Asymptotic distribution for centered higher-order moments using Cramer’s method

1 Notation and asymptotic distribution of \(p_k \)

Let \(x \) be a \(p \)-dimensional vector variable with finite higher order moments
\(\nu_k = E((x - \mu)^{\otimes k}) \) (\(a^{\otimes k} = a \otimes \ldots \otimes a \) is a kronecker product with \(k \) terms). Note that \(\nu_1 = 0 \).

Let \(x_1, \ldots, x_n \) be an iid sample of \(x \) and
\[
p_k = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^{\otimes k}, \quad k \geq 1
\]

By the Law of Large numbers,
\[
p_k \overset{P}{\rightarrow} \nu_k,
\]
and by the Central Limit theorem,
\[
\sqrt{n}(p_k - \nu_k) \overset{D}{\rightarrow} \mathcal{N}(0, \text{cov}((x_i - \mu)^{\otimes k})),
\]

since the \((x_i - \mu)^{\otimes k}\) are iid with variance matrix \(\text{cov}((x_i - \mu)^{\otimes k}) \), assumed to be finite. This implies that the asymptotic variance matrix
\(\text{acov}(p_k) = \text{cov}((x_i - \mu)^{\otimes k}) \) can be estimated consistently by the sample variance matrix \(\text{scov}((x_i - \mu)^{\otimes k}) \) of the \((x_i - \mu)^{\otimes k}\)'s.

Let us now define \(q_1 = \bar{x} \) and
\[
q_k = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^{\otimes k}, \quad k \geq 2
\]

We will show that like \(p_k \), \(q_k \) is an asymptotically normal vector with the same asymptotic limit \(\nu_k \) as \(p_k \) (when \(k \neq 1 \)) but with an asymptotic variance matrix that may differ from the one of \(p_k \) when \(k > 2 \). We also derive an expression for a consistent estimator of \(\text{acov}(q) \) when \(q \) is an stacked vector of \(q_k \)'s.

2 Consistent estimation of \(\Gamma_p = \text{acov}(p) \)

Let
\[
p = \begin{pmatrix}
p_1 \\
\vdots \\
p_m
\end{pmatrix}
\]
Note that
\[
\sqrt{n} \begin{pmatrix} p_1 - \nu_1 \\ \vdots \\ p_m - \nu_m \end{pmatrix} = \frac{1}{\sqrt{n}} \sum_i \begin{pmatrix} x_i - \mu - \nu_1 \\ \vdots \\ (x_i - \mu) \otimes m - \nu_m \end{pmatrix}
\]
By the central limit theorem the asymptotic covariance matrix for \(p\) is
\[
\Gamma_p = \text{cov} \begin{pmatrix} x - \mu \\ \vdots \\ (x - \mu) \otimes m \end{pmatrix}
\]
This consists of sub-matrices of the form
\[
\Gamma_{rs} = \text{scov}((x - \mu) \otimes r, (x - \mu) \otimes s) = E((x - \mu) \otimes r)((x - \mu) \otimes s)' - E((x - \mu) \otimes r)(E(x - \mu) \otimes s)'
\]
It follows that
\[
\text{vec} (\Gamma_{rs}) = E(x - \mu) \otimes (r+s) - E((x - \mu) \otimes r) \otimes E(x - \mu) \otimes s = \nu_{r+s} - \nu_r \otimes \nu_s = q_{r+s} - q_r \otimes q_s
\]
This provides a consistent estimator for \(\Gamma_{rs}\) and these provide a consistent estimator for \(\Gamma\). With a bit of work, we can show that this consistent estimator of \(\Gamma_p\) is the sample covariance matrix \(\text{scov} (t_i^+)\), where
\[
t_i^+ = \begin{pmatrix} x_i - \bar{x} \\ (x_i - \bar{x}) \otimes 2 \\ \vdots \\ (x_i - \bar{x}) \otimes k \end{pmatrix}
\]
Unfortunately, what we need is not a consistent estimator of \(\Gamma_p\) but a consistent estimator of \(\Gamma_q\). This estimator is to be developed below.

3 Representation of \(q_k\) as a function of \(p_1\) and \(p_k\)

Replacing in (3) \(x_i - \bar{x}\) by \((x_i - \mu) - (\bar{x} - \mu)\), and expanding the kronecker power\(^1\) yields
\[
(x_i - \bar{x}) \otimes k = (x_i - \mu) \otimes k - \sum_{j=1}^{k} (x_i - \mu) \otimes (j-1) \otimes (\bar{x} - \mu) \otimes (x_i - \mu) \otimes (k-j) + r_{ki} \quad (4)
\]
\(^1\)Note that the binomial theorem cannot be used here since kronecker power is not commutative in general; e.g., \((a + b) \otimes 2 \neq a \otimes 2 + 2a \otimes b + b \otimes 2\), for general vectors \(a\) and \(b\)
where it is understood that \(a^{\otimes 0} = 1 \). In formula (4), \(r_{ki} \) is a kronecker product of \(k \) terms which can be shown to have the term \((x_i - \mu)\) repeated twice or more. For developments to follow, we need the commutation matrix \(K_{mn} \) (see Magnus and Neudecker, 1986) defined by

\[
K_{mn} \text{vec}(A) = \text{vec}(A'),
\]

for any \(m \times n \) matrix \(A \). It is known that

\[
K_{mn} = \sum_{i=1}^{m} \sum_{j=1}^{n} (H_{ij} \otimes H'_{ji})
\]

where \(H_{ij} \) is an \(m \times n \) matrix with a 1 in the \(ij \)th position and zeros elsewhere.

If \(a \) and \(b \) are column vectors of length \(n \) and \(m \) then

\[
K_{mn} (a \otimes b) = b \otimes a
\]

(5)

The property (5) permits writing (4) as

\[
(x_i - \bar{x})^{\otimes k} = (x_i - \mu)^{\otimes k} - C_k(x_i - \mu)^{\otimes (k-1)} \otimes (\bar{x} - \mu) + r_{ki},
\]

(6)

where

\[
C_k = \sum_{j=1}^{k-1} K_{p_jp_{k-j}} + I_{p^k}, k \geq 2
\]

(7)

To achieve this result we used that for \(j = 1, \ldots, k-1 \)

\[
(x_i - \mu)^{\otimes (j-1)} \otimes (\bar{x} - \mu) \otimes (x_i - \mu)^{\otimes (k-j)}
\]

\[
= \left((x_i - \mu)^{\otimes (j-1)} \otimes (\bar{x} - \mu) \right) \otimes (x_i - \mu)^{\otimes (k-j)}
\]

\[
= K_{p_jp_{k-j}} \left((x_i - \mu)^{\otimes (k-j)} \otimes \left[(x_i - \mu)^{\otimes (j-1)} \otimes (\bar{x} - \mu) \right] \right)
\]

\[
= K_{p_jp_{k-j}} \left((x_i - \mu)^{\otimes (k-j)} \otimes (x_i - \mu)^{\otimes (j-1)} \otimes (\bar{x} - \mu) \right)
\]

\[
= K_{p_jp_{k-j}} \left((x_i - \mu)^{\otimes (k-1)} \otimes (\bar{x} - \mu) \right)
\]

in virtue of the associative property of the Kronecker product and (5). Clearly, for \(j = k \)

\[
(x_i - \mu)^{\otimes (j-1)} \otimes (\bar{x} - \mu) \otimes (x_i - \mu)^{\otimes (k-j)}
\]

\[
= (x_i - \mu)^{\otimes (k-1)} \otimes (\bar{x} - \mu)
\]

Averaging (6) across \(i \) and using the definition of the \(p_k \)'s, we obtain

\[
q_k = p_k - C_k (p_{k-1} \otimes p_1) + r_k
\]

(8)
where
\[r_k = \frac{1}{n} \sum_{i=1}^{n} r_{ki} \]

Subtracting \(\nu_k \) in both sides of (8) and multiplying by \(\sqrt{n} \), yields
\[\sqrt{n}(q_k - \nu_k) = \sqrt{n}(p_k - \nu_k) - C_k \left(p_{k-1} \otimes \sqrt{n}p_1 \right) + \sqrt{nr_k}, \quad k \geq 2; \quad (9) \]

thus,
\[\sqrt{n}(q_k - \nu_k) = \left(-C_k(p_{k-1} \otimes I_p) I_p^k \right) \sqrt{n} \left(\frac{p_1 - \nu_1}{p_k - \nu_k} \right) + \sqrt{nr_k}, \quad k \geq 2 \]

(10)
since \(\nu_1 = 0 \) and
\[C_k \left(p_{k-1} \otimes \sqrt{n}(p_1 - \nu_1) \right) = C_k \text{vec} \left(\sqrt{n}(p_1 - \nu_1)p_{k-1}' \right) = C_k(p_{k-1} \otimes I_p) \sqrt{n}(p_1 - \nu_1). \]

We now need proving that
\[\sqrt{nr_k} \overset{P}{\rightarrow} 0, \quad k \geq 2; \quad (11) \]

that is, \(\sqrt{nr_k} = o_p(1) \). This is equivalent to proving
\[\frac{1}{\sqrt{n}} \sum r_{ki} \overset{P}{\rightarrow} 0 \]

(12)
For this we need a little more precise definition of \(r_{ki} \). Let \(r_{ki} \) be the sum of all the \(k \)th order Kronecker products containing terms of the form \((x_i - \mu)\) or \((\bar{x} - \mu)\) with at least two of these being \((\bar{x} - \mu)\). Each of these is a permutation of \((\bar{x} - \mu)^{\otimes j} \otimes (x_i - \mu)^{\otimes (k-j)}\) for some \(j \geq 2 \). It follows that
\[\frac{1}{\sqrt{n}} \sum_i (\bar{x} - \mu)^{\otimes j} \otimes (x_i - \mu)^{\otimes (k-j)} = \sqrt{n}(\bar{x} - \mu)^{\otimes j} \otimes \frac{1}{n} \sum (x_i - \mu)^{\otimes (k-j)} \overset{P}{\rightarrow} 0 \]
and (11) follows from this.

Combining (1), (8) and (11), we obtain
\[q_k \overset{P}{\rightarrow} \nu_k, \quad k > 1 \]

(13)
That is, \(p_k \) and \(q_k \) have the same asymptotic limit when \(k > 1 \); when \(k = 1 \), then \(q_1 \overset{P}{\rightarrow} \mu \) and \(p_1 \overset{P}{\rightarrow} \nu_1 = 0 \).

By setting \(k = 2 \) in (9) and using (11) and \(p_1 \overset{P}{\rightarrow} 0 \), we obtain
\[\sqrt{n}(q_2 - \nu_2) = \sqrt{n}(p_2 - \nu_2) + o_p(1). \]

(14)
When \(k = 1 \) then, clearly,
\[\sqrt{n}(q_1 - \mu_1) = \sqrt{n}(p_1 - \nu_1) \]

(15)
The results (10), (14) and (15) will be exploited in the next section to derive the asymptotic distribution of a stacked vector of \(q_k \)'s.
4 Consistent estimation of Γ_q

For simplicity of exposition, consider $q = (q_1, q_2, q_3, q_4)'$, i.e. we consider the case of $k = 4$ (larger values for k would be handled by analogy). By stacking equations (15) and (14), and (10) with $k = 3, 4$, and denoting $\nu = (\nu_1, \nu_2, \nu_3, \nu_k)'$ and $\hat{\nu} = (\mu_1, \nu_2, \nu_3, \nu_k)'$, since $p \overset{P}{\rightarrow} \nu_k$ and $q \overset{P}{\rightarrow} \hat{\nu}_k$, we obtain

$$\sqrt{n} \begin{pmatrix} q_1 - \mu_1 \\ q_2 - \nu_2 \\ q_3 - \nu_3 \\ q_4 - \nu_4 \end{pmatrix} = \begin{pmatrix} I_p & 0 & 0 & 0 \\ 0 & I_p & 0 & 0 \\ -C_k(p_2 \otimes I_p) & 0 & I_p^3 & 0 \\ -C_k(p_3 \otimes I_p) & 0 & 0 & I_p^4 \end{pmatrix} \sqrt{n} \begin{pmatrix} p_1 - \nu_1 \\ p_2 - \nu_2 \\ p_3 - \nu_3 \\ p_4 - \nu_4 \end{pmatrix} + o_P(1);$$

which, by direct application of Slutsky’s Theorem, proves that $\sqrt{n}(q - \hat{\nu})$ is asymptotically normal with variance matrix

$$\Gamma_q = U \Gamma_p U',$$

where

$$U = \begin{pmatrix} I_p & 0 & 0 & 0 \\ 0 & I_p & 0 & 0 \\ -C_k(p_2 \otimes I_p) & 0 & I_p^3 & 0 \\ -C_k(p_3 \otimes I_p) & 0 & 0 & I_p^4 \end{pmatrix}$$

Since

$$\hat{U} = \begin{pmatrix} I_p & 0 & 0 & 0 \\ 0 & I_p & 0 & 0 \\ -C_k(q_2 \otimes I_p) & 0 & I_p^3 & 0 \\ -C_k(q_3 \otimes I_p) & 0 & 0 & I_p^4 \end{pmatrix}$$

is a consistent estimator of U (we used (13)), a consistent estimate of Γ_q is

$$\hat{\Gamma}_q = \hat{U} [\text{scov}(t_i^+)] \hat{U}' = \text{scov}(\hat{U} t_i^+)$$

That is, $\hat{\Gamma}_q$ can be written as the sample variance matrix of the pseudo-values

$$\hat{t}_i^+ = \begin{pmatrix} I_p & 0 & 0 & 0 \\ 0 & I_p & 0 & 0 \\ -C_k(q_2 \otimes I_p) & 0 & I_p^3 & 0 \\ -C_k(q_3 \otimes I_p) & 0 & 0 & I_p^4 \end{pmatrix} \begin{pmatrix} x_i - \bar{x} \\ (x_i - \bar{x})^2 \\ (x_i - \bar{x})^3 \\ (x_i - \bar{x})^4 \end{pmatrix}$$

(18)

With a bit of work it can be seen that $\text{scov}(\hat{t}_i^+)$ coincides with the accelerated version of the IJK estimator of variance proposed in our paper, the “accelerating” matrix C_k being now expressed in terms of the commutation matrices K_{mn}. Using the K_{mn}’s can be less efficient (computationally) than using the matrix C_k defined in the Appendix of the paper.