
Alba Refoyo Martínez- Doctor of Philosophy
- Data scientist at University of Copenhagen
Alba Refoyo Martínez
- Doctor of Philosophy
- Data scientist at University of Copenhagen
About
19
Publications
17,127
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
389
Citations
Introduction
My research involves utilizing computational and statistical models applied to DNA sequence data in order to gain insights into the mechanisms and dynamics of evolution and natural selection in humans.
Current institution
Education
September 2017 - August 2019
Publications
Publications (19)
The Faroe Islands are home to descendants of a North Atlantic founder population with a unique history shaped by both migration and periods of relative isolation. Here, we investigate the genetic diversity, population structure, and demographic history of the islands by analyzing whole genome sequencing data from 40 participants in the Faroe Genome...
The Arctic environment plays a critical role in the global climate system and marine biodiversity. The region's ice‐covered expanses provide essential breeding and feeding grounds for a diverse assemblage of marine species, who have adapted to thrive in these harsh conditions and consequently are under threat from global warming. The bearded seal (...
Ancestry estimation from genotype data in unrelated individuals has become an essential tool in population and medical genetics to understand demographic population histories and to model or correct for population structure. The ADMIXTURE software is a widely used model-based approach to account for population stratification, however, it struggles...
The lethally maltreated body of Vittrup Man was deposited in a Danish bog, probably as part of a ritualised sacrifice. It happened between c. 3300 and 3100 cal years BC, i.e., during the period of the local farming-based Funnel Beaker Culture. In terms of skull morphological features, he differs from the majority of the contemporaneous farmers foun...
The lethally maltreated body of Vittrup Man was deposited in a Danish bog, probably as part of a ritualised sacrifice. It happened between c. 3300 and 3100 cal years BC, i.e., during the period of the local farming-based Funnel Beaker Culture. In terms of skull morphological features, he differs from the majority of the contemporaneous farmers foun...
Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that is most prevalent in Northern Europe. Although it is known that inherited risk for MS is located within or in close proximity to immune-related genes, it is unknown when, where and how this genetic risk originated¹. Here, by using a large ancient genome dataset from...
The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes¹, we modelled the selection landscape during the transition from hunti...
Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales1–4. However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution5–7. Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons s...
Western Eurasia witnessed several large-scale human migrations during the Holocene1–5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes—mainly from the Mesolithic and Neolithic periods—from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genot...
Multiple sclerosis (MS) is a modern neuro-inflammatory and -degenerative disease, which is most prevalent in Northern Europe. Whilst it is known that inherited risk to MS is located within or within close proximity to immune genes it is unknown when, where and how this genetic risk originated. By using the largest ancient genome dataset from the St...
The Eurasian Holocene (beginning c. 12 thousand years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using an imputed dataset of >1600 complete ancient genome sequences, and new computational methods for locating selecti...
Western Eurasia witnessed several large-scale human migrations during the Holocene. To investigate the cross-continental impacts we shotgun-sequenced 317 primarily Mesolithic and Neolithic genomes from across Northern and Western Eurasia. These were imputed alongside published data to obtain diploid genotypes from >1,600 ancient humans. Our analyse...
Over the past decade, summary statistics from genome-wide association studies (GWASs) have been used to detect and quantify polygenic adaptation in humans. Several studies have reported signatures of natural selection at sets of SNPs associated with complex traits, like height and body mass index. However, more recent studies suggest that some of t...
Over the past decade, summary statistics from genome-wide association studies (GWAS) have been used to detect and quantify polygenic adaptation in humans. Several studies have reported signatures of natural selection at sets of SNPs associated with complex traits, like height and body mass index. However, more recent studies suggest that some of th...
Detailed modeling of a species' history is of prime importance for understanding how natural selection operates over time. Most methods designed to detect positive selection along sequenced genomes, however, use simplified representations of past histories as null models of genetic drift. Here, we present the first method that can detect signatures...
Detailed modeling of a species' history is of prime importance for understanding how natural selection operates over time. Most methods designed to detect positive selection along sequenced genomes, however, use simplified representations of past histories as null models of genetic drift. Here, we present the first method that can detect signatures...