Alba Carrero-Parreño

Alba Carrero-Parreño
  • University of Alicante

About

20
Publications
6,402
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
366
Citations
Current institution
University of Alicante

Publications

Publications (20)
Article
In this work, we address the optimal water management strategies and fair cost distribution among various shale gas companies placed in the same play. A mixed integer non-linear programming (MINLP) formulation with the objective of maximizing the Nash product is presented including the analysis of different policies to determine the most appropriat...
Article
In this article, an optimization-based framework is proposed for integrated production and distribution planning of industrial gas supply chains. The main goal is to minimize the overall cost, which is composed of raw material, product sourced from external suppliers, production, truck, and rail-car costs, while satisfying customer demands. The ove...
Article
Full-text available
This paper introduces a comprehensive study of the Life Cycle Impact Assessment (LCIA) of water management in shale gas exploitation. First, we present a comprehensive study of wastewater treatment in the shale gas extraction, including the most common technologies for the pretreatment and three different desalination technologies of recent interes...
Chapter
In this work, we propose a Mixed Integer Linear Programming (MILP) model for optimal planning of industrial gas supply chain, which integrates supply contracts, production scheduling, truck and rail-car scheduling, as well as inventory management under the Vendor Managed Inventory (VMI) paradigm. The objective used here is minimisation of the total...
Article
Full-text available
In this work, a mixed‐integer linear programming (MILP) model is developed to address optimal shale gas‐water management strategies among shale gas companies that operate relatively close. The objective is to compute a distribution of water‐related costs and profit among shale companies to achieve a stable agreement on cooperation among them that a...
Article
Thermal membrane distillation (MD) is an emerging technology to desalinate high-salinity wastewaters, including shale gas produced water to reduce the corresponding water footprint of fracturing operations. In this work, we introduce a rigorous optimization model with energy recovery for the synthesis of multistage direct contact membrane distillat...
Article
To address water planning decisions in shale gas operations, we present a novel water management optimization model that explicitly takes into account the effect of high concentration of total dissolved solids (TDS), and its temporal variation in the impaired water. The model comprises different water management strategies: a) direct wastewater reu...
Chapter
In this work, we introduce a non-convex MINLP optimization model for water management in shale gas production. The superstructure includes: reuse/recycle in the same or neighboring wellpad, treatment in mobile units or in centralized water treatment (CWT) facility, or transport to Class II disposal wells. We consider four different water qualities:...
Chapter
Environmental impacts related to increasing greenhouse gas emissions and depletion of fossil-fuel reserves and water resources are major global concerns. In this work, we introduce a new multi-objective optimization model for simultaneous synthesis of zero-emission desalination plants driven by renewable energy. The system is particularly developed...
Chapter
Optimal flowback water desalination is critical to improve overall efficiency and sustainability of shale gas production. Nonetheless, great uncertainty in well data from shale plays strongly hinders the design task. In this work, we introduce a new stochastic multiscenario optimization model for the robust design of desalination systems under unce...
Chapter
In this work, we analyze the effect of shale gas well data uncertainty on the multi-objective optimization of a multistage direct contact membrane distillation (DCMD) model. The uncertain parameters, flowrate and salt concentration of the flowback water, are modelled by a set of correlated scenarios. A bi-criterion stochastic MINLP was formulated t...
Chapter
One of the challenges for the future of the shale gas production industry is the water management due to the large demand of water for wells drilling and fracturing and the high volumes of liquid effluent produced. On-site treatment is a convenient option for the reuse of the shale wastewater as drilling water for subsequent wells, which simultaneo...
Article
Sustainable and efficient desalination is required to treat the large amounts of high-salinity flowback water from shale gas extraction. Nevertheless, uncertainty associated with well data (including water flowrates and salinities) strongly hampers the process design task. In this work, we introduce a new optimization model for the synthesis of zer...
Article
Full-text available
Shale gas has emerged as a potential resource to transform the global energy market. Nevertheless, gas extraction from tight shale formations is only possible after horizontal drilling and hydraulic fracturing, which generally demand large amounts of water. Part of the ejected fracturing fluid returns to the surface as flowback water, containing a...
Article
Full-text available
This paper introduces a new optimization model for the single and multiple-effect evaporation (SEE/MEE) systems design, including vapor recompression cycle and thermal integration. The SEE/MEE model is especially developed for shale gas flowback water desalination. A superstructure is proposed to solve the problem, comprising several evaporation ef...
Article
Full-text available
Shale gas has recently emerged as a promising energy source to face the increasing global demand. This paper introduces a new rigorous optimization model for the simultaneous synthesis of single and multiple-effect evaporation (SEE/MEE) systems, considering mechanical vapor recompression (MVR) and energy recovery. The proposed model has been especi...

Network

Cited By