
Analytical Models for the Design of Iron-Based
Permeable Reactive Barriers

Alan J. Rabideau, P.E., M.ASCE1; Raghavendra Suribhatla2; and James R. Craig3

Abstract: The preliminary design of iron-based permeable reactive barriers is often accomplished using analytic expressions for one-
dimensional groundwater flow and contaminant transport. Typically, one or more of the governing processes is simplified or neglected to
facilitate development of a tractable solution. This paper presents a set of improved design equations that include the effects of dispersion,
finite domain boundary, sequential decay, and production processes, and increased flow through high conductivity barriers. When applied
to realistic example problems, application of the expanded design equations typically results in the specification of a larger permeable
reactive barrier thickness than obtained using conventional approaches.
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Introduction

A popular technology for remediating contaminated groundwater
is to emplace a permeable reactive barrier �PRB� in the path of
the plume �e.g., Starr and Cherry 1994; USEPA 1998�. According
to Environmental Technologies Inc. �ETI�, over 125 PRB instal-
lations have been reported worldwide �ETI 2005a�. The large ma-
jority of these applications utilize zero-valent iron to promote the
degradation of chlorinated organic compounds.

For chlorinated ethenes such as tertrachloroethylene �PCE�,
the zero-valent iron induces rapid transformations within the PRB
that are typically described as a network of coupled first-order
decay reactions �e.g., Roberts et al. 1996; Scherer et al. 2000�.
One of the key design tasks is to determine the PRB thickness
�in the direction of groundwater flow� needed to provide the
residence time to reduce the concentrations of target compounds
to the desired effluent concentration. The most straightforward
approach to PRB design is to conduct bench or pilot testing to
directly determine the required residence times �e.g., Gavaskar et
al. 1997, 1998, 2000�. Alternatively, mathematical modeling can
be used to extrapolate the PRB performance using reaction rate
constants measured from small scale laboratory experiments
and/or obtained from the literature.

For PRB design, a common simplification is to apply a single-
solute transport model to the parent compound, with the produc-
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tion of reaction products represented by approximate correction
factors and/or safety factors �e.g., Tratnyek et al. 1997�. In some
cases, complex geochemical models have been developed to con-
sider multiple degradation pathways and other chemical consid-
erations such as the impact of mineral precipitation on barrier
performance �e.g., Yabusaki et al. 2001�. However, for prelimi-
nary design, it is desirable to maintain an analytical framework
that can be implemented simply and easily, while maintaining a
suitably accurate treatment of the chemical degradation processes.
This paper presents several improvements to current models that
increase the degree of accuracy and conservatism while retaining
a simple analytic framework that can be implemented quickly and
easily.

Transport Models

Current Design Practice

For PRBs based on engineered transformation reactions, transport
through the barrier is typically modeled using a one-dimensional
form of the advective–dispersive–reactive equation �ADRE�. For
the transport of a single decaying solute in a one-dimensional
homogeneous porous medium, the governing ADRE is

�c

�t
= − �

�c

�x
+ D

�2c

�x2 − k� �1�

where c�aqueous phase contaminant concentration �M/L3�;
t�time �T�; x�distance from the entrance of the PRB �L�;
��interstitial fluid velocity �L/T�; D�dispersion coefficient
�L2/T�; and k��first-order decay constant �l/T�.

Application of Eq. �1� to a PRB setting is commonly accom-
plished by neglecting the dispersion term and treating the PRB as
an ideal plug flow reactor, which leads to the following simple
design equation �e.g., Gavaskar et al. 1998; USEPA 1998�:

c�x = L�
c0

= exp�− k�
L

�
� �2�

where L�barrier thickness �L�; and c0�constant contaminant
3
concentration entering the barrier �M/L �.
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In addition to neglecting dispersion, the form of Eq. �2�
implies a constant concentration entrance boundary condition,
and a semi-infinite domain. The velocity term ��� is frequently
assigned based on the local groundwater flow prior to barrier
construction, although it is sometimes reduced to reflect the
higher porosity associated with iron-based PRBs.

For chlorinated solvents, it is often necessary to consider the
production and transport of toxic reactions products. Retaining
the assumptions of Eq. �2�, the resulting problem can be
expressed as a set of coupled linear ordinary differential equations
�ODEs�

�ci

��
= − kici + �

j�1

yijkjcj

�3�
∀i = 1,2, ¯ n

where n�number of solutes in the decay chain; ��PRB residence
time �L /�� �T�; k�solute decay constant �l/T�; and yij�fractional
yield of solute i produced by the decay of solute j.

In practice, the system represented by Eq. �3� is often solved
numerically using a standard stiff ODE solver �e.g., ETI 2005b�,
with the barrier thickness L adjusted to reduce the contaminant
concentrations to the cleanup targets. This approach is rigorous
with respect to the PRB chemistry, but simplifies the hydrody-
namics of the PRB by neglecting dispersion and exit boundary
effects. Furthermore, the placement of a high-permeability PRB
may change the regional groundwater flow patterns in a manner
that results in increased flow through the barrier. While the
effect of these factors may be small, the common simplifications
are nonconservative with respect to the predicted concentrations
exiting the barrier �e.g., Eykholt and Sivavec 1995�. In the
following sections, several modifications are presented to address
these issues while retaining the simple analytic framework.

Governing Equations for Chlorinated Ethenes

Roberts et al. �1996� proposed a conceptual model for the
transformation of chlorinated ethenes by zero-valent iron that has
been widely accepted. Although the general framework includes
both series and parallel reactions �i.e., daughter products with
multiple parents�, laboratory bench testing to characterize PCE/
trichloroethylence �TCE� transformation has indicated that the
reactions involving the production of toxic products may be
considered in terms of a single series of transformations
�i.e., negligible “branching”� �ETI 2005b�. The resulting ADRE is
given by

�ci

�t
= − �

�ci

�x
+ D

�2ci

�x2 − kici + yiki−1ci−1

�4�
∀i = 1,2, ¯ ,n

where the yield coefficient yi contains a single subscript to indi-
cate that reaction product i is produced only by the single parent
compound i−1 �i.e., yi is equivalent to yi,i−1 in Eq. �3�, with all
other yi,j terms=zero�.

The restriction of Eq. �4� to a single decay chain does not
imply that other decay pathways are absent, but only that they do
not lead to significant production of the toxic reaction products of
interest. For example, other end products of PCE degradation
could include acetylene and ethylene �e.g., Roberts et al. 1996�,
which are typically not of regulatory concern. The form of Eq. �4�

also implies that the dispersion coefficients are equal for all

1590 / JOURNAL OF ENVIRONMENTAL ENGINEERING © ASCE / NOVEMB
solutes; i.e., the solute-specific contribution of molecular
diffusion is much less than the hydrodynamic component of
dispersion.

The solution to Eq. �4� requires two boundary conditions and
an initial condition. For field conditions, the contaminant source
can again be represented by a constant-concentration �first type�
entrance condition

ci�x = 0,t� = c0i

�5�
∀i = 1,2, ¯ ,n

where c0i�concentration of solute i entering the PRB.
For laboratory columns, which are often operated by measur-

ing “steady-state” resident concentrations along the column
length, the mass-conserving third-type condition may be preferred

ci�x = 0,t� = c0i +
D

�

�ci

�x
�x = 0,t�

�6�
∀i = 1,2, ¯ ,n

For the barrier exit, a popular choice is to treat the PRB as a
semi-infinite medium, which leads to the following boundary
condition:

�ci

�x
�x = �,t� = 0

�7�
∀i = 1,2, ¯ ,n

The application of Eq. �7� is appealing because it facilitates the
development of closed form solutions for both transient and
steady-state conditions. However, it incorrectly implies that the
reactive properties of the PRB extend into the adjoining aquifer. A
more plausible condition for advection-dominated transport is the
zero-gradient exit condition, which is given by

�ci

�x
�x = L,t� = 0

�8�
∀i = 1,2, ¯ ,n

where L=thickness of the reactive medium.
In addition to providing a more conceptually appealing

description of the transition occurring at the PRB exit, Eq. �8�
leads to higher predicted effluent concentrations when the con-
stant concentration influent condition is used, and thus provides
more conservative predictions for the purpose of PRB design.

For PRB applications, it is common to assign the initial con-
dition based on the assumption that the contaminant is initially
absent within the barrier

ci�x,t = 0� = 0
�9�

∀i = 1,2, ¯ ,n

Solutions

For design purposes, the consideration of steady-state conditions
is customary and leads to conservative predictions. Closed-form
steady-state solutions to Eq. �1� for several combinations of
boundary conditions are summarized in the Appendix.

Sun et al. �1999� developed a simple transformation procedure

that can be used to extend solutions based on single solute
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transport to the case of multiple solutes subject to sequential first-
order decay. A transformed concentration variable �a� is defined
as

ai = ci + �
j=1

i−1 �	
l=j

i−1 � yl+1kl

kl − ki
�cj


�10�
∀i = 2,3, ¯ ,n

By applying this transformation to Eq. �4�, the governing ADRE
for each transformed variable ai is reduced to the single-solute
form �Eq. �1��. The entrance boundary condition is similarly
transformed as

ai0 = ci0 + �
j=1

i−1 �	
l=j

i−1 � yl+1kl

kl − ki
�cj0


�11�
∀i = 2,3, ¯ ,n

Once the appropriate single-solute solution to Eq. �1� is identified,
a back transformation is performed to develop closed-form
solutions for each solute in the decay chain

ci = ai − �
j=1

i−1

	
l=j

i−1
yl+1kl

kl − ki
cj

�12�
∀i = 2,3, ¯ ,n

The multisolute expansions for a four-solute chain are given in
the Appendix, and the resulting steady-state solutions to Eq. �1�
can be readily implemented in a spreadsheet. For known influent
concentrations and specified constraints on the effluent concentra-
tions, the design equations can be solved iteratively to determine
the minimum required barrier thickness L.

Example

Consider the case of a PRB designed to treat a plume containing
PCE. Within the PRB, the pathway of interest is the sequential
decay of PCE to TCE, cis1,2,dichlorethylene �DCE�, and vinyl
chloride �VC�. The federal drinking water standards for PCE,
TCE, DCE, and VC are 5, 5, 70, and 2 �g/L, respectively. For
this system, the third reaction product �VC� often controls the
system design and a four-solute model is needed. Fig. 1 shows the
simulated effluent concentrations for a typical PRB system based
on the parameters summarized in Table 1, for a variety of bound-
ary conditions.

Although small differences are apparent between the semi-
infinite and finite boundary conditions, the most significant
difference in predicted PRB performance occurs when dispersion
is included in the model. For advection-dominated groundwater
systems, the dispersion coefficient is typically assumed to be
linearly proportional to the velocity, i.e.,

D � �� �13�

where �=D /��dispersivity of the medium �L�.
Field measurements of � for zero-valent iron systems were not

located in the literature. In recognition of the scale dependence of
dispersion processes, dispersivity values are often estimated as a
fraction of the solute travel distance �e.g., Gelhar et al. 1992�. For
the example simulations shown in Fig. 1, � was set at a value

equal to 2% of the domain length �0.02L�, based loosely on the
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Fig. 1. �a� Predicted permeable reactive barrier performance for
parameters listed in Table 1, with dispersion neglected and
semi-infinite exit boundary; �b� predicted permeable reactive barrier
performance for parameters listed in Table 1, with dispersion
included and finite zero-gradient exit boundary; and �c� predicted
permeable reactive barrier performance for parameters listed in
Table 1, with dispersion included and semi-infinite exit boundary
NVIRONMENTAL ENGINEERING © ASCE / NOVEMBER 2005 / 1591



results of column tests conducted over length scales similar to an
installed PRB �Sivavec et al. 1996; Casey et al. 2000; Farrell et al.
2000�.

Comparison of the various solutions indicates that the model
in which dispersion is neglected �Eq. �2�� predicts effluent con-
centrations that are significantly lower than the others. Applica-
tion of the finite exit boundary condition �Eq. �7�� leads to higher
predicted effluent concentrations, but the resulting difference is
small compared to the effect of neglecting dispersion. To further
explore the impact of dispersion, an optimization was performed
to identify the smallest PRB thickness that would produce effluent
concentrations at or below the MCL values for the transport
parameters given in Table 1. The optimization approach may be
expressed as follows:

Minimize

L = barrier thickness

subject to

ci�L� � cei

∀i = 1,2, ¯ ,n �14�

L � Lmin

where cei=design effluent concentration for solute i �e.g., the
drinking water standard� and Lmin=minimum barrier thickness
�provided to facilitate convergence�.

For the reaction parameters given in Table 1, the “baseline” L
value was calculated at 1.05 m for the advection-only model.
For the recommended finite thickness design model �based on
Eq. �7��, the calculated L values were 1.10, 1.23, and 1.98 m for
the � /L ratios of 0.005, 0.02, and 0.1, respectively �other param-
eters retained at Table 1 values�. Application of the semi-infinite
exit condition yielded slightly smaller L values of 1.09, 1.21, and
1.85 m. It is noteworthy that application of the commonly used
“10%” dispersivity relationship �e.g., Aziz et al. 2000� resulted in
a calculated PRB thickness nearly twice that determined by the
model that neglected dispersion. Application of a more realistic
dispersivity ratio of 2% increased the design PRB thickness by
23% over the pure advection scenario.

Estimating the Velocity Term

Although the inclusion of dispersion significantly impacts the pre-
dicted PRB performance, the most sensitive variables, in general,
are the groundwater velocity ��� and the reaction constants. The
velocity within the PRB is often estimated based on the precon-
struction groundwater flow patterns. In some cases, a correction
may be applied to account for the higher porosity within the PRB,
which may be 2–3 times the aquifer porosity. A more rigorous
analysis would utilize a numerical model of groundwater flow to
model the local velocity patterns �e.g., Starr and Cherry 1994;
Gupta and Fox 1999; Das 2002�. This approach is appealing be-
cause it accounts for the tendency of the high-permeability barrier
to preferentially channel groundwater flow, leading to increased
interior velocities. However, implementation of a numerical
model for this purpose can be cumbersome, and the accuracy of
the computed velocities may be subject to significant errors from
numerical discretization.

For aquifers that are characterized by horizontal regional flow,
an appealing alternative is the analytic element method �AEM�,

which can simulate both regional and local hydrologic features
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without discretization artifacts �Strack 1989�. By configuring a
model to appropriately capture the regional flow features that
control local flow patterns, the degree of flow distortion caused
by the placement of a PRB can be easily quantified. Applications
of the AEM are usually limited to steady-state flow in a single
layer aquifer, which is appropriate for the design of systems
that contain fully penetrating barriers. An advantage of the AEM
is its applicability to confined, unconfined, or partially confined
conditions.

Emplacement of a PRB that has a different hydraulic conduc-
tivity from the regional aquifer can be represented using
“inhomogeneity” elements of various geometries. Fitts �1997�
proposed the use of line elements to represent the influence of
emplaced barriers on regional flow field. However, to facilitate
the calculation of the velocity within the PRB, the simple solution
for an elliptical inhomogeneity in uniform flow developed inde-
pendently by Strack �1989� and Obdam and Veling �1987� is a
more appealing choice. The elliptical geometry is a good repre-
sentation of a typical fully penetrating PRB configuration and
avoids the singularities and/or numerical artifacts associated with
modeling barriers using line segments in an analytical or numeri-
cal model. While some distortion of the barrier geometry may
occur at the ends of the ellipse, these areas usually are outside the
reactive zone of interest. Also, when used in a regional model
where the uniform flow assumption is applicable, the elliptical
geometry captures the residence time distribution with good
accuracy, with shorter residence times calculated near the edges
of the PRB. The public domain AEM program Visual Bluebird
�Craig and Matott 2004� supports high-order elliptical elements
�as developed by Surlbhatla et al. 2004� and provides user-
specified velocity transects useful for characterizing the behavior
of barrier systems.

For preliminary design purposes, a simple equation can be
developed using the conceptual model of a single fully penetrat-
ing elliptical hydraulic conductivity inhomogeneity placed in a
uniform regional flow field. For the conceptual model shown in

Table 1. Parameters used in Permeable Reactive Barrier �PRB�
Simulation

Parameter Value

PRB thickness �L� 1.25 m

Groundwater velocity �v� 0.5 m/day

Scaled dispersivity �D /Lv� 0.02

Decay ratesa —

PCE �k1� 3.61 day−1

TCE �k2� 5.73 day−1

cDCE �k3� 2.97 day−1

VC �k4� 3.6101 day−1

Conversion ratioa —

PCE–TCE �y12� 0.40

TCE–DC �y23� 0.02

DC–VC �y34� 0.01

Entrance concentrationa —

PCE �c01� 10,000 �g/L

TCE �c02� 1,000 �g/L

cDCE �c03� 100 �g/L

VC �c04� 10 �g/L
aBased on ETI �2005b�.
Fig. 2, the discharge across the PRB is given by
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Q = �a + b�Q0� ke
2 sin2 	

�bk + ake�2 +
ke

2 cos2 	

�ak + bke�2
1/2

�15�

where Q=flow per unit width inside the PRB �L2/T�;
Q0=regional flow oriented at an angle 	 from the longitudinal
axis of the PRB �L2/T�; a and b=long and short semiaxes of the
elliptical PRB, respectively; and ke and k=hydraulic conductivi-
ties of the elliptical PRB and the aquifer, respectively �L/T�.

The derivation of Eq. �15� is given in the Appendix. Although
the effect of aquifer recharge is not considered, the effects
of recharge are negligible if the regional flow is estimated from
field observations of the piezometric head, which is typically
accomplished using the following approximation:

Q0 �
h2 − h1


x
khave �16�

where h2 and h1=observed piezometric heads at upgradient and
downgradient locations �L�, respectively; 
x=separation distance
in the direction of flow; k=mean aquifer hydraulic conductivity
�L/T�; and have=average saturated thickness.

Eq. �15� can be used to examine the influence of PRB configu-
ration on velocity. The most significant increases in the PRB dis-
charge �relative to the regional flow� occur when the PRB is not
oriented perpendicular to the regional flow and when the aspect
ratio �a /b� is small. However, when the PRB is not perpendicular
to the regional flow, the direction of flow within the PRB and
the resulting distribution of residence times is complex. For the
simpler case of flow perpendicular to the PRB, the velocity
normal to the PRB ��� can be determined from

Q = �a + b�Q
ke �17�

Fig. 2. Schematic of conceptual model for fully penetrating elliptical
permeable reactive barrier placed in homogeneous aquifer with
uniform regional flow
0�bk + ake
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� =
Q

�hPRB
�18�

where �=porosity of the PRB; hPRB=average saturated thickness
within the PRB �L�; and �=fluid velocity appropriate for use in
the ADRE.

Fig. 3 illustrates the effect of the relative hydraulic conductiv-
ity on the PRB discharge for various aspect ratios �a /b�. For low
aspect ratios, as the relative hydraulic conductivity of the PRB
increases, the PRB exerts a “wicking” effect on the groundwater
flow field and the resulting velocity is approximately 20%
higher than the pre-PRB condition. However, as the PRB aspect
ratio increases, the asymptotic velocity approaches the regional
condition.

Conclusions

This paper presents a set of simple closed-form equations suitable
for the preliminary design of iron-based permeable reactive bar-
riers for commonly encountered scenarios �e.g., Eqs. �41�–�44�
combined with Eqs. �16�–�18��. Sensitivity calculations indicate
that some of the assumptions commonly used in PRB analysis—
negligible dispersion, semi-infinite domain, and negligible flow
channeling—can lead to nonconservative designs.

By including dispersion and a finite reactive domain, the
model reflects a more realistic and conservative representation
than the commonly applied “batch” type equations. At the present
stage of development, the approach is applicable only to a single
reaction pathway. The understanding of PRB reaction chemistry
continues to evolve, and the single pathway approximation may
not be applicable to more complex systems containing other
contaminants such as chlorinated ethanes or other zero-valent
metals such as zinc �e.g., Arnold and Roberts 1998, 2000�. If
parallel reactions are included �i.e., multiple parents contributing
to a reaction product�, the common approach of neglecting
dispersion converts the problem into a set of coupled ordinary
differential equations that can be solved numerically using a stan-
dard ODE solver or, in some cases, analytically �e.g., Eykholt

Fig. 3. Ratio of barrier flow rate to regional flow rate for various
permeable reactive barrier geometries, for barrier perpendicular to
regional flow. Contrast in conductivity �ke /k� and barrier aspect ratio
�a /b� control degree of difference between flux within barrier and
regional flow conditions
1999�. However, for the decay of chlorinated ethylene by zero-
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valent iron, the current understanding of reaction pathways
�e.g., ETI 2005b� is consistent with the single pathway approach.

Sample calculations indicate that the predicted PRB perfor-
mance is quite sensitive to the assumed dispersion coefficient.
The potential influence of dispersion is well known in reactor
engineering �e.g., Levenspiel 1999�, but has not been a focus of
PRB-related research, perhaps due to the large safety factors
typically used to account for various parameter uncertainties.
Until actual measurements of dispersion coefficients are avail-
able, one promising approach would be to develop models that
explicitly account for dispersion in a probabilistic framework
such as Monte Carlo analysis �e.g., Vidumsky and Landis 2001�.
However, as the PRB technology matures, a reliable procedure
for estimating the PRB dispersivity could reduce the contribution
of dispersion to prediction uncertainty, potentially leading to
smaller safety factors.

The other contribution of this work is in the use of elliptical
analytic elements to compute the velocity through an idealized
PRB, in a manner that accounts for the potential increase in
flow through the barrier due to its higher hydraulic conductivity.
Future work will examine analytical approaches for analyzing
PRB hydraulics in more complex flow regimes.
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Appendix

Steady-State Solutions to One-Dimensional Multisolute
Advective–Dispersive–Reactive Equation

The application of the transformation developed by Sun et al.
�1999� to the multisolute form of the advective–dispersive–
reactive equation �Eq. �4�� leads to

�ai

�t
= − �

�ai

�x
+ D

�2ai

�x2 − kai

�19�
∀i = 1,2, ¯ ,n

To develop the solute-specific solutions, the entrance boundary
conditions for the reaction products are first transformed using
Eq. �10� as follows: For i=2

a20 = c20 + � y2k1

k1 − k2
�c10 �20�

For i=3

a30 = c30 + �
2

	
2

yi+1kl

kl − k3
cj0 �21�
j=1 l=j
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a30 = c30 + � y2k1

k1 − k3
�� y3k2

k2 − k3
�c10 + � y3k2

k2 − k3
�c20 �22�

For i=4

a40 = c40 + �
j=1

3

	
l=j

3
yl+1kl

kl − k4
cj0 �23�

a40 = c40 + � y2k1

k1 − k4
�� y3k2

k2 − k4
�� y4k3

k3 − k4
�c10

+ � y3k2

k2 − k4
�� y4k3

k3 − k4
�c20 + � y4k3

k3 − k4
�c30 �24�

The solutions for the solute concentration are then developed
using the back transformation given by Eq. �11�. For i=2

c2 = a2 − �
j=1

1

	
l=j

1
yl+1kl

kl − k2
cj �25�

c2 = a2 −
y2k1

k1 − k2
c1 �26�

For i=3

c3 = a3 − �
j=1

2

	
l=j

2
yl+1kl

kl − k3
cj �27�

c3 = a3 − 	
l=1

2
yl+1kl

kl − k3
c1 − 	

l=2

2
yl+1kl

kl − k3
c2 �28�

c3 = a3 − � y2k1

k1 − k3
�� y3k2

k2 − k3
�c1 −

y3k2

k2 − k3
c2 �29�

For i=4

c4 = a4 − �
j=1

3

	
l=j

3
yl+1kl

kl − k4
cj �30�

c4 = a4 − 	
l=1

3
yl+1kl

kl − k4
c1 − 	

l=2

3
yl+1kl

kl − k4
c2 − 	

l=3

3
yl+1kl

kl − k4
c3 �31�

c4 = a4 − � y2k1

k1 − k4
�� y3k2

k2 − k4
�� y4k3

k3 − k4
�c1

− � y3k2

k2 − k4
�� y4k3

k3 − k4
�c2 −

y4k3

k3 − k4
c3 �32�

For PRB design, it is useful to consider the simplified
case where the reaction products are not initially present
�i.e., c20=c40=c30=0�. For this case, the transformed boundary
conditions are

a40 = � y2k1

k1 − k4
�� y3k2

k2 − k4
�� y4k3

k3 − k4
�c10 �33�

a30 = � y2k1

k1 − k3
�� y3k2

k2 − k3
�c10 �34�

a20 = � y2k1 �c10 �35�

k1 − k2
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Steady-State Solutions
The solutions given above are applicable to transient and steady-
state transport, for a variety of boundary conditions. For the
design of barrier systems, several steady-state solutions are
potentially applicable �e.g., van Genuchten 1981�.

For the constant concentration entrance condition �Eq. �5�� and
zero gradient exit condition �Eq. �8�� the steady-state solution to
Eq. �19� is

ai�x� = a0i

exp� �� − ui�x
2D


 + �ui − �

ui + �
�exp� �� + ui�x

2D
−

uiL

D



1 + �ui − �

ui + �
�exp�− uiL

D
� �36�

where

ui = 
�2 + 4kiD �37�

For the constant concentration entrance condition and semi-
infinite exit �Eq. �7��, the solution is

ai = ai0 exp�x
� − 
�2 + 4kiD

2D

 �38�

If dispersion is ignored, the solution for the constant concentra-
tion entrance condition and semi-infinite exit is

ai = ai0 exp�−
kix

�

 �39�

For the third-type entrance boundary condition and the semi-
infinite exit, the solution is

ai = a0i

exp� �� − ui�x
2D


 + �ui − �

ui + �
�exp� �� + ui�x

2D
−

uiL

D



ui + �

2�
−

�ui − ��2

2��ui + ��
exp�− uiL

D
� �40�

Expanded Solution for Permeable Reactive Barrier Design
Solutions for particular applications can be developed by combin-
ing the single-solute solutions given by Eqs. �36�–�40� with the
multisolute expansions given by Eqs. �20�–�35�. The full
expansion is provided here for the recommended PRB design
Eq. �36� and the special case where reaction products are initially
absent Eqs. �33�–�35�. Application to other scenarios is straight-
forward. The resulting equations can be applied to PRB design by
evaluating the concentration at the barrier exit �x=L�.

c1 = c10

exp� �� − u1�x
2D


 + �u1 − �

u1 + �
�exp� �� + u1�x

2D
−

u1L

D



1 + �u1 − �

u1 + �
�exp�− u1L

D
� �41�

c2 =
y2k1

k1 − k2
c10

exp� �� − u2�x
2D


 + �u2 − �

u2 + �
�exp� �� + u2�x

2D
−

u2L

D



1 + �u2 − �

u2 + �
�exp�− u2L

D
�

−
y2k1 c1 �42�
k1 − k2
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c3 = � y2k1

k1 − k3
�� y3k2

k2 − k3
�c10

�

exp� �� − u3�x
2D


 + �u3 − �

u3 + �
�exp� �� + u3�x

2D
−

u3L

D



1 + �u3 − �

u3 + �
�exp�− u3L

D
�

−
y3k2

k2 − k3
c2 − � y2k1

k1 − k3
�� y3k2

k2 − k3
�c1 �43�

c4 = � y2k1

k1 − k4
�� y3k2

k2 − k4
�� y4k3

k3 − k4
�c10

�

exp� �� − u4�x
2D


 + �u4 − �

u4 + �
�exp� �� + u4�x

2D
−

u4L

D



1 + �u4 − �

u4 + �
�exp�− u4L

D
�

− � y2k1

k1 − k4
�� y3k2

k2 − k4
�� y4k3

k3 − k4
�c1

− � y3k2

k2 − k4
�� y4k3

k3 − k4
�c2 − � y4k3

k3 − k4
�c3 �44�

Solution for Groundwater Flow Influenced
by Elliptical Element

The solution for groundwater flow influenced by an elliptical
inhomogeneity may be found in Strack �1989� or Obdam and
Veling �1987�, and is a simple case of the general solution devel-
oped by Suribhatla et al. �2004�. The development is based on the
AEM �Strack 1989� and is applicable to steady-state horizontal
flow in a confined or unconfined aquifer with a uniform isotropic
regional hydraulic conductivity �k� and a single elliptical zone
of a different hydraulic conductivity �ke�. Uniform flow �Q0� is
oriented at an angle 	 to the x axis as shown in Fig. 2. The
long and short semiaxes a ,b of the elliptical inhomogeneity are
oriented along the x and y axes, respectively. There is no recharge
anywhere in the model domain.

The complex potential 
u due to the uniform flow in elliptical
coordinates may be expressed as


u = − Q0d cosh � · e−i	 + �0 �45�

where d=focal distance of the elliptical inhomogeneity; and
�0=potential at the reference location. The transformed spatial
coordinate � is defined in terms of the local elliptical coordinates
�Suribhatla et al. 2004� as

� = � + i� �46�

where �=constant along ellipses with the same foci and
�=constant along hyperbolas orthogonal to those ellipses.

The complex potential due to the elliptical inhomogeneity

itself is
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e =��
n=0

�

�n�en� + e−n�� inside �� � �0�

�
n=1

�

��n − �ne2n�0� · e−n� outside �� � �0� � �47�

The complex coefficients �n=�n
R+ i�n

I can be determined using
the following integrals:

�0 =
ke − k

4k�
�

−�

�

�
�e

��0,��d� �48�

�n
R =

ke − k

2��k cosh�n�0� + ke sinh�n�0���−�

�

�
�e

��0,�� · cos �n��d�

�49�

�n
I =

ke − k

2��k sin�n�0� + ke cosh�n�0���−�

�

�
�e

��0,�� · sin�n��d�

�50�

The quantity �
�e

��0 ,�� in the above equations is the potential

due to all the elements except for the inhomogeneity at the bound-
ary of the elliptical inhomogeneity where �=�0. For the case of
interest, �

�e

��0 ,�� equals the potential due to the uniform regional

flow only. Taking the real part of Eq. �45� and solving for the
coefficients yields

�0 =
ke − k

2k
�0 �51�

�1
R =

�k − ke�Q0d cosh �0 · cos 	

2�k cosh �0 + ke sinh �0�
�52�

�1
I =

− �k − ke�Q0d sinh �0 · sin 	

2�k sinh �0 + ke cosh �0�
�53�

Substituting the coefficients into Eq. �47� and combining the
influence of uniform flow, the complex potential at any point
inside the elliptical inhomogeneity is


 = − dQ0 cosh �e−i	 + �0 + 2�0 + �1�e� + e−�� �54�

It is useful to consider the flow inside the PRB in terms of the
complex discharge function W, which is defined as the derivative
of the complex potential with respect to the complex Cartesian
coordinate z=x+ iy �Strack 1989�

W = −
d


dz
�55�

The discharge function inside the ellipse becomes

W = Q0e−i	 +
1

a sinh �
�
n=1

�

n�n�e−�� − e��� = Q0e−i	 +
− 2

d
��1

R + i�1
I �

= Q0� �ke − k�cosh �0 cos 	

k cosh �0 + ke sinh �0
− i

�ke − k�sinh �0 cos 	

k sinh �0 + ke cosh �0
+ e−i	


�56�

This expression for complex discharge can be simplified using the

following geometric relationships:

1596 / JOURNAL OF ENVIRONMENTAL ENGINEERING © ASCE / NOVEMB
a = d cosh �0 �57a�

b = d sinh �0 �57b�

leading to an expression for the discharge within the ellipse

W =
Q0ke�a + b�cos 	

ak + bke
− i

Q0ke�a + b�sin 	

ake + bk
�58�

The magnitude of flow inside the elliptical inhomogeneity is
given as the absolute value of Eq. �58�

Q = �a + b�Q0� ke
2 sin2 	

�bk + ake�2 +
ke

2 cos2 	

�ak + bke�2
1/2

�59�

When the ratio of the conductivities of the ellipse to the back-
ground �ke /k� goes to infinity �highly conductive barrier�,
the total flow inside the ellipse reaches the value as given by

Q = �a + b�Q0� sin2 	

a2 +
cos2 	

b2 
1/2

�60�

For the case of flow perpendicular to the PRB �	=90° �,
the discharge becomes

Q = �a + b�Q0� ke

bk + ake

 �61�
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