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Abstract
So far six susceptibility loci for renal cell carcinoma (RCC) have been discovered by ge-

nome-wide association studies (GWAS). To identify additional RCC common risk loci, we

performed a meta-analysis of published GWAS (totalling 2,215 cases and 8,566 controls of

Western-European background) with imputation using 1000 Genomes Project and UK10K

Project data as reference panels and followed up the most significant association signals

[22 single nucleotide polymorphisms (SNPs) and 3 indels in eight genomic regions] in 383

cases and 2,189 controls from The Cancer Genome Atlas (TCGA). A combined analysis

identified a promising susceptibility locus mapping to 1q24.1 marked by the imputed SNP

rs3845536 (Pcombined =2.30x10
-8). Specifically, the signal maps to intron 4 of the ALDH9A1

gene (aldehyde dehydrogenase 9 family, member A1). We further evaluated this potential

signal in 2,461 cases and 5,081 controls from the International Agency for Research on

Cancer (IARC) GWAS of RCC cases and controls from multiple European regions. In con-

trast to earlier findings no association was shown in the IARC series (P=0.94; Pcombined

=2.73x10-5). While variation at 1q24.1 represents a potential risk locus for RCC, future repli-

cation analyses are required to substantiate our observation.
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Introduction
Worldwide kidney cancer accounts for around 2% of all malignancies the disease affecting
270,000 individuals and causing 116,000 cancer-related deaths each year [1]. In adults 90% of
kidney cancers are renal cell carcinomas (RCC) [2].

Besides the well-recognised modifiable risk factors for RCC—smoking and obesity-related
traits, as well as the inverse relationship between risk and alcohol consumption, there is strong
evidence for an inherited genetic predisposition [3]. Rare germline mutations in VHL (von
Hippel—Lindau syndrome),MET (hereditary papillary renal carcinoma), BHD (Birt—Hogg—
Dube syndrome) and FH (hereditary leiomyomatosis and RCC syndrome) dramatically in-
crease the risk of RCC [4], but contribute little to the overall two-fold familial risk [5]. Evidence
for polygenic susceptibility to RCC has recently been vindicated by genome-wide association
studies (GWAS) that have identified risk SNPs (single nucleotide polymorphisms) at 2p21,
2q22.3, 8q24.21, 11q13.3, 12p11.33 and 12q24.31 [2,6–9].

To identify additional RCC risk SNPs, we imputed over 10 million SNPs in two published
GWAS datasets, using data from the 1000 Genomes Project [10] and UK10K projects as refer-
ence (see Materials & Methods for details). This allowed us to recover untyped genotypes,
thereby maximising the prospects of identifying novel risk variants for RCC. We then con-
ducted a genome-wide meta-analysis of the two imputed studies.

Results
For the meta-analysis we made use of data from two previously published GWAS of RCC: (i).
UK-GWAS, 1,045 RCC cases genotyped on Illumina Omni Express BeadChips with 2,699 indi-
viduals from the Wellcome Trust Case Control Consortium 2 (WTCCC2) 1958 birth cohort
and 2,501 UK Blood Service which had been genotyped genotyped on Hap1.2M-Duo arrays
serving as controls [2]; (ii) The National Cancer Institute (NCI) GWAS (NCI-GWAS), consist-
ing of four European case-control series, totalling 1,311 cases and 3,424 controls, genotyped on
HumanHap HapMap 500, 610 or 660W BeadChips [7].

Post quality control these GWAS provided data on a total of 2,215 cases and 8,566 controls.
To maximise identification of novel risk variants, we imputed over 10 million SNPs using 1000
Genomes Project and UK10K data as reference. Quantile-quantile (Q-Q) plots for all SNPs
post-imputation did not show substantive over-dispersion (λ = 1.02 and 1.01 for UK-GWAS
and NCI-GWAS respectively; S1 Fig.).

We pooled the data from these two GWAS and used an inverse-variance weighted fixed-ef-
fects meta analysis model to compute odds ratios (OR), confidence intervals (CI) and P-values
for each SNP. Results from this meta-analysis, annotated with known risk loci, are shown on
Fig. 1. We excluded SNPs that (i) directly mapped to previously published risk loci (2p21,
2q22.3, 8q24.21, 11q13.3, 12p11.33 and 12q24.31; S1 Table), (ii) were in linkage disequilibrium
(LD; at a threshold of r2> 0.8) with SNPs from these loci or (iii) had P>0.01 in either the UK or
the NCI dataset. After applying these filters, we considered 22 SNPs and 3 indels in eight regions
of LD that showed evidence for association with RCC risk at P<1.0 × 10-6 (S2 Table). To validate
these potential associations, we conducted replication in cases and controls obtained from com-
bining The Cancer Genome Atlas (TCGA) Kidney Renal Clear Cell Carcinoma (KIRC) and Can-
cer Genetic Markers of Susceptibility (CGEMS) datasets (383 cases and 2,189 controls; S3 Table).

In an analysis combining these three datasets, rs3845536, mapping to chromosome 1q24.1
(165,650,787 bps; NCBI build 37), achieved genome-wide significance (P = 2.30 × 10-8; Phet =
0.24, I2 = 29%; Table 1) for association with RCC risk. This association was driven by the NCI
(P = 9.40x10-7) and UK (P = 4.61x10-3) studies and was not nominally significant in the TCGA
study (P = 0.16). However, in the latter, smaller, study the effect is of similar size and in the
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same direction as in the UK and NCI studies, thereby boosting the association signal in the
meta-analysis.

rs3845536 localizes to intron 4 of the ALDH9A1 gene (aldehyde dehydrogenase, family 9,
subfamily a, member 1; MIM 602733; Fig. 2), within a 64kb block of LD. We confirmed the
high fidelity of imputation by directly genotyping rs3845536 in a random subset of the UK-G-
WAS (516 cases, r2 = 0.99 and 402 controls, r2 = 0.98, Materials and Methods). The RCC risk
associated with rs3845536 genotype is compatible with a log-additive model, the OR for risk al-
lele homozygotes being 1.51 (95% CI: 1.29–1.77).

We did not find evidence for interactions between 1q24.1 and any of the previously pub-
lished risk loci—specifically we evaluated the interaction effects on RCC risk of rs3845536 with
SNPs on 2p21 (rs7579899 and rs4953346), 2q22.3 (rs12105918), 8q24.1 (rs6470588 and
rs6470589), 11q13.3 (rs7105934), 12p11.23 (rs718314) and 12q24.31 (rs4765623). The as-
sumption of independent RCC risk loci was supported by the lack of significant interaction
terms between the risk loci (i.e. P> 0.05; S4 Table).

Using publicly available mRNA expression data, we evaluated the potential for cis-regula-
tion of ALDH9A1 or other nearby gene by rs3845536 variation. There was no statistically sig-
nificant relationship between the genotype of rs3845536 or a SNP in LD with rs3845536 (at
r2>0.8) and expression of ALDH9A1 and the nearby transcriptsMGST3 and TMCO1 (expres-
sion data for transcripts LOC440700 and BC071770, also in the region, were not available).
Further, a Haploreg and RegulomeDb search did not yield evidence for rs3845536 or a correlat-
ed SNP to locate within a transcription regulatory region (data not shown). We also made use
of TCGA clear cell data to examine the frequency of mutation of ALDH9A1,MGST3,
LOC440700 and TMCO1 in renal cancer [11]. None of these genes have mutational frequencies
in RCC>1% (no data were available for transcript BC071770).

To further examine this association we made use of data from the International Agency for
Research on Cancer (IARC) GWAS of RCC which was based on eight independent case-con-
trol series from different European countries with 41.4% of cases fromWestern and Northern
Europe, and 58.6% from Central and Eastern Europe. In the IARC series there was no evidence
for an association between rs3845536 and risk of RCC (P = 0.94; Table 1). Hence overall, the
association strength was markedly reduced with concomitant significant heterogeneity with in-
clusion of the IARC dataset (P = 2.73 x 10-5, Phet = 9.1 x 10-4, I2 = 82%; Table 1).

Discussion
We report a newly identified common variant on chromosome 1q24.1 annotating a potential
RCC susceptibility locus candidate. If confirmed by additional studies there is a high likelihood

Fig 1. Genome-wide P-values (–log10P, y-axis) plotted against their respective chromosomal positions (x-axis). The horizontal line represents the
significance threshold level (P = 1.0x10-6) required for variants to be taken forward to the replication stage. RCC risk loci reported in previous studies are labelled.

doi:10.1371/journal.pone.0122589.g001
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that the functional basis of the 1q24.1 risk locus is mediated through ALDH9A1 a priori since
the region of association is small and rs3845536 is intronic to ALDH9A1. Although we did not
observe an association between rs3845536 genotype and ALDH9A1 expression, a subtle rela-
tionship between the two, such as a cumulative, long term interaction, remains a possibility.

The ALDH gene superfamily is documented [12] to include a variety of isozymes involved
in the metabolism of aldehydes generated from chemically diverse endogenous and exogenous
precursors. Aldehyde-mediated effects vary from homeostatic and therapeutic to cytotoxic,
and genotoxic and several ALDHs have been implicated in human disease phenotypes or path-
ophysiologies [12]. ALDH9A1 encodes γ-trimethylaminobutyraldehyde dehydrogenase that
participates in the metabolism of γ-aminobutyraldehyde and aminoaldehydes derived from
polyamines [12]. High levels of ALDH9A1 expression are seen in the kidney [13] with signifi-
cant enrichment of dehydrogenases including ALDH9A1 in RCC [14]. TNF signalling is well
established to play a role in RCC development [15] and it is notable that ALDH9A1 influences
expression of TNF alpha induced protein 3 [16]. Although speculative these data are consistent
with the hypothesis of xenobiotic metabolism associated with apoptosis and tumorigenesis
playing a role in RCC oncogenesis. While our finding adds evidence that ALDH9A1 is impli-
cated in RCC development, further studies are required to determine the variants that are
functionally relevant.

To interrogate whether rs3845536 has pleiotropic effects on the risks of other cancer types,
we investigated the association with colorectal [17] and lung cancers [18], acute lymphoblastic
leukaemia [19], multiple myeloma [20], glioma [21] and meningioma [22] using data from pre-
viously reported GWAS. However, our data did not support this hypothesis and we did not

Fig 2. Regional association plot of the 1q24.1 risk locus. The figure shows −log10P values (y-axis) versus chromosomal positions (x-axis; NCBI build 37).
Genotyped SNPs are shown as triangles, with imputed SNPs as circles. rs3845536 has been highlighted through the use of a larger symbol. Colour intensity
is proportional to LD with rs3845536: from white (r2 = 0) to red (r2 = 1.0). The light blue line indicates genetic recombination rates (estimated from 1000
Genomes Phase 1 CEU data). Nearby genes and transcripts are also shown.

doi:10.1371/journal.pone.0122589.g002

Common Variation at 1q24.1 Is a Potential Risk Factor for Renal Cancer

PLOS ONE | DOI:10.1371/journal.pone.0122589 March 31, 2015 5 / 11



observe, for any of these cancers, a significant effect of rs3845536 genotype (or a correlated
SNP at r2�0.8) on tumor risk.

In summary, we report a potential RCC risk susceptibility locus candidate at rs3845536.
This finding implicates genetic variation in ALDH9A1 in the development of RCC. Similar to
other GWAS hits, rs3845536 is a common variant and confers moderate risk of RCC. However
compelling our finding is from analysis of UK, NCI and TCGA data due to the failure to vali-
date the association in the IARC series the observation has to be viewed with a degree of cau-
tion at this juncture and further replication is required. We note that due to both the modest
size of our discovery dataset and the fact that published RCC susceptibility loci at 2p21, 2q22.3,
8q24.21, 11q13.3, 12p11.33 and 12q24.31 account for<5% of the familial risk additional risk
variants are likely to be identifiable through expanded GWAS analyses.

Materials and Methods

Ethics statement
Collection of blood samples and clinico-pathological information from all subjects was under-
taken with written informed consent with ethical board approvals from the Royal Marsden
NHS Hospitals Trust (CCR 1552/1922) and the United KingdomMulticentre Research Ethics
Board (07/MRE01/10). Details about Ethics approval for the NCI, TCGA and IARC studies are
detailed previously [7].

Subjects and datasets
GWAS datasets have been previously reported [2]. (i) UK-GWAS was based on 1,045 RCC
cases (including 590 clear cell carcinomas (CCCs), 42 papillary carcinomas (PCs), 33 chromo-
phobe carcinomas (CCs) and 19 mixed or other histological subtypes) genotyped using
Human OmniExpress-12 BeadChips, with 856 cases from the MRC SORCE trial and 189 cases
collected through The Institute of Cancer Research (ICR) and Royal Marsden NHS Hospitals
Trust and 5,200 controls genotyped using Hap1.2M-Duo Custom array with 2,699 individuals
from the Wellcome Trust Case Control Consortium 2 (WTCCC2) 1958 birth cohort and 2,501
from the UK Blood Service. (ii) NCI-GWAS was based on 1,453 RCC cases and 3,599 controls
of European background genotyped using Illumina HumanHap HapMap 500, 610 or 660W
BeadChips. Data were publicly available on 1,311 cases (including 534 CCCs, 93 PCs, 86 other
histological subtypes) and 3,424 controls [7].

As we previously described [2], we applied a number of pre-specified quality control metrics
to the data. Specifically we used the following criteria to exclude individuals: overall successfully
genotyped SNPs< 97%, discordant sex, outliers in a plot of heterozygosity versus missingness,
duplication or relatedness to the estimated identity by descent (IBD)> 0.185 or evidence of
non- European ancestry by PCA-based analysis using HapMap reference samples (S2 Fig.).
SNP exclusion criteria included: call rate<95%; different missing genotype rates between cases
and controls at P< 10-5; MAF< 0.01; departure from Hardy—Weinberg equilibrium in con-
trols at P< 10-5. An overview of all sample exclusions is given in S3 Fig. Adequacy of the case—
control matching was assessed by inspection of Q—Q plots of test statistics and by means of the
inflation factor λGC.

Replication series
For replication, we used, as detailed previously [2], data from TCGA and IARC. Briefly, the
TCGA RCC clear cell cases (KIRC study, accession number phs000178.v7.p6) were genotyped
using the Affymetrix Genome-Wide Human SNP Array 6.0. For controls we made use of data
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on healthy individuals from the CGEMS breast and prostate cancer study, genotyped using Illu-
mina HumanHap550 and Phase 1A HumanHap300+Phase 1BHumanHap240 Beadchips re-
spectively. Both cases and controls were formally examined for an overlap with the NCI GWAS
samples. Any TCGA or CGEMS sample found to be a duplicate of or related to a sample from
the NCI GWAS was removed from the replication dataset. After further checking for relatedness
and European ancestry 383 cases and 2,189 controls constituted the TCGA/CGEMS replication
series. The International Agency for Research on Cancer (IARC) GWAS consisted of 2,461 RCC
cases (including 1,340 CCCs, 95 PCs, 88 other histological subtypes) and 5,081 controls of Euro-
pean background from eight European studies) and has previously been described [7]. Genotyp-
ing of cases and controls was performed using either Illumina HumanHap300, 550 or 610 Quad
Beadchips. Data derived from the three arrays were imputed to recover rs3845536 genotype.

Statistical and bioinformatic analyses
R (v3.02) and SNPTEST (v2.4.1) software were used for analysis. Association between individual
SNPs and RCC risk was evaluated by the Cochran—Armitage trend test. Unconditional logistic
regression was used to calculate ORs and associated 95% CIs. The UK-GWAS did not require any
covariates to adjust for, the NCI-GWAS required adjusting for study centre and the TCGA-
GWAS required adjusting for the first principal component. Phasing of GWAS SNP genotypes
was performed using SHAPEIT v2.644. Untyped SNPs were imputed using IMPUTEv2 (v2.3.0)
with data from the 1000 Genomes Project (Phase 1 integrated variant set, v3.20101123, released
on the IMPUTEv2 website on 9 December 2013) and UK10K (ALSPAC, EGAS00001000090 /
EGAD00001000195, and TwinsUK, EGAS00001000108 / EGAD00001000194, studies only) used
as reference panels. Analysis of imputed data was conducted using SNPTEST v2.4.1 to account for
uncertainties in SNP prediction. Association meta-analyses only included markers with info scores
>0.4, imputed call rates/SNP>0.9 (UK &NCI studies) andMAFs>0.005. Meta-analyses were
carried out with the R package meta v2.4–1, using the genotype probabilities from IMPUTEv2 for
untyped SNPs. Heterogeneity was assessed using Cochran'sQ statistic and the proportion of the
total variation due to heterogeneity was assessed using the I2 statistic.

HapMap recombination rate (cM/Mb) was used to define LD blocks. The recombination
rate defined using the Oxford recombination hotspots and on the basis of the distribution of
CIs defined by Gabriel and co-workers [23].

The fidelity of imputation, as assessed by the concordance between imputed and directly
genotyped SNPs, was examined in a random subset of samples from the UK-GWAS. To quan-
tify the fidelity of imputation we calculated Pearson’s correlation coefficient r2 between directly
genotyped values (counting the number of reference alleles, taking discrete values in {0, 1, 2})
and the imputed genotypes (taking real values in the interval [0,2]).

The familial relative risk of RCC attributable to a specific variant was calculated using the
formula from [24]:

l� ¼ p pr2 þ qr1ð Þ2 þ q pr1 þ qð Þ2
p2r2 þ 2pqr1 þ q2ð Þ2 ;

where the overall sibling relative risk λ0 for RCC is 2.45 [5].
Fig. 2 has been produced using visPIG [25].

Analysis of TCGA data
The associations of SNP genotype with gene expression in RCC was investigated using TCGA
data generated using Agilent 244K Custom G4502A arrays. The frequency of mutations was
obtained using the CBioPortal for Cancer Genomics web server.
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Supporting Information
Supporting information is available at PLOS ONE online.

URLs
R Core Team (2013). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Illumina: http://www.illumina.com
dbSNP: http://www.ncbi.nlm.nih.gov/projects/SNP
HapMap: http://www.hapmap.org
1000Genomes: http://www.1000genomes.org
visPIG: http://vispig.icr.ac.uk
IMPUTE: https://mathgen.stats.ox.ac.uk/impute/impute
SNPTEST: http://www.stats.ox.ac.uk/~marchini/software/gwas/snptest
cBioPortal for Cancer Genomics: http://www.cbioportal.org
Wellcome Trust Case Control Consortium: www.wtccc.org.uk
Mendelian Inheritance In Man: http://www.ncbi.nlm.nih.gov/omim
The Cancer Genome Atlas project: http://cancergenome.nih.gov
Genevar (GENe Expression VARiation): http://www.sanger.ac.uk/resources
SORCE: http://www.ctu.mrc.ac.uk
Cancer Genetic Markers of Susceptibility (CGEMS): cgems.cancer.gov

Supporting Information
S1 Dataset. UK & NCI association test results with meta-analysis results. Tab-delimited
ASCII text file with one header row.
(TXT)

S1 Fig. Q-Q plots of Cochran-Armitage trend test statistics for association based on meta-
analysis of UK-GWAS and NCI-GWAS pre-imputation (a-b); post-imputation (e-h) and
rare SNPs post-imputation (i-l). The identity line is indicated as a blue dashed line.
(TIF)

S2 Fig. first two principal components of the UK and NCI datasets, as used for removing
samples based on ancestry during quality control. Case and control samples are indicated as
grey and black crosses, with the HapMap reference populations shown as bold coloured discs.
(TIF)

S3 Fig. GWAS data quality control. Details are provided of samples, SNPs and quality control
(QC) used in each GWAS.
(TIF)

S1 Table. Evidence for association at previously reported RCC susceptibility loci. At each
locus values are given for the previously reported SNPs and the lead SNP in this study.
(PDF)

S2 Table. UK & NCI meta-analysis for all variants taken through to the replication stage.
(PDF)

S3 Table. UK, NCI & TCGAmeta-analysis for all variants taken through to the replication
stage. Shown in bold are the variants achieving Pfixed<5x10-8.
(PDF)
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S4 Table. significance of the interaction terms of rs3845536 with previously published risk
SNPs for RCC.
(PDF)
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