Albert Rimola

Albert Rimola
Autonomous University of Barcelona | UAB · Department of Chemistry

BSc Chemistry, PhD Computational Chemistry

About

173
Publications
30,128
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,828
Citations
Additional affiliations
October 2014 - present
Autonomous University of Barcelona
Position
  • Distinguished postdoctoral researcher
September 2007 - November 2009
Università degli Studi di Torino
Position
  • PostDoc Position

Publications

Publications (173)
Preprint
Full-text available
Binding energies (BEs) are one of the most important parameters for astrochemical modeling determining, because they govern whether a species stays in the gas-phase or is frozen on the grain surfaces. It is currently known that, in the denser and colder regions of the interstellar medium, sulphur is severely depleted in the gas phase. It has been s...
Article
Full-text available
There is an unceasing incoming flux of extraterrestrial materials reaching the Earth atmosphere. Some of these objects produce luminous columns when they ablate during the hypersonic encounter with air molecules. A few fireballs occur each year bright enough to be detected from space. The source of these events is still a matter of debate, but it i...
Article
Acetaldehyde is one of the most common and abundant gaseous interstellar complex organic molecules, found in cold and hot regions of the molecular interstellar medium. Its presence in the gas-phase depends on the chemical formation and destruction routes, and its binding energy (BE) governs whether acetaldehyde remains frozen onto the interstellar...
Article
Aims. Methanol is a ubiquitous species commonly found in the molecular interstellar medium. It is also a crucial seed species for the build-up of chemical complexity in star forming regions. Thus, understanding how its abundance evolves during the star formation process and whether it enriches the emerging planetary system is of paramount importanc...
Preprint
Full-text available
Acetaldehyde is one of the most common and abundant gaseous interstellar complex organic molecules, found in cold and hot regions of the molecular interstellar medium. Its presence in the gas-phase depends on the chemical formation and destruction routes, and its binding energy (BE) governs whether acetaldehyde remains frozen onto the interstellar...
Chapter
The interstellar medium is extremely heterogeneous in terms of physical environments and chemical composition. Spectroscopic observations in the recent decades have revealed the presence of gaseous material and dust grains covered in ices predominantly of water in interstellar clouds, the interplay of which may elucidate the existence of more than...
Article
Full-text available
The chemical diversity of low-mass protostellar sources has so far been recognized, and environmental effects are invoked as its origin. In this context, observations of isolated protostellar sources without the influence of nearby objects are of particular importance. Here, we report the chemical and physical structures of the low-mass Class 0 pro...
Preprint
Full-text available
Methanol is a ubiquitous species commonly found in the molecular interstellar medium. It is also a crucial seed species for the building-up of the chemical complexity in star forming regions. Thus, understanding how its abundance evolves during the star formation process and whether it enriches the emerging planetary system is of paramount importan...
Preprint
Full-text available
There is an unceasing incoming flux of extraterrestrial materials reaching the Earth's atmosphere. Some of these objects produce luminous columns when they ablate during the hypersonic encounter with air molecules. A few fireballs occur each year bright enough to be detected from space. The source of these events is still a matter of debate, but it...
Article
Full-text available
Context. Protostellar jets are an important agent of star formation feedback, tightly connected with the mass-accretion process. The history of jet formation and mass ejection provides constraints on the mass accretion history and on the nature of the driving source. Aims. We characterize the time-variability of the mass-ejection phenomena at work...
Article
Full-text available
Glycine (Gly), NH2CH2COOH, is the simplest amino acid. Although it has not been directly detected in the interstellar gas-phase medium, it has been identified in comets and meteorites, and its synthesis in these environments has been simulated in terrestrial laboratory experiments. Likewise, condensation of Gly to form peptides in scenarios resembl...
Article
The formation of the interstellar complex organic molecules (iCOMs) is a hot topic in astrochemistry. One of the main paradigms trying to reproduce the observations postulates that iCOMs are formed on the ice mantles covering the interstellar dust grains as a result of radical–radical coupling reactions. We investigate iCOM formation on the icy sur...
Preprint
Full-text available
Protostellar jets are an important agent of star formation feedback, tightly connected with the mass-accretion process. The history of jet formation and mass-ejection provides constraints on the mass accretion history and the nature of the driving source. We want to characterize the time-variability of the mass-ejection phenomena at work in the Cla...
Article
Full-text available
Ethanol (CH3CH2OH) is a relatively common molecule, often found in star-forming regions. Recent studies suggest that it could be a parent molecule of several so-called interstellar complex organic molecules (iCOMs). However, the formation route of this species remains under debate. In the present work, we study the formation of ethanol through the...
Article
Full-text available
We report a study of the low-mass Class 0 multiple system VLA 1623AB in the Ophiuchus star-forming region, using H ¹³ CO ⁺ ( J = 3–2), CS ( J = 5–4), and CCH ( N = 3–2) lines as part of the ALMA Large Program FAUST. The analysis of the velocity fields revealed the rotation motion in the envelope and the velocity gradients in the outflows (about 200...
Preprint
Full-text available
Ethanol (CH$_3$CH$_2$OH) is a relatively common molecule, often found in star forming regions. Recent studies suggest that it could be a parent molecule of several so-called interstellar complex organic molecules (iCOMs). Yet, the formation route of this species remains debated. In the present work, we study the formation of ethanol through the rea...
Article
Full-text available
Phosphorus is an element of primary importance for all living creatures, being present in many biological activities in the form of phosphate (PO 4 3−). However, there are still open questions about the origin of this specific element and on the transformation that allowed it to be incorporated in biological systems. The most probable source of pre...
Preprint
Full-text available
The formation of the interstellar complex organic molecules (iCOMs) is a hot topic in astrochemistry. One of the main paradigms trying to reproduce the observations postulates that iCOMs are formed on the ice mantles covering the interstellar dust grains as a result of radical--radical coupling reactions. We investigate iCOMs formation on the icy s...
Article
Full-text available
Phosphorus is an element of primary importance for all living creatures, being present in many biological activities in the form of phosphate (PO 4 3−). However, there are still open questions about the origin of this specific element and on the transformation that allowed it to be incorporated in biological systems. The most probable source of pre...
Preprint
Full-text available
The evolution of star-forming regions and their thermal balance are strongly influenced by their chemical composition, that, in turn, is determined by the physico-chemical processes that govern the transition between the gas phase and the solid state, specifically icy dust grains (e.g., particles adsorption and desorption). Gas-grain and grain-gas...
Preprint
Full-text available
We report a study of the low-mass Class-0 multiple system VLA 1623AB in the Ophiuchus star-forming region, using H$^{13}$CO$^+$ ($J=3-2$), CS ($J=5-4$), and CCH ($N=3-2$) lines as part of the ALMA Large Program FAUST. The analysis of the velocity fields revealed the rotation motion in the envelope and the velocity gradients in the outflows (about 2...
Preprint
Full-text available
Phosphorus is an element of primary importance for all living creatures, being present in many biological activities in the form of phosphate (PO43-). However, there are still open questions about the origin of this specific element and on the transformation which allowed it to be incorporated in biological systems. The most probable source of preb...
Article
Full-text available
On February 16, 2021, an artificial object moving slowly over the Mediterranean was recorded by the Spanish Meteor Network (SPMN). Based on astrometric measurements, we identified this event as the reentry engine burn of a SpaceX Falcon 9 launch vehicle’s upper stage. To study this event in detail, we adapted the plane intersection method for near-...
Article
Full-text available
Context. Interstellar grains are known to be important actors in the formation of interstellar molecules such as H 2 , water, ammonia, and methanol. It has been suggested that the so-called interstellar complex organic molecules (iCOMs) are also formed on the interstellar grain icy surfaces by the combination of radicals via reactions assumed to ha...
Preprint
Full-text available
Formamide has a key role in prebiotic chemistry as it is the simplest molecule containing the four most important atoms from a biological point of view: hydrogen, carbon, nitrogen and oxygen. Due to its importance, the formation of this molecule has been studied and different pathways have been considered both in gas-phase and on ices of dust grain...
Article
The increase in detector sensitivity and availability in the past three decades has allowed us to derive knowledge of the meteoroid flux and impact energy into the Earth’s atmosphere. We present the multi-instrument detected 22 December 2018 fireball over Western Pyrenees, and compare several techniques aiming to obtain a reliable method to be used...
Preprint
Full-text available
There are different environments in the interstellar medium (ISM), depending on the density, temperature and chemical composition. Among them, molecular clouds, often referred to as the cradle of stars, are paradigmatic environments relative to the chemical diversity and complexity in space. Indeed, there, radio to far-infrared observations reveale...
Article
Glycine (Gly) is a paradigmatic case to understand the molecular complexity in the interstellar medium (ISM) and planetary scenarios. On the one hand, Gly exhibits an enhanced complexity compared to interstellar complex organic molecules (COMs) and, accordingly, its formation represents one step beyond in the interstellar chemical evolution. On the...
Chapter
Formamide has a key role in prebiotic chemistry as it is the simplest molecule containing the four most important atoms from a biological point of view: hydrogen, carbon, nitrogen and oxygen. Due to its importance, the formation of this molecule has been studied and different pathways have been considered both in gas-phase and on ices of dust grain...
Chapter
There are different environments in the interstellar medium (ISM), depending on the density, temperature and chemical composition. Among them, molecular clouds, often referred to as the cradle of stars, are paradigmatic environments relative to the chemical diversity and complexity in space. Indeed, there, radio to far-infrared observations reveale...
Preprint
On February 16, 2021, an artificial object was recorded by the Spanish Meteor Network (SPMN) moving slowly over the Mediterranean. From the astrometric measurements, we identify this event as the reentry engine burn of a SpaceX Falcon 9 launch vehicle's upper stage. To study this event in detail, we adapted the plane intersection method for near-st...
Preprint
Full-text available
Interstellar grains are known to be important actors in the formation of interstellar molecules such as H$_2$, water, ammonia, and methanol. It has been suggested that the so-called interstellar complex organic molecules (iCOMs) are also formed on the interstellar grain icy surfaces by the combination of radicals via reactions assumed to have an ef...
Article
Full-text available
Context. How simple organic matter appeared on Earth and the processes by which it transformed into more evolved organic compounds, which ultimately led to the emergence of life, is still an open topic. Different scenarios have been proposed, the main one assumes that simple organic compounds were synthesized, either in the gas phase or on the surf...
Article
Context. In meteor physics, the luminous efficiency τ is used to convert the meteor’s magnitude to the corresponding meteoroid’s mass. However, a lack of sufficiently accurate verification methods or adequate laboratory tests mean that discussions around this parameter are a subject of controversy. Aims. In this work, we aim to use meteor data obta...
Preprint
Full-text available
How simple organic matter appeared on Earth and the processes by which it transformed into more evolved organic compounds, which ultimately led to the emergence of life, is still an open topic. Different scenarios have been proposed, the main one assumes that simple organic compounds were synthesized, either in the gas phase or on the surfaces of d...
Preprint
Full-text available
Molecular hydrogen is the most abundant molecular species in the Universe. While no doubts exist that it is mainly formed on the interstellar dust grain surfaces, many details of this process remain poorly known. In this work, we focus on the fate of the energy released by the H$_2$ formation on the dust icy mantles, how it is partitioned between t...
Article
Full-text available
Anomalous microwave emission (AME) is detected in many astrophysical environments as a foreground feature typically peaking between 20–30 GHz and extending over a 10–60 GHz range. One of the leading candidates for the source of AME is small spinning dust grains. Such grains should be very small (approx. ≤1 nm diameter) in order for the rotational e...
Article
The disruption of asteroids and comets produces cm-sized meteoroids that end up impacting the Earth’s atmosphere and producing bright fireballs that might have associated shock waves or, in geometrically-favorable occasions excavate craters that put them into unexpected hazardous scenarios. The astrometric reduction of meteors and fireballs to infe...
Preprint
p>Phosphorous is ubiquitous in planet Earth and plays a fundamental role in all living systems. Finding a reasonable prebiotic source of phosphorous is not trivial, as common sources where it is present nowadays are in the form of phosphate minerals, which are rather insoluble and non-reactive materials, and, accordingly, unavailable for being read...
Article
Full-text available
The issue of formation of dust grains in the interstellar medium is still a matter of debate. One of the most developed proposals suggests that atomic and heteromolecular seeds bind together to initiate a nucleation process leading to the formation of nanostructures resembling very small grain components. In the case of silicates, nucleated systems...
Article
Full-text available
In cold galactic molecular clouds, dust grains are coated by icy mantles and are prevalently charged negatively, because of the capture of the electrons in the gas. The interaction of the charged grains with gaseous cations is known to neutralize them. In this work, we focus on the chemical consequences of the neutralization process of HCO+, often...
Preprint
Full-text available
The disruption of asteroids and comets produces cm-sized meteoroids that end up impacting the Earth's atmosphere and producing bright fireballs that might have associated shock waves or, in geometrically-favorable occasions excavate craters that put them into unexpected hazardous scenarios. The astrometric reduction of meteors and fireballs to infe...
Article
We have observed the very low-mass Class 0 protostar IRAS 15398−3359 at scales ranging from 50 to 1800 au, as part of the Atacama Large Millimeter/Submillimeter Array Large Program FAUST. We uncover a linear feature, visible in H_{2}CO, SO, and C^{18}O line emission, which extends from the source in a direction almost perpendicular to the known act...
Article
We have observed the very low-mass Class 0 protostar IRAS 15398−3359 at scales ranging from 50 to 1800 au, as part of the Atacama Large Millimeter/Submillimeter Array Large Program FAUST. We uncover a linear feature, visible in H 2 CO, SO, and C ¹⁸ O line emission, which extends from the source in a direction almost perpendicular to the known activ...
Preprint
Full-text available
We have observed the very low-mass Class 0 protostar IRAS 15398-3359 at scales ranging from 50 au to 1800 au, as part of the ALMA Large Program FAUST. We uncover a linear feature, visible in H2CO, SO, and C18O line emission, which extends from the source along a direction almost perpendicular to the known active outflow. Molecular line emission fro...
Article
Full-text available
The adsorption of two pharmaceuticals, carbamazepine and paracetamol, onto the expandable clay mineral saponite has been studied through the combination of kinetic experiments, X-ray diffraction, and theoretical modeling. Kinetic experiments indicate low adsorption for carbamazepine and paracetamol on expandable smectite clay. Accordingly, X-ray di...
Article
Full-text available
The universe is molecularly rich, comprising from the simplest molecule (H2) to complex organic molecules (e.g., CH3CHO and NH2CHO), some of which of biological relevance (e.g., amino acids). This chemical richness is intimately linked to the different physical phases forming Solar-like planetary systems, in which at each phase, molecules of increa...
Article
The study of hot corinos in solar-like protostars has been so far mostly limited to the Class 0 phase, hampering our understanding of their origin and evolution. In addition, recent evidence suggests that planet formation starts already during Class I phase, which therefore represents a crucial step in the future planetary system chemical compositi...
Chapter
In cold and dense regions of the interstellar medium, such as molecular clouds, more than 200 gas-phase molecular species have been observed by means of infra-red and rotational spectroscopy techniques alongside solid sub-micrometer sized particles called dust grains. These grains are of uttermost importance because their surfaces serve as meeting...
Chapter
Formamide is observed in the interstellar medium and it is thought to play an important role as a precursor of prebiotic molecules. In this work we study the reactivity of NH and HCO on the open surface of amorphous ice model, which can either lead to the formation of formamide (through radical-radical coupling) or CO + NH (through direct H-abstrac...
Preprint
Full-text available
In the denser and colder ($\leq$20 K) regions of the interstellar medium (ISM), near-infrared observations have revealed the presence of sub-micron sized dust grains covered by several layers of H\textsubscript{2}O-dominated ices and dirtied by the presence of other volatile species. Whether a molecule is in the gas or solid-phase depends on its bi...
Chapter
Different molecules and radical species have been detected and identified in the interstellar medium (ISM) through rotational and infrared techniques. The presence of dust grains in ISM have also been observed, which in the denser regions are covered by thick ice mantles consisting mainly of water molecules. Quantifying the interaction of gas phase...