negative values for yij in categories ‘‘Cytoplasm’’,

‘‘Nucleus’’, and ‘‘Ribosome’’. The four clusters are also consistent

with the gradation observed in the moving-quantile plots for

length and abundance (Figure 2 and S1).

Altogether, the results presented in this section, suggest two

broad types of adaptive responses. In one type, corresponding to

responses in the Basal Cluster, the changes in gene expression are

small. In this group of responses, we find no correlation between

protein properties and gene expression. In the other type of stress,

responses have evolved in a way that is consistent with a significant

pressure to minimize the metabolic cost of the response.

Adaptive responses that are consistent with metabolic
cost minimization

The previous results suggest that the stress conditions consid-

ered can be classified in two broad types with respect to metabolic

economy. On one hand, we have the Basal Cluster in Figures 3

and 4. This cluster includes the adaptive responses to Menadione,

Acid and the two controls, C Source and QSorbitol. The results do

not support a significant pressure by metabolic economy in

shaping these responses. On the other hand, all other responses

can be clustered into three subgroups. Nevertheless, they all

appear to be shaped to some degree by metabolic economy.

Therefore, we lump together change-folds for gene expression of

all these later stress responses. By doing this we create a data set

that has a stronger signal than that found in responses to the

individual stresses when we relate properties and gene expression

changes. The stronger signal in this combined data set also allows

us to analyze patterns within each GO category for function,

biological processes and cellular location of the proteins.
Consistency between the pooled dataset and the

individual datasets. As a control for the adequacy of the

lumped dataset, we need to make sure that it has the same

characteristics as those of its individual constituent datasets. To do

this, we compared the gene expression changes between groups of

proteins with high and low values for each property in the lumped

set of responses (Table 3). This analysis is similar to that described

for individual stress responses.

We confirm a strong trend to repress highly abundant proteins

and upregulate only proteins that were less abundant under basal

conditions. As expected, the other properties follow a coherent

pattern that depends on their correlation with abundance (Table

S1). For example, highly abundant proteins tend to have high

values for mRNA abundance, high codon adaptation indexes,

high T1/2, low ACPA, and low aromaticity. Consequently, the

more repressed proteins also show these traits; the reverse is valid

for upregulation. As is the case with the individual datasets, the

relationship between changes in gene expression and length is

inverse to that one would expect if such a relationship was just a

result of the correlation between protein length and abundance.

Figure 5 and Table 3 show the tendency to downregulate longer

proteins and upregulate shorter proteins during stress response.

An interesting result of this lumped analysis is that both

upregulation and downregulation of genes are inversely correlated

with CAI. CAI is a proxy for the rate of protein synthesis. This

suggests that rate of protein synthesis (affected by CAI) may not be

a significant pressure in shaping the responses we are studying.

However, it must be stressed that we use CAI (or CB or FOP)

estimates for the basal state. These measurements indicate

Figure 3. Cluster analysis of the different stress responses. Basal Cluster corresponds to adaptive responses that may occur under energy or
resources shortage. Trends in up- and downregulation of genes after stress. (A) Upregulation trend with respect abundance, (B) Downregulation
trend with respect abundance, (C) Upregulation trend with respect length, (D) Downregulation trend with respect length. In each case, a (+) result
indicates a significant result in the expected direction, (2) means a significant result opposite to the expected one, (o) indicates a non-significant
result in the Mann-Whitney analysis. All correlations shown here have p,0.05 and p#0.06 if *.
doi:10.1371/journal.pcbi.1000674.g003
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adaptation to the basal tRNA complement of the cell. This

complement is likely to change under varying conditions.

Therefore, until genome-wide estimates of CAI during adaptive

responses are available, rate of protein synthesis cannot be

definitively excluded as an important selective pressure in shaping

stress responses.

Explaining the relationship between length and

abundance. As stated earlier, results for length and

abundance appears to be counterintuitive if one considers that a)

large proteins are not abundant under basal conditions, and yet

they tend to be more strongly repressed than short proteins, and b)

short proteins are abundant under basal conditions, and yet they

tend to be more up-expressed than large proteins.

Figure 6 provides the clue for understanding the apparent

paradox. By plotting gene expression changes with the two

properties at the same time one realizes that, in the set of repressed

proteins, the longer proteins are more repressed than the shorter

ones, while in the set of upregulated proteins, the shorter proteins

are more upregulated than the longer ones.

Also, by dividing proteins into four different bins of basal

abundance, Figure 6 better illustrates how can protein length be

negatively correlated to upregulation of gene expression and

positively correlated to downregulation of gene expression during

stress response. In summary, within each bin of abundance, short

proteins are more upregulated than long proteins and long

proteins are more downregulated than short proteins. Moreover,

Figure 4. Comparison of the distribution of biosynthetic cost estimates yij among cellular component GO categories for the various
stresses. The values are normalized so that the maximum calculated value of the index in the whole dataset is 1 and the minimum is 0. The basal
condition is rescaled to 0.97 and would plot as a circle.
doi:10.1371/journal.pcbi.1000674.g004
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the figure also shows that the maximum size of proteins in a given

bin is inversely correlated to the abundance of each bin.

Gene Ontology categories. The Mann-Whitney analysis

was also performed for the proteins classified in each GO category

(for function, process and cellular component). This helps to

evaluate if the energetic constraints to gene expression are a

general pattern and allows us to control if specific sets of proteins,

with a common GO category, contribute very significantly to the

observed correlations.

Because each GO category contains a much lower number of

proteins than the whole genome, the impact of the noise can be

bigger. Even so, Table 4 still shows a statistically significant

upregulation of shorter proteins and downregulation of the longer

ones in 30 out of 44 cases (68%). In 9 cases no significance was

attained and in 5 the results were significantly in the opposite

direction.

To further investigate the negative results, we analyzed both the

basal abundance and the frequency of proteins involved in

molecular complexes for each category (Table 5). Categories

‘‘Structural molecule activity’’ and ‘‘Cytosol’’ have the highest

percentage of proteins that are involved in molecular complexes,

0.83 and 0.53 respectively. The GO category ‘‘Cellular compo-

nent unknown’’ is the group with lowest abundance and also with

the lowest thresholds for the Mann-Whitney analysis which means

that this group is composed of short proteins.

We also made the analysis using more detailed GO terms. As

shown in Supplementary Tables S2, S3, S4, 87 out of 164 cases

are in concordance with our previous results in a statistically

significant way, while only 7 cases (in six GO categories) go against

the hypotheses. No statistical significance could be obtained for the

remaining GO categories. Trends between changes in gene

expression and protein size are general and not specific to a few

categories. Categories that we would like to remark and in which

the relationship between changes in gene regulation and protein

properties is consistent with our hypotheses are: ‘‘Molecular

function unknown’’, ‘‘Hydrolase activity’’, ‘‘Transport’’, ‘‘Protein

modification’’, ‘‘Protein catabolism’’, ‘‘DNA metabolism’’, ‘‘RNA

metabolism’’, and ‘‘Response to stress’’.

One of the six categories in which that relationship is

inconsistent with the hypotheses is ‘‘Ribosome’’. The other five

categories are ‘‘Structural molecule activity’’, ‘‘Helicase activity’’,

‘‘Sporulation’’, ‘‘Molecular function unknown’’, and ‘‘Cellular

component unknown’’. We could expect that ribosomal proteins

would contribute strongly to the hypothesized trends because they

are highly abundant under basal conditions and highly repressed

during stress. However, the results discard that those proteins are a

major contributor for the general trends observed for the whole

genome.

Several factors may explain the exceptions for some GO

categories. First, the category may include mostly proteins whose

specific function is required for the response. Such a situation

could overcome a pressure for economy in protein synthesis.

Interestingly, the consistency of the ‘‘Response to stress’’ category

with our hypothesis suggests that such cases may be rare. Second,

the relevant category may contain a high proportion of genes that

code for proteins of very low basal abundance. Because the

proteins in these groups contribute poorly, if at all, to the total cell

mass, one could expect that the selective pressure for economy in

Table 3. Comparison between changes in gene expression
and different protein properties.

Properties Up- CF Down- CF Thresholds

z p Z p Lower Upper

Molecular Weight + 8.68 *** + 5.29 *** 46.95 75.23

Length + 8.47 *** + 5.62 *** 414.33 663.67

Pr Abundance + 6.16 *** + 20.88 *** 6.99 13.33

Pr Half-live (T(1/2)) + 0.48 0.32 + 3.42 *** 69.67 125.33

Isoelectric Point 2 0.87 0.19 2 0.76 0.22 6.52 8.40

CAI + 3.41 *** + 21.76 *** 0.17 0.24

CodonBias + 1.22 0.11 + 20.31 *** 0.11 0.23

FOP + 1.49 0.07 + 20.53 *** 0.47 0.54

GRAVY 2 1.76 *** + 4.69 *** 20.62 20.35

Aromaticity 2 4.06 *** 2 3.42 *** 0.07 0.10

ACPA 2 1.06 0.15 2 3.08 *** 22.99 24.02

[mRNA]A + 4.82 *** + 13.55 *** 2.56 4.29

[mRNA]H + 5.20 *** + 19.80 *** 2.07 3.83

Lower and Upper Thresholds indicates the cutoff limits for selecting proteins
with low and high values for each of the protein properties. (+) z Indicates that
proteins in the Lower group present higher up-expression and lower down-
expression than those in the Upper group as compared by the Mann-Whitney
analysis. (2) indicates the opposite result.
doi:10.1371/journal.pcbi.1000674.t003

Figure 5. Change-folds of genes in the lumped stress responses
with respect to their length and abundance. The plot is the result
of moving-quantile 0.75, 0.5 and 0.25 with a window of 300 elements.
Green for up-expressed genes and purple for down-expressed. Length
is divided by 102 amino acids.
doi:10.1371/journal.pcbi.1000674.g005
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protein synthesis is weak. Third, a high proportion of genes in a

functional group may be involved in complexes. Whenever a GO

category contains more than 50% of genes that are involved in

molecular complexes, no correlation is found between protein

length and gene expression changes (Tables 5, S5, S6, S7). GO

categories that fit this description are: ‘‘Structural molecule

activity’’ (83%), ‘‘Cytosol’’ (58%), ‘‘Translator regulator activity’’

(71%), ‘‘Motor activity’’ (56%), ‘‘Protein biosynthesis’’ (64%),

‘‘Electron transport’’ (70%), and ‘‘Ribosome’’ (99%). The selective

pressure for economy in protein synthesis should impinge more

strongly on the complexes themselves than on the individual

proteins.

Proteins involved in complexes. Understanding if and how

the size and abundance of protein in complexes is affected by a

pressure to save metabolic costs in protein synthesis would require

taking into account the size of the individual complexes. This, in

turn, requires that the stoichiometry of those complexes is known

with confidence. Because this information is not available for most

protein complexes of yeast, a detailed analysis must await accurate

data regarding such stoichiometry.

In S. cerevisiae, about 1500 proteins participate in molecular

complexes [30,31]. This is about one third of all proteins coded by

the yeast genome. It is possible (even likely) that proteins involved

in the formation of a given complex have coordinated regulation

of gene expression [32]. If this is so, the cost of changing the

expression of the complex should take into account the size of each

of the subunits and its corresponding stoichiometry [33]. Thus,

one might expect that selective pressures that regulate the

evolution of gene expression act similarly in the groups of genes

coding for proteins that form a complex and in genes coding for

large proteins. Consequently, if a transcriptional profile has

evolved under conditions of resource and energy scarcity, the

genes coding for complexes are expected to be more strongly

repressed during stress than genes coding for proteins that are not

involved in complexes.

To test this hypothesis in the absence of data about

stoichiometry of each complex, we selected genes coding for

proteins that are flagged in SGD as being part of a protein

complex. The analysis confirms that genes coding for proteins

involved in complexes are more strongly repressed than other

genes (z = 9.46, p,0.05).

Similarly, genes coding for proteins involved in complex

formation are less upregulated than those coding for proteins

not involved in complex formation (z = 16.22, p,0.05). This can

be seen in the quantile-quantile plots of the change-fold shown in

Figure 7.

Figure 6. Change-folds of gene expression with respect to their length, binned by their basal abundance. Moving-median plots were
calculated using a window of 300 elements. Green - upregulated genes; Purple - downregulated genes. (A) Plot by bins of abundance: (A.1) for
proteins with abundance ,876 protein per cell, (A.2) abundance between 876 and 2253, (A.3) abundance between 2253 and 6232, and (A.4) if
abundance is $6232, (B) Shows the results for all bins separated by upregulation (B.1) and downregulation (B.2). Length unit is 102 amino acids and
Abundance unit is 103 pr/cell.
doi:10.1371/journal.pcbi.1000674.g006
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Discussion

What type of general selective pressure might explain the

correlations we find between changes in gene expression and

protein abundance or length during stress response? One answer

to this question is that minimizing the cost of protein synthesis is a

significant pressure that shapes changes in gene expression during

adaptive responses. Why would minimizing metabolic costs

improve fitness of S. cerevisiae? As the cell optimizes the expenditure

of resources for metabolic maintenance, it will have more

resources available for survival and reproduction, thus out

competing organisms. This seem logical, but it also raises another

question, which is why would one expect this pressure to be felt at

the level of proteins?

Calculations based on the typical cellular composition of

yeast and bacteria predict that protein synthesis uses more

metabolic resources and ATP molecules than the formation of

other macromolecules and it is a limiting step for yield

[12,34,35,36,37]. As proteins of a shorter size use less amino

acids, evolving fully functional short proteins leads to faster

protein synthesis with less usage of cellular resources. It must be

stressed that this argument cannot be seen as defending that cell

will, over time, simply loose all large proteins and use smaller

proteins to perform all necessary molecular functions. Evolution

is constrained by life history. Specifically, the evolutionary unit of

proteins is the functional domain [38]. Such functional domains

have on average appeared only once in evolution and examples

Table 4. Comparison of changes in gene expression between
short and large proteins for different functional Super GO-Slim
categories.

Category Up- CF Down- CF Thresholds

z p Z p Lower Upper

Function

Molecular function unknown + 4.73 *** + 2.98 *** 323 548

Catalytic activity + 5.36 *** + 2.30 *** 493 767

Transporter activity + 1.62 0.05 + 2.69 *** 435 710

Structural molecule activity + 1.47 0.07 2 2.54 *** 351 595

Transcription regulator activity + 1.70 *** + 3.19 *** 480 738

Other + 3.82 *** + 2.27 *** 447 730

Process

Cellular physiological process + 7.18 *** + 3.70 *** 443 713

Metabolism + 5.33 *** + 2.75 *** 425 689

Biological process unknown + 0.03 0.49 + 0.53 0.30 306 505

Transport + 2.72 *** + 4.18 *** 480 773

Transcription + 1.66 *** + 2.61 *** 499 792

Cell cycle + 3.10 *** + 2.37 *** 543 843

Amino acid metabolism + 1.23 0.11 + 1.10 0.14 467 674

Signal transduction + 2.40 *** + 1.33 0.09 548 885

Other + 2.16 *** 2 0.97 0.17 385 642

Component

Cytoplasm + 5.67 *** + 4.08 *** 416 672

Nucleus + 6.10 *** + 3.66 *** 462 743

Cellular component unknown 2 4.07 *** 2 1.86 *** 275 446

Mitochondrion + 5.77 *** + 7.59 *** 436 719

Endoplasmic reticulum + 2.29 *** + 2.32 *** 384 597

Cytosol 2 2.83 *** 2 6.73 *** 306 505

Other + 3.85 *** + 0.24 0.40 473 741

doi:10.1371/journal.pcbi.1000674.t004

Table 5. Categorization by Super Go-Slim: Molecular
complexes and protein concentrations.

Category Complexes Protein Abundance

N Freq Mean 0.25 0.5 0.75

Function

Molecular function unknown 137 0.05 4.31 0.72 1.71 3.42

Catalytic activity 392 0.20 15.90 1.18 3.04 8.36

Transporter activity 86 0.21 18.71 0.91 2.97 8.50

Structural molecule activity 280 0.83 30.17 1.82 6.22 31.59

Transcription regulator activity 134 0.41 3.05 0.54 1.36 3.51

Other 307 0.34 11.98 0.86 2.18 6.14

Process

Cellular physiological process 1239 0.28 13.89 1.04 2.58 7.08

Metabolism 1059 0.35 16.01 1.17 2.87 7.82

Biological process unknown 14 0.01 3.11 0.59 1.44 3.26

Transport 201 0.21 12.69 1.11 2.75 6.92

Transcription 246 0.49 4.28 0.77 1.73 4.49

Cell cycle 140 0.34 4.00 0.53 1.38 3.69

Amino acid metabolism 19 0.10 30.86 2.02 6.90 26.52

Signal transduction 13 0.07 5.68 0.72 1.52 3.95

Other 1 0.01 3.43 0.52 1.44 5.54

Component

Cytoplasm 670 0.20 14.04 1.08 2.73 7.39

Nucleus 664 0.35 7.94 0.91 2.25 5.41

Cellular component unknown 2 0.00 1.94 0.34 0.81 1.80

Mitochondrion 242 0.24 10.31 1.08 2.54 6.86

Endoplasmic reticulum 30 0.09 10.54 1.21 2.84 6.76

Cytosol 188 0.58 45.80 3.46 13.67 52.33

Other 86 0.15 12.05 0.63 1.73 6.07

For each group we computed the number (N) and frequency of genes in
molecular complexes, and the mean and quartiles of protein concentrations.
doi:10.1371/journal.pcbi.1000674.t005

Figure 7. Comparison of the change-fold between proteins
that are part of a complex and those that are not. Quantile-
quantile plots show the divergence between the two lists by the
deviation of the points from the line with a slope of 1. (A) Tendencies of
the up-expression change-folds; (B) Tendencies of the down-expression
change-folds.
doi:10.1371/journal.pcbi.1000674.g007
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of domain convergent evolution are rare. Protein function often

depends on how a small number of amino acids are located

within the 3D structure of these domains. Therefore, a shorter

protein may not have a 3D structure that will allow for the

maintenance of an appropriate biological activity. This will

constrain the amount of resources that can be saved by evolving

shorter proteins.

Under stress, availability of resources may be significantly

limited, and the cell must adapt quickly in order to survive. For

challenging stress conditions, resource limitation may impose

severe limitations to the adaptive response. Exposure to these kinds

of stresses causes the cell to deviate considerable resources from its

steady state metabolism towards the adaptive response and

imposes important constraints to cell economy [11,39]. For

example during exposure to high NaCl concentrations, additional

energy expenditure for growth increased between 14% and 31%

[40], and the activity of the plasma membrane H+-ATPase

(highest consumer of ATP) is repressed during heat shock or in the

presence of a weak acid [11,41]. Another situation that has been

put forward as supporting a cellular energetic shortage during

stress response is the hypersensitivity to oxidative stress of mutants

that lack mitochondrial function and of yeast treated with

mitochondrial inhibitors [42]. These authors suggest that the

oxidative sensitivity is due to a defect in an energy-requiring

process that is needed for detoxification of ROS or for the repair

of oxidative molecular damage.

Further support for the importance of protein cost as a selective

pressure in the evolution of adaptive changes in gene expression is

found in different studies. For example, pathways appear to have

evolved to maximize flux for a minimum amount of protein,

because the enzyme concentration may be limited by both the

protein synthesizing capacity and the solvent capacity of a cell

[43]. In fact, theoretical studies suggest that adaptive responses of

yeast to environmental changes trigger a gene expression profile

that is optimal under the constraint of minimal total enzyme

production [2,44,45].

There are three aspects that the cell can tune to decrease cost

of protein synthesis. First, it can decrease the amount of protein

that it synthesizes per time units. If we take changes in gene

expression as a proxy of changes in protein synthesis, we find

that, in many cases the overall protein synthesis during stress

response is decreased (the yij index defined above is negative).

Second, the cell may decrease cost of protein synthesis by

expressing at higher levels proteins that are small. This would

decrease the biosynthetic cost per protein chain and is consistent

with our results. Finally, the cell may decrease the cost of protein

synthesis by increasing the half life of proteins. We find no

evidence for this strategy.

In summary, if decreasing the cost of protein synthesis

significantly contributes to shaping the gene expression profile of

an adaptive response, we should find trends in the composition of

the changing protein complement that are consistent with the

following predictions:

a) Downregulation of genes that are highly expressed
under normal conditions and thus code for highly
abundant proteins. By repressing these genes, the cell can

significantly save resources that can then be used in the stress

response [46]. For example, ribosomal proteins make for a

large fraction of a cell’s protein complement, and the

resources invested in keeping pools of ribosomal proteins

are high [47]. It is well known that the expression of

ribosomal genes is significantly repressed under many

different stress conditions.

b) Upregulation will preferably occur in genes that
have low expression levels under normal conditions.

Our results support this prediction.

Because long proteins are more expensive to make than small

proteins, protein length is an important component of the cost of

protein synthesis. If cost of protein synthesis is minimized during

the response we would expect that:

c) Downregulation of genes that code for large pro-
teins. This is so because such a pattern would save resources

to the cell.

d) Upregulation will be found preferably in the expres-
sion of genes that code for small proteins. This would

save resources and allow for a faster protein synthesis.

The results of our analysis are broadly consistent with these

predictions (see Figure 3 for a summary) and support the

hypothesis that response to the various stresses has evolved

under a selective pressure for minimizing the cost of protein

synthesis. GO analysis show that the results are not biased by a

specific type of proteins and that the hypotheses are consistent

with the results over a wide variety of GO categories. We also

see that proteins involved in molecular complexes have

changes in gene expression that are similar to proteins that

are very large. A more detailed analysis of this later result

would require an accurate knowledge about the stoichiometry

of the complexes.

Further analysis that would directly establish whether there are

limitations on resources and energy usage during a given adaptive

response would require data about ATP usage and production

under each relevant condition. Such data would allow us to better

understand which constraints are important in shaping the

evolution of those responses.

Supporting Information

Figure S1 Change-folds of genes with respect to basal

abundance. Plots show the moving-quantiles using a window of

300 elements. Colors: Green for upregulation and purple for

downregulation. Abundance unit is 104 pr/cell.

Found at: doi:10.1371/journal.pcbi.1000674.s001 (0.35 MB TIF)

Figure S2 Change-folds of genes with respect to protein half-

live. Plots show the moving-quantiles using a window of 300

elements. Colors: Green for upregulation and purple for

downregulation.

Found at: doi:10.1371/journal.pcbi.1000674.s002 (0.40 MB TIF)

Figure S3 Change-folds of genes with respect to CAI. Plots show

the moving-quantiles using a window of 300 elements. Colors:

Green for upregulation and purple for downregulation.

Found at: doi:10.1371/journal.pcbi.1000674.s003 (0.45 MB TIF)

Figure S4 Discriminant analysis. Environmental conditions

were classified in four groups: 1) Basal Cluster- Basal vector,

menadione, acid, change in carbon source, and sorbitol depletion;

2) NaCl, diauxic, aminoacid depletion, presence of sorbitol, akali,

DTT, diamide; 3) heat shock, peroxide, nitrogen depletion; 4)

stationary phase at 25uC and 30uC.

Found at: doi:10.1371/journal.pcbi.1000674.s004 (0.07 MB

TIF)

Table S1 Spearman Rank Correlation Matrix between different

physical properties of genes and proteins. 0 Not statistically

significant.

Found at: doi:10.1371/journal.pcbi.1000674.s005 (0.08 MB

DOC)
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Table S2 Comparison of changes in gene expression between

short and large proteins for different functional Yeast GO Slim

categories.

Found at: doi:10.1371/journal.pcbi.1000674.s006 (0.05 MB

DOC)

Table S3 Comparison of changes in gene expression between

short and large proteins for different process Yeast GO Slim

categories.

Found at: doi:10.1371/journal.pcbi.1000674.s007 (0.07 MB

DOC)

Table S4 Comparison of changes in gene expression between

short and large proteins for different cell component Yeast GO

Slim categories.

Found at: doi:10.1371/journal.pcbi.1000674.s008 (0.06 MB

DOC)

Table S5 Categorization by Function (Yeast Go-Slim): Molec-

ular complexes and protein concentrations. For each group we

computed the number and frequency of genes related to any

molecular complex, and the mean and quartiles of protein

concentrations.

Found at: doi:10.1371/journal.pcbi.1000674.s009 (0.06 MB

DOC)

Table S6 Categorization by Process (Yeast Go-Slim Molecular

complexes and protein concentrations. For each group we

computed the number and frequency of genes related to any

molecular complex, and the mean and quartiles of protein

concentrations.

Found at: doi:10.1371/journal.pcbi.1000674.s010 (0.07 MB

DOC)

Table S7 Categorization by Molecular Component(Yeast Go-

Slim): Molecular complexes and protein concentrations. For each

group we computed the number and frequency of genes related to

any molecular complex, and the mean and quartiles of protein

concentrations.

Found at: doi:10.1371/journal.pcbi.1000674.s011 (0.06 MB

DOC)
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