Alba García Seco de Herrera

Alba García Seco de Herrera
University of Essex · School of Computer Science and Electronic Engineering

PhD
Lecturer at the School of Computer Science and Electronic Engineering (CSEE) at the University of Essex

About

88
Publications
23,954
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,826
Citations
Introduction
Alba García Seco de Herrera currently works at the School of the School of Computer Science and Electronic Engineering (CSEE) at the University of Essex, she held a postdoctoral fellow at the National Library of Medicine - National Institutes of Health (NLM/NIH), USA. she received her doctorate degree in Computer Science from the University of Geneva, Switzerland, in 2015. She received a Master's in Science in Telemedicine and Bioengineering from the Technical University of Madrid in 2009 and a Diploma in Mathematics at the Complutense University in Madrid in 2008.
Additional affiliations
March 2011 - March 2015
HES-SO Valais-Wallis
Position
  • PhD Student

Publications

Publications (88)
Preprint
Full-text available
This paper describes the 5th edition of the Predicting Video Memorability Task as part of MediaEval2022. This year we have reorganised and simplified the task in order to lubricate a greater depth of inquiry. Similar to last year, two datasets are provided in order to facilitate generalisation, however, this year we have replaced the TRECVid2019 Vi...
Conference Paper
Full-text available
The 2022 ImageCLEFmedical caption prediction and concept detection tasks follow similar challenges that were already run from 2017–2021. The objective is to extract Unified Medical Language System (UMLS) concept annotations and/or captions from the image data that are then compared against the original text captions of the images. The images used f...
Chapter
Full-text available
This paper presents an overview of the ImageCLEF 2022 lab that was organized as part of the Conference and Labs of the Evaluation Forum – CLEF Labs 2022. ImageCLEF is an ongoing evaluation initiative (first run in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing infor...
Chapter
Full-text available
This paper presents an overview of the ImageCLEF 2022 lab that was organized as part of the Conference and Labs of the Evaluation Forum – CLEF Labs 2022. ImageCLEF is an ongoing evaluation initiative (first run in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing infor...
Chapter
Full-text available
ImageCLEF s part of the Conference and Labs of the Evaluation Forum (CLEF) since 2003. CLEF 2022 will take place in Bologna, Italy. ImageCLEF is an ongoing evaluation initiative which promotes the evaluation of technologies for annotation, indexing, and retrieval of visual data with the aim of providing information access to large collections of im...
Preprint
Full-text available
The aim of the Memorability-EEG pilot subtask at MediaEval'2021 is to promote interest in the use of neural signals -- either alone or in combination with other data sources -- in the context of predicting video memorability by highlighting the utility of EEG data. The dataset created consists of pre-extracted features from EEG recordings of subjec...
Preprint
Full-text available
This paper describes the MediaEval 2021 Predicting Media Memorability}task, which is in its 4th edition this year, as the prediction of short-term and long-term video memorability remains a challenging task. In 2021, two datasets of videos are used: first, a subset of the TRECVid 2019 Video-to-Text dataset; second, the Memento10K dataset in order t...
Preprint
Full-text available
Using a collection of publicly available links to short form video clips of an average of 6 seconds duration each, 1,275 users manually annotated each video multiple times to indicate both long-term and short-term memorability of the videos. The annotations were gathered as part of an online memory game and measured a participant's ability to recal...
Article
Full-text available
Using a collection of publicly available links to short form video clips of an average of 6 seconds duration each, 1275 users manually annotated each video multiple times to indicate both long-term and short-term memorability of the videos. The annotations were gathered as part of an online memory game and measured a participant’s ability to recall...
Article
Full-text available
In recent years, 2D convolutional neural networks (CNNs) have been extensively used to diagnose neurological diseases from magnetic resonance imaging (MRI) data due to their potential to discern subtle and intricate patterns. Despite the high performances reported in numerous studies, developing CNN models with good generalization abilities is stil...
Chapter
Full-text available
This paper presents an overview of the ImageCLEF 2021 lab that was organized as part of the Conference and Labs of the Evaluation Forum – CLEF Labs 2021. ImageCLEF is an ongoing evaluation initiative (first run in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing infor...
Article
Full-text available
This paper presents an overview of the ImageCLEF 2021 lab that was organized as part of the Conference and Labs of the Evaluation Forum-CLEF Labs 2021. ImageCLEF is an ongoing evaluation initiative (first run in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing informa...
Article
Full-text available
The 2021 ImageCLEF concept detection and caption prediction task follows similar challenges that were already run from 2017-2020. The objective is to extract UMLS-concept annotations and/or captions from the image data that are then compared against the original text captions of the images. The used images are clinically relevant radiology images a...
Conference Paper
Full-text available
We developed a method to predict health outcomes from medical images by processing concepts from radiology reports and their associated medical images. Our aim is to improve medical image understanding and provide sophisticated tools to automate thorough analysis of multi-modal medical images. In this paper, two deep learning- and kNN-based metho...
Article
Full-text available
According to a recent Deloitte study, the COVID-19 pandemic continues to place a huge strain on the global health care sector. Covid-19 has also catalysed digital transformation across the sector for improving operational efficiencies. As a result, the amount of digitally stored patient data such as discharge letters, scan images, test results or f...
Preprint
Full-text available
In recent years, 2D convolutional neural networks (CNNs) have been extensively used for the diagnosis of neurological diseases from magnetic resonance imaging (MRI) data due to their potential to discern subtle and intricate patterns. Despite the high performances reported in numerous studies, developing CNN models with good generalization abilitie...
Chapter
Full-text available
This paper presents the ideas for the 2021 ImageCLEF lab that will be organized as part of the Conference and Labs of the Evaluation Forum—CLEF Labs 2021 in Bucharest, Romania. ImageCLEF is an ongoing evaluation initiative (active since 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the...
Article
Full-text available
This paper presents the ideas for the 2021 ImageCLEF lab that will be organized as part of the Conference and Labs of the Evaluation Forum-CLEF Labs 2021 in Bucharest, Romania. ImageCLEF is an ongoing evaluation initiative (active since 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the...
Preprint
Full-text available
This paper describes the MediaEval 2020 \textit{Predicting Media Memorability} task. After first being proposed at MediaEval 2018, the Predicting Media Memorability task is in its 3rd edition this year, as the prediction of short-term and long-term video memorability (VM) remains a challenging task. In 2020, the format remained the same as in previ...
Conference Paper
Full-text available
In this paper, we present the methods and the main results from the Essex NLIP Team’s participation in the MediEval 2020 Predicting Media Memorability task. The task requires partici�pants to build systems that can predict short-term and long-term memorability scores on real-world video samples provided. The main focus of our approach is on the ana...
Article
Speech disorders such as dysarthria are common and frequent after suffering a stroke. Speech rehabilitation performed by a speech-language pathologist is needed to improve and recover. However, in Thailand, there is a shortage of speech-language pathologists. In this paper, we present a syllable recognition system, which can be deployable in a spee...
Conference Paper
Full-text available
This paper describes the ImageCLEFmed 2020 Concept Detection Task. After first being proposed at ImageCLEF 2017, the medical task is in its 4th edition this year, as the automatic detection from medical images still remains a challenging task. In 2020, the format remained the same as in 2019, with a single sub-task. The concept detection task is pa...
Chapter
Full-text available
This paper presents an overview of the ImageCLEF 2020 lab that was organized as part of the Conference and Labs of the Evaluation Forum - CLEF Labs 2020. ImageCLEF is an ongoing evaluation initiative (first run in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing infor...
Article
Full-text available
This paper presents an overview of the ImageCLEF 2020 lab that was organized as part of the Conference and Labs of the Evaluation Forum-CLEF Labs 2020. ImageCLEF is an ongoing evaluation initiative (first run in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing informa...
Article
In this paper, we review the state-of-the-art approaches for knee articular cartilage segmentation from conventional techniques to deep learning (DL) based techniques. Knee articular cartilage segmentation on magnetic resonance (MR) images is of great importance in early diagnosis of osteoarthritis (OA). Besides, segmentation allows estimating the...
Chapter
Full-text available
This paper presents an overview of the 2020 ImageCLEF lab that will be organized as part of the Conference and Labs of the Evaluation Forum—CLEF Labs 2020 in Thessaloniki, Greece. ImageCLEF is an ongoing evaluation initiative (run since 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the...
Conference Paper
Full-text available
This paper presents an overview of the 2020 ImageCLEF lab that will be organized as part of the Conference and Labs of the Evaluation Forum-CLEF Labs 2020 in Thessaloniki, Greece. ImageCLEF is an ongoing evaluation initiative (run since 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the...
Conference Paper
Full-text available
This paper describes the ImageCLEF 2019 Concept Detection Task. This is the 3rd edition of the medical caption task, after it was first proposed in ImageCLEF 2017. Concept detection from medical images remains a challenging task. In 2019, the format changed to a single subtask and it is part of the medical tasks, alongside the tuberculosis and visu...
Chapter
Full-text available
The medical tasks in ImageCLEF have been run every year from 2004–2018 and many different tasks and data sets have been used over these years. The created resources are being used by many researchers well beyond the actual evaluation campaigns and are allowing to compare the performance of many techniques on the same grounds and in a reproducible w...
Chapter
Full-text available
This paper presents an overview of the ImageCLEF 2019 lab, organized as part of the Conference and Labs of the Evaluation Forum - CLEF Labs 2019. ImageCLEF is an ongoing evaluation initiative (started in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing information acc...
Chapter
Full-text available
This paper presents an overview of the foreseen ImageCLEF 2019 lab that will be organized as part of the Conference and Labs of the Evaluation Forum - CLEF Labs 2019. ImageCLEF is an ongoing evaluation initiative (started in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of prov...
Article
Full-text available
This paper presents an overview of the foreseen ImageCLEF 2019 lab that will be organized as part of the Conference and Labs of the Evaluation Forum-CLEF Labs 2019. ImageCLEF is an ongoing evaluation initiative (started in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of provid...
Conference Paper
Full-text available
Human neuroimaging research aims to find mappings between brain activity and broad cognitive states. In particular, Functional Magnetic Resonance Imaging (fMRI) allows collecting information about activity in the brain in a non-invasive way. In this paper, we tackle the task of linking brain activity information from fMRI data with named entities e...
Conference Paper
Full-text available
This paper describes the participation of the U.S. National Library of Medicine (NLM) in the ImageCLEF 2017 caption task. We proposed different machine learning methods using training subsets that we selected from the provided data as well as retrieval methods using external data. For the concept detection subtask, we used Convolutional Neural Netw...
Conference Paper
Full-text available
This paper presents an overview of the ImageCLEF 2017 evaluation campaign, an event that was organized as part of the CLEF (Conference and Labs of the Evaluation Forum) labs 2017. ImageCLEF is an ongoing initiative (started in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval for providing information access...
Article
Full-text available
Large amounts of medical visual data are produced in hospitals daily and made available continuously via publications in the scientific literature, representing the medical knowledge. However, it is not always easy to find the desired information and in clinical routine the time to fulfil an information need is often very limited. Information retri...
Article
Full-text available
Image retrieval is a complex task that differs according to the context and the user requirements in any specific field, for example in a medical environment. Search by text is often not possible or optimal and retrieval by the visual content does not always succeed in modelling high-level concepts that a user is looking for. Modern image retrieval...
Conference Paper
Full-text available
Information analysis or retrieval for images in the biomedical literature needs to deal with a large amount of compound figures (figures containing several subfigures), as they constitute probably more than half of all images in repositories such as PubMed Central, which was the data set used for the task. The ImageCLEFmed benchmark proposed among...
Conference Paper
The statistical analysis of functional magnetic resonance imaging (fMRI) is used to extract functional data of cerebral activation during a given experimental task. It allows for assessing changes in cerebral function related to cerebral activities. This methodology has been widely used and a few initiatives aim to develop shared data resources. Se...
Conference Paper
Full-text available
This paper presents an overview of the ImageCLEF 2016 evaluation campaign, an event that was organized as part of the CLEF (Conference and Labs of the Evaluation Forum) labs 2016. ImageCLEF is an ongoing initiative that promotes the evaluation of technologies for annotation, indexing and retrieval for providing information access to collections of...
Article
In this paper we propose a complete pipeline for medical image modality classification focused on the application of discrete Bayesian network classifiers. Modality refers to the categorization of biomedical images from the literature according to a previously defined set of image types, such as X-ray, graph or gene sequence. We describe an extensi...
Conference Paper
Full-text available
ImageCLEF is the image retrieval task of the Conference and Labs of the Evaluation Forum (CLEF). ImageCLEF has historically focused on the multimodal and language–independent retrieval of images. Many tasks are related to image classification and the annotation of image data as well. The medical task has focused more on image retrieval in the begin...
Conference Paper
Full-text available
Searching for medical image content is a regular task for many physicians, especially in radiology. Retrieval of medical images from the scientific literature can benefit from automatic modality classification to focus the search and filter out non–relevant items. Training datasets are often unevenly distributed regarding the classes resulting some...
Conference Paper
Full-text available
This paper presents an overview of the ImageCLEF 2015 evaluation campaign, an event that was organized as part of the CLEF labs 2015. ImageCLEF is an ongoing initiative that promotes the evaluation of technologies for annotation, indexing and retrieval for providing information access to databases of images in various usage scenarios and domains. I...
Thesis
Full-text available
Large amounts of medical visual data are produced daily in hospitals, while new imaging techniques continue to emerge. In addition, many images are made available continuously via publications in the scientific literature and can also be valuable for clinical routine, research and education. Information retrieval systems are useful tools to provide...
Conference Paper
Full-text available
Advances in medical knowledge give clinicians more objective information for a diagnosis. Therefore, there is an increasing need for bibliographic search engines that can provide services helping to facilitate faster information search. The ImageCLEFmed benchmark proposes a medical case{based retrieval task. This task aims at retrieving articles f...
Article
Full-text available
Medical image retrieval and classification have been extremely active research topics over the past 15 years. With the ImageCLEF benchmark in medical image retrieval and classification a standard test bed was created that allows researchers to compare their approaches and ideas on increasingly large and varied data sets including generated ground t...
Chapter
Full-text available
Content-based medical image retrieval has been proposed as a technique that allows not only for easy access to images from the relevant literature and electronic health records but also for training physicians, for research and clinical decision support. The bag-of-visual-words approach is a widely used technique that tries to shorten the semantic...
Article
Full-text available
To help managing the large amount of biomedical images produced, image information retrieval tools have been developed to help accessing the right information at the right moment. To provide a test bed for image retrieval evaluation the ImageCLEFmed benchmark proposes a biomedical classification task that focuses on determining the image modality o...
Chapter
Full-text available
For difficult cases clinicians usually use their experience and also the information found in textbooks to determine a diagnosis. Computer tools can help them supply the relevant information now that much medical knowledge is available in digital form. A biomedical search system such as developed in the Khresmoi project (that this chapter partially...