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Construction materials used in building structures, such as masonry, wood, and reinforced concrete, deteriorate over time because of
many factors including poor design, defective materials or manufacture, and poor workmanship. This article is concerned with estimates
of masonry deterioration and the effects of covariates on the damage to bricks on the walls of � ve multiple-story buildings of a residential
complex located in the Bronx, New York. In this case study, the damage of primary interest was a “spall,” a physical separation of a
portion of the brick face from the body of the brick. Eventually, the face becomes so damaged that portions fall off. The result is an
unattractive appearance and a hazard to passersby. In this study, spall damage was assessed by means of three different and independent
condition assessment surveys: an expensive, precise, and hence very limited scaffold drop survey and two additional inexpensive, but
more detailed photographic and visual surveys. The photographic survey was obtained by photographing the walls of the entire residential
complex, and the visual survey was done by individuals walking around the periphery of each building and making a visual assessment
of the damage to each wall. In the photographic survey, a large amount of incomplete data was unavoidable because of either poor
photo angles or various physical obstructions. A binomial regression model using four categorical explanatory variables or factors was
� tted to the observed photographic spall data. Sparseness of the data, the presence of outliers, and overdispersion were major problems
encountered in selecting and � tting a suitable model. A small pilot survey, in which the relevant portions of the photographic and visual
surveys were matched to 11 drop locations of the scaffold survey, recorded spall counts using each survey method. From this pilot
survey, photographic and visual spall data were calibrated to the scaffold drop survey data. It was determined that of the two surveys,
only the photographic spall survey was needed to predict scaffold spalls. The estimate of total damage from the photographic survey was
then adjusted using the calibration results. Finally, a multiple imputation procedure was used to impute values for the missing data and
obtain an estimate (and its standard error) of the true spall rate over the entire residential complex. Sources of uncertainty to fact� nders
in legal trials are discussed and illustrated through the present case.

KEY WORDS: Binomial regression; Calibration; Condition assessment survey; Generalized linear model; Incomplete data; Interaction;
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All in all, it’s just another brick in the wall.
Pink Floyd (1979)

1. INTRODUCTION

An extremely important problem for civil engineers is how
to assess the state of health of constructed facilities, such as
building structures. Guidelines for assessing deterioration or
damage to building structures (i.e., condition assessment) have
been published by the American Concrete Institute (1984) and
the American Society of Civil Engineers (1991). Condition
assessment can be important in litigation; for example, when
settlement amounts depend on the strength of the legal case
and the expected evidence as to the extent of damage. Precise
condition assessments for large, complex building structures
are often too dif� cult to obtain, but they can be estimated by
sampling.
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We focus on a speci� c case study involving deterioration of
the exterior brick masonry walls and parapets of a residential
complex of � ve multiple-story buildings located in the Bronx,
New York. Since 1972, when the buildings were constructed
with walls made of specially designed jumbo-sized bricks, a
number of engineering surveys had studied various types of
brick damage, including cracking, ef� orescence, spalling, and
weathering, throughout the complex. The damage of primary
interest in this particular study is spalling. A spall is a physical
separation of a portion of the brick face from the body of the
brick. Eventually, the face becomes so damaged that portions
fall off. The result is an unattractive appearance and a hazard
to passersby.

In the case that we analyze here, it was agreed that the
prima facie mechanism for the spalling of these bricks was
winter freeze–thaw weather cycles that occur when the ambi-
ent temperature changes from below freezing to above freez-
ing and vice versa. In any given winter (December–March in
New York) about 30–50 freeze–thaw cycles occur. There was
no agreement, however, over why water was present in the
exterior brick surfaces in the � rst place. Some attributed it
to wind-driven rain that entered the surface of bricks through
pores and then subsequently froze; others, to water entering
through cracks in the mortar, leading to interior water retention
due to blocked weep (or drainage) holes and channels clogged
with mortar. The proponents of the wind-driven rain theory
contended that faulty brick manufacture was the primary cause
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of spalling, whereas those favoring the blocked drainage holes
theory argued that factors other than brick manufacture, such
as poor masonry work, poor design, and poor building main-
tenance, were to blame for the spalling.

The owners of the residential complex sued the brick man-
ufacturer for supplying defective bricks. If the brick manu-
facturer were to be found liable at trial for having caused
the damage, then the dollar damages awarded to the building
owner would be based on estimates given at the trial as to the
total extent of spalling throughout the complex.

The analysis that we describe began with data on spalling
from a photographic survey and from a visual survey. This
analysis is similar to that presented at the trial by one of the
authors. However, “an analysis is only as good as the data
on which it rests” (Kaye and Freedman 1994, p. 341). In the
present case, the data on spall counts in specially selected
areas of walls that were originally made on behalf of the build-
ing owners were demonstrated to be grossly unreliable. These
areas were referred to as “scaffold drops,” because they were
examined using scaffolds dropped from the rooftops of build-
ings. Counts had been made from the same areas of walls at
5-year intervals. Examination of the detailed maps of the wall
areas showed that numerous spalls that had been found in an
earlier survey were nowhere to be found in a subsequent sur-
vey. For example, of 101 spalls found in a single survey, only
48 were found in the survey conducted 5 years later on the
same set of scaffold drops. At trial, this unreliability was con-
veyed effectively by comparing the reliability of using a coin
toss to determine whether a spall would be found 5 years later.
The coin toss would have a reliability of 50%, which is higher
than the rate that was actually achieved.

The estimates of total damage made by engineers at the trial
on behalf of the building owners were problematic because of
selection bias. Scaffold drops selected for examination by both
building owners and brick manufacturers were known by both
to have been selected in part on the basis of a high prevalence
of spalls (which were clearly visible from the ground). For
example, in the visual survey conducted on behalf of the brick
manufacturer, the median spalling rate of a set of 18 drops was
found to be 12.1 spalls per 1,000 bricks. (These 18 rates were
determined by counting spalls from photographs taken of just
the portion of the wall on which the scaffold drop had been
hung.) In contrast, the median spalling rate determined from
the photographic survey for all 83 wall segments (see Sec. 2
for de� nitions) was 2.5 spalls per 1,000 bricks. Despite the
obvious unrepresentativeness of the locations of the scaffold
drops in terms of their spalling rates, a spalling rate of 14.2
spalls per 1,000 bricks was calculated on behalf of the build-
ing owners as an average from the 18 drops. This value was
then applied, without adjustment, to the numbers of bricks in
the entire building complex to get an estimated total number
of spalls. The rate of 14.2 should be compared to our much
smaller estimate of 6.44 spalls per 1,000 bricks (see Sec. 6.2)
for the spalling rate in the entire complex.

Standard errors of estimators derived from the random sam-
pling or error structure of models provide useful information
for statisticians and engineers involved in a condition assess-
ment survey, as well as to fact� nders (in the present case, the
jury) for quantifying uncertainty from these sources. But from

the jury’s point of view, the greatest source of uncertainty in
estimates typically lies (as in the present case) in the variation
between estimates provided by the different parties. These dif-
ferences can be traced to differences in the underlying data, in
models, in estimators, in bias sources such as selection or non-
response, or in the larger analytical framework. (See the use-
ful discussion in Kaye and Freedman 1994, pp. 376–377, that
contrasts standard errors and other sources of uncertainty.) In
the present case, the difference (7.76 spalls per 1,000 bricks)
between the estimates made on behalf of the building owner
(14.2 spalls per 1,000 bricks) and the brick manufacturer (6.44
spalls per 1,000 bricks) arose primarily from selection bias.

The question for the jury was which estimator was more
credible. In fact, the outcome of the trial was an eleventh-hour
settlement in the evening before the morning that the jury was
due to deliberate and after all of the testimony about spall
(and other) damage had been heard at trial. The settlement
substituted a compromise amount of damages to be paid by the
brick manufacturer to the building owner, thereby eliminating
the risk to both parties of a large real or opportunity loss.
According to attorneys for the building owners, the statistical
testimony concerning the unreliability of their spall (and other)
counts and the unrepresentative nature of the samples from
which they made estimates of damage without adjustment was
a major factor in their decision to settle rather than let the jury
decide.

In this article we estimate the proportion of the almost
three-quarters of a million bricks in the complex with water
damage severe enough to cause spalling of the brick surface.
Speci� cally, the true spalling rate, ˆ, is the spalling rate that
would be determined by a (prohibitively expensive) 100%
scaffold drop survey of all wall surfaces. In Section 2 we
describe the three surveys. The photographic and visual sur-
veys measure quantities related to ˆ. The photographic survey
measures a “photo survey true spalling rate,” denoted by ˆphoto,
and the visual survey measures a “visual survey true spalling
rate,” denoted by ˆvis. In Section 3 we model the photographic
survey data, imputing extensive amounts of missing data via
a binomial regression model, which leads to an estimate of
ˆphoto. A photographic survey is known to provide only a crude
lower bound to the actual number of spalls, because a photo-
graph cannot pick up spalls that can be determined on a scaf-
fold drop right at the face of the brick. In Section 4 we use
the visual survey data to compute an estimate of ˆvis, and in
Section 5 we use the limited scaffold drop survey data as a
gold standard to calibrate both the photographic survey data
and the visual survey data, leading to an adjusted estimate of
ˆ. In Section 6 we use multiple imputation to obtain a differ-
ent estimate of ˆ and its estimated standard error by taking
into account the sampling variability of the imputed missing
values, and in Section 7 give conclusions and perspectives. A
more detailed version of this article can be obtained by request
from the authors.

2. THE CONDITION ASSESSMENT SURVEYS

We consider estimating the extent of masonry deterioration
in the residential building complex by combining the results
from three independent condition assessment surveys of the
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complex carried out at different times by the brick manufac-
turer. Combining information obtained from several indepen-
dent surveys should lead to better estimates of the parameters
of interest.

The walls of the complex were � rst divided into 83 wall
segments that were de� ned by natural boundaries of varying
size, ranging from roughly 200 to 500 feet wide. Figure 1
shows the � ve buildings and the locations of the 83 wall seg-
ments. Each survey was then carried out on those 83 wall
segments.

The Scaffold Spall Survey. The scaffold survey was
intended to be an independent examination of the � ndings
obtained from previous scaffold surveys carried out by the
owners of the complex. The name comes from the procedure
of lowering individuals in a scaffold from the roof parapet of
the building. These individuals carefully checked every brick
of every row on that part of the building wall bounded by
the scaffold for spalling damage. The two ends of the scaf-
fold determined the boundaries of a 20-foot–wide strip down
the wall; this strip, which we call a “scaffold drop,” was a
small part of the entire wall segment. Although the informa-
tion on examined bricks was very precise, this survey was
expensive and time-consuming, so only 11 drops were exam-
ined. Figure 1 shows the drop locations. These drop loca-
tions were not selected randomly but rather were chosen to
overrepresent surfaces with large numbers of visible spalls.

Figure 1. Building Location Map. The map shows the 5 buildings, the 83 wall segments, and the 11 scaffold drop locations (in circles). North
is indicated by the direction of the arrow. The north and east orientations receive little sun in winter, and interior exposures such as courtyards
provide some shielding from the weather.

Therefore, the average estimated spall rate (per 1,000 bricks)
in the 11 drop locations was considerably higher than that for
the entire complex using data obtained from the photographic
and visual surveys. Variability among examiners on the scaf-
fold was assessed by having different individuals examine the
same wall portions and comparing rates. But we did not model
measurement error of the spall counts from the scaffold sur-
vey. The engineers on the scaffold used a speci� c de� nition
and operational protocol to detect the spalls. We use “scaffold
spalling rate” as a shorthand way to refer to the rate derived
from spalls identi� ed by those engineers.

The Photographic Spall Survey. A census of wall spalls
was conducted by photographing the entire residential com-
plex. This “photographic spall survey” provided large photo-
graphs of all 83 wall segments. The photographic survey
was inexpensive, but many bricks were not observable in the
photographs because of poor photo angles and obstruction of
walls by trees, pipes, vehicles, and other objects.

The Visual Spall Survey. This census was carried out to
quantify the extent of spall damage that could be seen from
the ground. Spall damage was visually assessed at each wall
segment by walking around the periphery of each building.
This survey was performed by three individuals in a single
day and thus was inexpensive. Each individual surveyed a
different portion of the complex. To improve comparability
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between observers, several portions of the walls were surveyed
in a preliminary study by all three individuals and the results
compared. Measurement error of spall determination from the
visual survey was not modeled, however.

It is important to understand that there are really three spall
rates, which measure different quantities: a photographic spall
rate, a visual spall rate, and a scaffold spall rate.

To compare the relative expenses of these surveys,
A.R. Whitlock, Senior Vice-President of KC I Technologies,
Inc., explained that for every $1 in total cost of the visual
survey, the photographic survey cost $10, and the scaffold
survey (if it were carried out throughout the whole complex)
cost $100. All three types of surveys are common in assess-
ing masonry damage, although it is quite rare for all three to
be done on the same project.

3. THE INCOMPLETE PHOTOGRAPHIC
SPALL SURVEY

The photographic survey contained a large amount of miss-
ing data. We can estimate ˆphoto either by ignoring the miss-
ing data or by using imputation methods for missing data that
provide better estimates of ˆphoto than would be obtained by
ignoring the missing data. In this section we discuss estimates
obtained from these two strategies.

The photographic spall survey recorded the number of
spalled bricks out of the number of observed bricks and the
number of unobserved bricks for each of the W D 83 wall seg-
ments. Let nw and n ü

w denote the numbers of photo-observed
and (known) photo-unobserved bricks, at the wth wall seg-
ment, so that the total number of bricks at the wth wall seg-
ment is Nw

D nw
Cn ü

w . Also, let sw and s ü
w denote the numbers

of photo-observed and (unknown) photo-unobserved spalled
bricks at the wth wall segment and let Sw

D sw
C s ü

w. Over the
entire residential complex, the total number of photo-observed
spalled bricks was

Sobs D
WX

wD1

sw
D 669

out of

n D
WX

wD1

nw
D 4291422

photo-observed bricks. The total number of photo-unobserved
bricks was

n ü D
WX

wD1

n ü
w

D 26317561

of which 148,407 (56.3%) were unobservable in the photo-
graphs because of poor photographic angles and 115,349
(43.7%) were unobservable because of obstructions. Thus the
total number of bricks included in the photographic survey
was N D n C n ü D 6931178.

3.1 Preliminary Analysis Based on Oversimpli’ ed
Independence Assumptions

Initial estimates of ˆphoto were derived by discarding those
bricks that were unobserved and analyzing only those that
were observed. Justi� cation for these estimates came from
assuming that bricks spall at random locations throughout the

complex and also a missing completely at random (MCAR)
assumption (Little and Rubin 1987). That is, in thinking of
spall rates as a function of a number of features of the wall
segments, whether or not the spall rates were missing did
not depend on either their values or the features of the wall
segments.

If we regard Sobs as binomial, bin4n1 ˆphoto5, then a “naive”
unbiased estimate is Q̂

naive
D Sobs=n D 669=4291422 D 0001558,

or 1.56 spalls per 1,000 bricks, with an estimated binomial
standard error of .000061, or .061 spalls per 1,000 bricks.
Table 4 records these and subsequent spall rate estimates. If
we use wall segment information, and if ˆphoto

w represents the
probability that a given spalled brick on wall segment w shows
up on the photographic survey, then ˆphoto D N ƒ1èwNwˆphoto

w .
Because sw

C s ü
w is distributed as binomial, bin4Nw1 ˆphoto

w 5,
ˆphoto can be estimated unbiasedly by the strati� ed estimator
Q̂
st

D N ƒ1èwNw
Q̂
w , where Q̂

w
D sw=nw. Cochran (1977, chap. 5)

compared naive and strati� ed estimators. From the photo-
graphic spall survey data, Q̂

st D 81602=6931178 D 0001177, or
1.18 spalls per 1,000 bricks (see Table 4). Because W is large
and we are assuming that the 8sw9 are independent, Q̂

st is
approximately normal with mean ˆphoto and variance

var4 Q̂
st5 D

X

w

Nw

N

2 Nw
ƒ nw

Nw
ƒ 1

ˆphoto
w 41 ƒ ˆphoto

w 5

nw

1 (1)

where N and Nw are as de� ned earlier (see Cochran 1977,
thm. 5.9). Replacing ˆphoto

w by Q̂
w in (1), an estimated standard

error of Q̂
st is given by .000029, or .029 spalls per 1,000 bricks.

The strati� ed estimate is smaller than the naive estimate,
implying that the locations where bricks were missing had
lower rates of spalling than the mean rate in the entire
complex. But spalling may not actually occur at random loca-
tions, but rather may be produced by a spatial clustering pro-
cess along and down the walls. In that case, it is more likely
that the sw

C s ü
w would be distributed as correlated or overdis-

persed binomial. Thus sw would be distributed as binomial,
bin4nw1 ˆphoto

w 5, with overdispersion.

3.2 A Modeling Approach to Imputation of Missing
Data in the Photographic Spall Survey

Clearly, spalling is a more complex process than that
described earlier. The missing data are more likely to be miss-
ing because of their speci� c locations. Given the values of
the four factors that describe wall segments (explained later
in this section), spalling rates for missing bricks are assumed
to be missing at random (MAR) in the sense of Little and
Rubin (1987). That is, whereas the values of missing spalling
rates depend on the four factors, given values of those fac-
tors, it is not the values of the spalling rates themselves that
determine whether or not they are missing.

A weighting adjustment method for analyzing these data
(Oh and Scheuren 1983) would use strata constructed from
the visual survey spall rates, which are available without miss-
ing values for all 83 wall segments. But this method would
require that all wall segments with even a few missing bricks
be eliminated from the analysis.

We preferred instead a modeling approach to imputing miss-
ing data, because, in using all available spalling information,
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we expected it to be more precise. We assumed that the photo-
observed spall counts, 8sw9, as a function of a number of
qualitative factors, followed a possibly overdispersed binomial
distribution, and then used the � tted model to estimate the
expected values of the missing data.

The four qualitative factors were:

¡ Building number (B). This factor had � ve levels corre-
sponding to the � ve buildings. It was known from obser-
vation that buildings 1 and 5 were more heavily spalled
than the other buildings.

¡ Orientation (O). This factor had four levels correspond-
ing to whether the wall segment faced north (1), east (2),
south (3), or west (4). It was known that the north and
east orientations were more heavily spalled.

¡ Exposure (E). This factor had two levels correspond-
ing to whether the wall segment was exterior facing (1)
or interior facing (2). Because of weather conditions, it
was expected that exterior-facing wall segments would be
more heavily spalled.

¡ Level of building (L). The levels were coded in the reverse
order than which � oors of a building are usually given;
that is, starting at the roof parapet (with level D 1) and
ending at the ground (with level D 5, 6, 7, or 8 depending
on the height of the building). Of the 83 wall segments,
1 had 5 levels, 12 had 6 levels, 47 had 7 levels, and 23
had 8 levels. From observation, it was known that the
higher � oors (lower levels) of the wall segments were
more heavily spalled than the lower � oors (higher levels).

Introduction of the factor L, level of the building, required
that we expand the number of units of observation from the
83 wall segments to a total of 415455 C 4125465 C 4475475 C
4235485 D 590 “sites.” We refer to the wth wall segment, ith
building, jth orientation, kth exposure, and lth level as site
4w1 i1 j1 k1 l5, w D 1121 : : : 1W , i D 11 2131415, j D 1121314,
k D 112, l D 1121 : : : 1Lw , where Lw

D 5161 71 or 8 as appro-

Table 1. Numbers and Proportions of Unobserved Bricks by Factor From the Photographic Survey
for the Entire Residential Complex

Building number (B)
1 2 3 4 5

obs 1361639 321612 701619 1161097 731455
unobs 741820 171305 351575 601834 751222
%unobs 3504 3407 3305 3404 51

Orientation (O)
North (1) East (2) South (3) West (4)

obs 1101654 981346 1021288 1181134
unobs 391820 931944 491946 801046
%unobs 2605 4809 3208 40

Exposure (E)
Exterior (1) Interior (2)

obs 2511374 1781048
unobs 1581138 1051618
%unobs 3806 37

Level (L)
1 2 3 4 5 6 7 8

obs 391914 691316 761531 771499 651021 561338 361277 81526
unobs 151942 231269 271427 321537 391033 511972 521033 211543
%unobs 2806 2501 2604 2906 3705 4800 5809 72

NOTE: “obs” means the number of observed bricks; “unobs”, the number of unobserved bricks; and “%unobs”, unobs/(obs C
unobs) � 100.

priate. For example, if nwijkl and n ü
wijkl were the number

of unobstructed and obstructed bricks at site 4w1 i1 j1 k1 l5,
then the total number of bricks at site 4w1 i1 j1 k1 l5 would
be Nwijkl

D nwijkl
C n ü

wijkl. Of the 590 sites, 38 sites were
totally obstructed (nwijkl

D 0) and 21 sites had no obstruc-
tions (n ü

wijkl
D 0). The extent of the missing-value problem is

shown in Table 1, which gives the distributions of
P

nwijkl andP
n ü

wijkl by each of the four factors B1O1 E, and L. Figure 2
displays parallel boxplots of the photo-observed spalling rates
corresponding to each of the four factors considered separately
over the 590 sites.

We performed model � tting on the 552 sites that had at
least one photographically observed brick. Let swijkl be the
photographic spall count (out of the nwijkl unobstructed bricks)
at site 4w1 i1 j1 k1 l5. Assume that swijkl follows a possibly
overdispersed binomial distribution with mean and variance

E4swijkl5 D Œwijkl
D nwijklˆwijkl (2)

and

var4swijkl5 D‘ 2
wijkl4”5nwijklˆwijkl41ƒ ˆwijkl51 (3)

where ˆwijkl4D ˆphoto
wijkl 5 is the probability that a given spalled

brick at site 4w1 i1 j1 k1 l5 shows up on the photographic
survey,

‘ 2
wijkl4”5 D 1C ”4nwijkl

ƒ 15 (4)

yields the extrabinomial component of variation (Moore
1987), and ” ¶ 0 is an unknown overdispersion parame-
ter (Williams 1982, model II). Note that the value of the
overdispersion component (4) depends on the site in question.
The canonical link function is given by

‡wijkl
D logit4ˆwijkl5 D log

ˆwijkl

1ƒ ˆwijkl

1 (5)



Fairley, Izenman, and Crunk: Estimating Masonry Deterioration 493

Figure 2. Parallel Boxplots of the Photo-Observed Spalling Rates at the 590 Sites for Each of the Four Factors (a) Building Number B,
(b) Orientation O of Wall Segment, (c) Exposure E of Wall Segment, and (d) Level L of Wall Segment. For each plot, the horizontal axis is the
spalling rate per 1,000 bricks and the vertical axis represents the levels of each factor. These boxplots con’ rm the expected locations of high
spall counts obtained from visual observations of the buildings prior to carrying out the surveys.

where ‡wijkl is modeled by an appropriate linear model ‡ D
X‚ in the four factors B1 O1 E, and L. In that model, ‡ D
6‡wijkl7 is an n-vector, X is an 4n� p5 design matrix, ‚ is the
p-vector of unknown regression parameters representing main
effects and possible interaction effects, n is the total number
of sites to be used as input (initially 552), and p is the total
number of parameters that de� nes the model.

3.3 Model Selection: Sparseness,
Outliers, and Overdispersion

To account for overdispersion in generalized linear models
(see, e.g., Lambert and Roeder 1995 and references therein),
an overdispersed model is � tted only when all other reasons
for a poor � t have been eliminated. Thus our starting point
in model � tting assumed no overdispersion, so that ” D 0
in (4). Given s D 8swijkl9, we � rst used the S-PLUS (Becker,
Chambers, and Wilks 1988; Chambers and Hastie 1992) glim

function, which uses an iteratively reweighted least squares
( IRLS) algorithm to compute maximum likelihood estimates,
for model selection assuming no overdispersion.

Sparseness in the observed counts proved to be a major
obstacle in modeling the data. Estimated coef� cients that cor-
responded to terms in the regression whose marginal totals
were 0 had unusually large estimated standard errors. Every
wall segment with eight levels had no observed spalls at
level 8, several two-factor interactions also had marginal totals
of 0, and one other two-factor interaction had 0 observed
spalls.

We tried to � t various partial two-factor interaction models
to these data by leaving out certain troublesome interactions
without violating the “hierarchy principle” (Bishop, Fienberg,
and Holland 1975, pp. 34, 67–68). Because our focus was on

predicting spall counts in missing areas of wall segments, and
not to explain spalling causally, we favored models that were
simple and parsimonious over ones that were overly compli-
cated. None of the models that included interaction terms was
found to be appealing in this sense.

This left us with the main effects–only model. To deal
with the sparseness problem, we combined levels 7 and 8
into a new expanded level 7C. The resulting model � t had
a deviance of 1,050.4 on 537 degrees of freedom with no
unusually large estimated standard errors. All main effects
except B5 and L3 were statistically signi� cant. A scatterplot
(not given here) of the photographic spall counts swijkl for the
552 sites against their � tted values OŒwijkl showed most points
congregating near the origin and the remaining points scat-
tered loosely around the 45-degree line. Increasing variability
in the plot suggested the presence of overdispersion or outliers
in the data.

Residual diagnostics (Pearson and absolute deviance resid-
uals plotted against � tted values) from the main effects–only
model � t with levels 7 and 8 renamed 7C showed de� nite
indications of three outliers in the data (sites 2, 97, and 296).
Fitting the model without those three sites yielded a signi� -
cant reduction in the deviance to 704.9 based on 534 degrees
of freedom. Figure 3 shows an index plot (Pregibon 1981) of
the deletion residuals (Lloyd, 1999, p. 202; McCullagh and
Nelder 1989, sec. 12.5; Williams 1987). Although there were
many sites with large reductions in the deviance, the three sites
2, 97, and 296 again clearly stood apart from the rest, with
the largest individual reductions in the deviance. Although the
spall counts at these three sites could not be explained by the
model, it was clear from the results below that these sites had
a negligible effect on the � nal estimate of ˆ.
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Figure 3. Index Plot of the Reduction in Deviance. The procedure is
to delete a site from the data, ’ t the main-effects-only model with levels
7 and 8 combined, obtain the reduction in deviance from deleting that
site, and then plot the reduction in deviance for each of the 552 sites
against their respective site number.

We next used the od.binomial function of Lloyd (1999,
p. 234) to compute estimates of the parameters, their standard
errors, and the overdispersion parameter when overdispersion
was added as a parameter to the main effects–only model of
Section 3.3 with levels 7 and 8 combined. This methodology
is considered both as a method-of-moments procedure and as
a direct generalization of quasi-likelihood (Moore and Tsi-
atis 1991). Table 2 presents the model parameter estimates
before and after the three outlying sites were removed.

Table 2. Parameter Estimates and Standard Errors for the Factor
Components and Overdispersion Parameter (phi) of the Linear

Additive Model From the Photographic Spall Data

All data Three outliers deleted
(n D 552) (sites 2,97,296)

Standard Standard
Parameter Estimate error Estimate error

Intercept ƒ40545 0400 ƒ40718 00344

B 1 0 0
2 ƒ10211 0627 ƒ0930 0499
3 ƒ10167 0499 ƒ10011 0431
4 ƒ20204 0635 ƒ10802 0501
5 0047 0345 0412 0302

O North 0 0
East ƒ0782 0341 ƒ0895 0313
South ƒ20840 0753 ƒ20627 0573
West ƒ20508 0594 ƒ20695 0538

E Exterior 0 0
Interior ƒ0632 0342 ƒ10018 0330

L 1 0 0
2 0977 0386 0893 0316
3 0137 0441 ƒ0268 0388
4 ƒ10231 0668 ƒ10129 0508
5 ƒ20815 10336 ƒ20709 10001
6 ƒ30630 20001 ƒ30507 10486
7+ ƒ20802 10262 ƒ20711 0989

phi 00134 00069

3.4 Single Imputation for Missing Values of
Photographic Spalls

Next, we imputed the obstructed photographic spall counts.
The essential idea of single imputation was to provide a single
reasonable proxy for each missing value, then substitute those
proxies into the incomplete dataset and analyze the resulting
completed dataset using standard statistical procedures. (For
a general discussion of single imputation, see, e.g., Little and
Rubin 1987, sec. 3.4; Rubin 1987, sec. 1.4.) The estimated
spalling rate from both the photo-observed spalls and the
imputed values is

Ôphoto D
bSphoto

N
D

Sobs
C Simp

nC nü
D 937039

6931178
D 0001351 (6)

or 1.35 spalls per 1,000 bricks.

4. THE VISUAL SPALL SURVEY

There were 83 sites for the visual survey, because no infor-
mation about factor L was recorded. The number of bricks
recorded by the visual survey at the wth site was nvis

w , and the
total number of bricks encountered in the visual survey over
the entire residential complex was nvis D P

w nvis
w

D 6941756.
Assuming that bricks spall at random throughout the complex,
a naive but unbiased estimate of the visual survey spall rate,
ˆvis, is given by

Ôvis D svis

nvis
D 11532

6941756
D 0002211 (7)

or 2.21 spalls per 1,000 bricks, with an estimated binomial
standard error of .00006, or .06 spalls per 1,000 bricks; see
Table 4. There is no need to compute a separate strati� ed
estimator as we did in Section 3.1, because without missing
bricks in the visual survey, the strati� ed estimator is identical
to the naive estimator. Although the visual survey estimate of
2.21 visual spalls per 1,000 bricks is higher than the (strati-
� ed) photographic survey estimate of 1.18 photographic spalls
per 1,000 bricks, the difference re� ects the greater ease with
which spalls are visible to the eye of an observer on the ground
than from a photograph. Thus two different spalling rates are
being estimated.

5. CALIBRATING THE ASSESSMENT SURVEYS TO
THE SCAFFOLD SPALLING RATE

We next calibrated the data from the photographic and
visual surveys against the data from the more precise, but quite
limited scaffold survey. The motivation behind this calibration
was to provide an estimate of ˆ that might have been obtained
had the scaffold survey examined each and every brick in the
entire complex. We obtained a calibration sample in which we
matched relevant portions of the photographic and visual sur-
veys to 11 scaffold drop locations. We transformed the scaf-
fold spall counts and the photographic and visual spall counts
into spalling rates by dividing the appropriate spall counts by
the number of bricks examined at that drop location.



Fairley, Izenman, and Crunk: Estimating Masonry Deterioration 495

5.1 Calibration Adjustments of Photographic and
Visual Spall Rates

For this calibration application, suppose that µ1 ¶11

¶21 : : : 1¶s are random variables that all measure the same
quantity, where µ is determined with great precision and is
costly and the ¶j1 j D 1121 : : : 1 s, are less precise but inex-
pensive. Calibration methodology comprises two steps. First, a
“calibration phase” starts with a training sample of q measure-
ments, 4ud1vd51d D 11 21 : : : 1 q, where vd

D 4vd11 : : : 1 vds5,
recorded on variables 4µ1¶11 : : : 1 ¶s5, and the relationship
between µ and the 8¶j9 is estimated from those data. Then
the estimated relationship is used in a “prediction phase” to
determine the values of precise, but costly µ measurements
from a fresh sample of ¶j1 j D 11 21 : : : 1 s, measurements.

The preferred method for the “uncontrolled” or “random”
calibration problem (which is the situation at issue here) is the
inverse calibration method (see, e.g., Brown 1993; Martens
and Naes 1989; Osborne 1991 and the references therein).
The inverse approach obtains an “inverse calibration curve,”
bµ D g4¶11 : : : 1 ¶s5, usually by regressing the µ measurements
on the 8¶j9 measurements.

5.2 Results From the Calibration Sample

In the calibration sample from the residential complex,
spalling rates were recorded at q D 11 scaffold drops; see
Table 3 for data and Figure 1 for drop locations. At each drop
location, µ1¶1, and ¶2 were the spalling rates per 1,000 bricks
from the scaffold, photographic, and visual surveys. At the dth
drop location, a measurement 4ud1 v1d1 v2d5 on 4µ1¶11 ¶25 was
made, d D 1121 : : : 111. Figure 4 displays a scatterplot matrix
of variables. There is reason to believe that the relationship
between µ and ¶ is independent of the building (B), orien-
tation (O), and exposure (E) factors. The imprecision of the
measurements ¶1 and ¶2 is because of the distance between
the observer and the walls. Given ¶1 and ¶2, it was an engi-
neering judgment that none of the B, O, and E factors would
affect µ. Although L might be a factor that would in� uence
the conditional expectation of µ given ¶1, the calibration was
determined using scaffold drops that covered all levels.

Table 3. Calibration Data From the Photographic, Visual, and
Scaffold Surveys

Scaffold Wall Scaffold Photo Visual
drop segment B O E U V1 V2

1 1 1 1 1 40007 15003 24021
2 2 1 1 1 40032 13098 15005
3 6 1 2 1 11048 1081 2042
4 24 1 4 1 6071 0000 0000
5 28 2 3 1 1093 097 3087
6 32 3 1 1 3094 099 2096
7 39 3 3 2 5012 0000 3041
8 60 4 3 2 087 087 0000
9 66 4 4 2 0000 0000 0000

10 68 5 1 1 43042 12002 14003
11 68 5 1 1 22016 7071 19027

NOTE: Observations are spalling rates per 1,000 bricks.

Figure 4. Scatterplot Matrix of Three Pairwise Variables for Calibra-
tion. The observations are spalling rates per 1,000 bricks from the scaf-
fold, photographic, and visual spall surveys.

The calibration results were as follows. The calibration
curve with s D 2 is given by

bµ D¶ ObD Ob0
C Ob1¶1

C Ob2¶2
D30031C30233¶1

ƒ 0350¶21 (8)

the estimated covariance matrix of Ob is given by

dcov4Ob5 D

2
4

20940 0036 ƒ0199
0036 0297 ƒ0190

ƒ0199 ƒ0190 0145

3
5 1

the R2 value is .954, and the residual variance is O‘ 2 D
44016552 D 17035. If we calibrate µ only on ¶1, then the esti-
mated intercept is 2.5501 (with an estimated standard error
of 1.6196), and the estimated regression coef� cient of ¶1 is
2.7726 (.2145). The R2 value is .949, and the residual vari-
ance is 4401352 D 17006. If we calibrate µ only on ¶2, then the
estimated intercept is 2.644 (3.7563), the estimated regression
coef� cient of ¶2 is 1.724 (.3302), the corresponding R2 value
is .752, and the residual variance is 4901252 D 83017.

We chose the � nal calibration model based on the fol-
lowing considerations. First, the squared correlation coef� -
cient between ¶1 and ¶2 was .918; second, using a sequential
analysis of variance table (Weisberg 1985, p. 51), the par-
tial F statistic for testing the coef� cient of ¶2 after � tting the
highly signi� cant ¶1 was not signi� cant (F D 085 with 1 and
8 degrees of freedom), whereas both predictors were highly
signi� cant when entered in the reverse order; and third (and
most important), the residual variance actually increased when
going from the model with ¶1 as the only predictor to the
model with both ¶1 and ¶2 as predictors. We thus chose to
proceed by calibrating µ for the entire complex only on ¶1.

5.3 A Calibrated Estimate of the
Scaffold Spalling Rate

The scaffold spalling rate per 1,000 bricks at site
4w1 i1 j1 k1 l5 is estimated by calibration as

uwijkl
D Ob0 C Ob1

110004swijkl
C Os ü

wijkl5

nwijkl
C n ü

wijkl

1 (9)
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whence the estimated number of scaffold spalls at that site is

Swijkl
D 4nwijkl

C n ü
wijkl5 � uwijkl

11000
0 (10)

Thus, the estimated total number of scaffold spalls over the
entire complex is given by

Scal D
X

w1 i1 j1 k1 l

Swijkl
D Ob0

N

1000
C Ob1

bSphoto0 (11)

From (6), it follows that a calibrated estimate of ˆ is

Ô
cal D Scal

N
D

Ob0

11000
C Ob1

Ôphoto0 (12)

From Section 5.2 and the � nal model � t of Section 3, we have
that Scal D 41366067 spalls. Dividing by N D 6931178 yields
Ô
cal

D 000630, or 6.30 spalls per 1,000 bricks; see Table 4.
The scaffold spall rate was regarded as the quantity of most

interest in the litigation process and, hence this estimate of
6.30 spalls per 1,000 bricks was a possible culmination of the
surveys. The rate of spalls that are actually visible to the eye
also was of some interest, re� ecting an aesthetic problem.

The standard error of Ô
cal, which may be obtained as the

usual standard error of a prediction from a linear model esti-
mator, was estimated to be cs0e04 Ô

cal5 D 000146, or 1.46 spalls
per 1,000 bricks. We ignored the fact that the independent
regressor had been estimated by a binomial regression in
Section 3; in Section 6.2 we give for reasons why this cannot
be very important. Thus the estimated standard error of Ô

cal

is somewhat smaller than it would have been if we had taken
into account missing value estimation.

5.4 Relationship of the Calibration Estimator to the
Regression Estimator

Under the MAR condition for monotone missing data,
which we believe holds here, the maximum likelihood esti-
mate, bSY , of the mean scaffold spall rate over the entire
complex is simply the classical regression estimator, bSY D
Ny C b4SX ƒ Nx5, where SX is the estimate of the mean photo-
graphic spalling rate for the entire complex, Nx and Ny are the
sample mean photographic spalling rates and sample mean
scaffold spalling rates at the 11 drop locations, and b is the
slope of the regression of Y on X (see Little and Rubin 1987,

Table 4. Estimated Spalling Rates per 1,000 Bricks

Spalling rate parameter

Survey and method ˆphoto ˆvis ˆ

Photographic survey
Naive 1056 (006)
Strati’ ed 1018 (003)
Single imputation 1035 (ƒ)

Visual survey
Naive-strati’ ed 2021 (006)

Photographic and scaffold surveys
Single imputation and calibration 6030 (1046)
Multiple imputation and calibration 6044 (1046)

eq. 6.9). Approaching calibration directly from sampling the-
ory, Cochran (1977, pp. 189–190) noted that the regression
estimator was the appropriate tool to use when trying to
adjust the sample mean of more costly measurements (see also
Särndal, Swensson, and Wretman 1992, chap. 6). That the cal-
ibrated estimator (12) is a type of regression estimator used
in survey sampling contexts can be seen by noting that (12)
is a spalling rate per brick, so that multiplying (12) by 1,000,
setting SX D 11000 Ôphoto, and using the fact that Ob0

D Ny ƒ Ob Nx,
where b D Ob1, we have that (12) reduces to the classical
regression estimator. From a survey sampling perspective, the
regression estimator is known to be an ef� cient tool for using
auxilliary information related to the variable in question. For
example, Fairley, Izenman, and Bagchi (1990, sec. 2.2) used
regression in a two-phase (or double) sampling scheme as
a calibration between federal government estimates of error
rates in the administration of welfare caseloads (the presumed
gold standard measure) and state government estimates of the
same error rates (the presumed inexpensive measurement).

Although the calibration equation is a type of regression
estimate, the sample of 11 drops was not chosen randomly
from the population of all drops in the complex. As a result,
the usual � nite-sampling basis for inference (e.g., Särndal
et al. 1992, chap. 6) is not appropriate for this situation. But
use of the regression estimator can be viewed within the usual
model-based framework for regression analysis. That is, the
sample calibration of the scaffold spalling rate against the
photographic spalling rate should be judged by its goodness of
� t to the speci� cation of the linear model in question and by
the appropriateness of the assumptions of independence and
common variance of the error terms in the equation. Because
these assumptions appear satisfactory for the sample data,
the regression equation may be applied to the prediction of
scaffold spalling rates from new values of the photographic
spalling rates; that is, to the prediction of scaffold spalling
rates for the 83 wall segments. Moreover, for prediction pur-
poses, it is important that the regression equation be deter-
mined for values of the independent variable that span the
range of values from which predictions are made. This con-
dition is met in the present case, as the photographic spalling
rates at the 11 scaffold drops span a range from near 0 to val-
ues higher than those from any of the 83 wall segments.

6. MULTIPLE IMPUTATION FOR MISSING VALUES
OF PHOTOGRAPHIC SPALLS

The single imputations reported in Section 3.4 did not pro-
vide any indication of the sampling variability incurred by
imputing the missing values. In this section we develop a dif-
ferent estimate of ˆ with its associated standard error using
Rubin’s method of multiple imputation (Rubin 1987, 1996). In
this application we are not interested in estimating the param-
eters (and their standard errors) of the regression model in the
face of missing data. Rather, because our primary interest is in
estimating ˆ and its standard error, we constructed and � tted
the model solely for the purpose of imputation.
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6.1 Multiple Datasets of Photographic Spalls
Through Imputation

We obtained M imputed datasets of photographic spall
counts as follows. In Section 3.2 we developed a binomial
regression model for the proportion of spalls at a given site,
which depended on some properties of the site including build-
ing number, orientation, exposure, and level. Using a Bayesian
setting, based on a vague and uninformative multivariate prior
distribution on the p-vector ‚ in Section 3.2, the posterior dis-
tribution of the parameter vector ‚ was multivariate normal
with mean vector equal to the parameter estimates O‚ and a
covariance matrix C given by the covariance matrix of O‚ (Box
and Tiao 1973, p. 48).

We randomly generated a p-dimensional vector of logit-
model regression coef� cients (a ‚-vector) from this posterior
distribution. To do this, we � rst used a Cholesky decomposi-
tion to compute C1=2, the matrix square root of the covariance
matrix C, and then drew p independent ® 401 15 random vari-
ates to form a vector z. The random drawing of a ‚-vector
from the posterior distribution was given by O‚C 6C1=27’z (see,
e.g., Selvin 1998, pp. 190–192). We used the randomly drawn
‚-vector to create a vector of predicted spalling rates Q̂

wijkl at
each of the 590 sites in the usual way from the � tted model.
We then used the 8 Ô

wijkl9 together with the (known) num-
bers 8n ü

wijkl9 of photo-unobserved bricks to simulate a vector
6Qs ü

wijkl7, say, from the binomial distribution that represented
spall counts for the photo-unobserved bricks. Note that the dis-
tribution of these simulated spall counts followed an overdis-
persed binomial distribution, because our posterior distribution
of coef� cients included an overdispersion parameter. Adding
these (simulated) imputed spalls from the photo-unobserved
bricks at each site to the photo-observed spalls at each site,
we obtained a vector of estimated total photographic spalls,
Qt D 6swijkl

C Qs ü
wijkl7 D 6eSwijkl7, say.

Repeating this procedure M times yielded M imputed
datasets, 8Qtm1 m D 1121 : : : 1M9, of total (observed C
imputed) photo spall counts at each of the 590 sites. Accord-
ing to Rubin, M D 5 would be large enough to allow us to
continue with this multiple imputation procedure. From each
of the M imputed datasets, we formed eS D P

w1 i1 j1 k1 l
eSwijkl , a

quantity similar to bSphoto in Section 3.4. Call them 8eSm1m D
11 21 : : : 1 M9. Next, we computed M versions of Ôphoto in (6),
say 8 Q̂

m1m D 1121 : : : 1 M9, where Q̂
m

D eSm=N . The multiple
imputation estimate of the spall rate ˆ was then the average
of the values Q̂

m over all M imputations,

Ô
mi

D 1
M

MX

mD1

Q̂
m

D
bSmi

N
1 (13)

where

bSmi D 1
M

MX

mD1

eSm (14)

was the multiple imputation estimate of the total spall count.
The standard error of Ô

mi was then estimated in the usual way
(Little and Rubin 1987, sec. 12.4; Schafer 1997, sec. 4.3) by

cs0e0 Ô
mi

D VW
C 1 C 1

M
VB

1=2

1 (15)

where VW is the within-imputation variance and VB is the
between-imputation variance.

6.2 Parameter Estimate and Standard Error of
Multiply Imputed Calibrated Scaffold
Spalling Rate

We obtained a multiply imputed version of Ô by feed-
ing each imputed dataset through the calibration adjustment
derived in Section 5. The subscript “cal” indicates that the
results refer to the calibrated estimates. From (14), bScal1mi D
44610522, where, from (13), Ô

cal1 mi D 000644, or a scaffold
spalling rate of 6.44 per 1,000 bricks. Furthermore, VW

D
201234 � 10ƒ6, whereas VB

D 104188 � 10ƒ8. These results
indicated that the variability of the estimate had very little to
do with the missing data, and was due almost entirely to the
uncertainty in the calibration. This was not unexpected given
that the calibration estimates were formed based on only 11
points. Thus from (15), the estimated standard error of Ô

cal1 mi

was .00146, or 1.46 per 1,000 bricks. These results are sum-
marized in Table 4.

The estimates of each of the true values of the photographic
spalling rate, visual spalling rate, and scaffold spalling rate
had small standard errors compared to the differences between
them; see Table 4. The differences between estimated spalling
rates were principally due to differences in the quantities esti-
mated. Thus Table 4 should not be read as pointing up big
differences in estimated spalling rates.

Multiple imputation gave an estimated scaffold spalling rate
that was quite close to the estimate from single imputation
given in Section 3.4. Estimates of the scaffold spalling rate
made from different calibrations (i.e., calibrated photographic
survey, calibrated visual survey, and jointly calibrated photo-
graphic and visual survey) were also similar. In the end, after
considering the photographic, visual, and scaffold surveys, we
found that all three can be reconciled through calibration. Thus
good agreement was obtained on an estimate of the quantity
that was of principal interest to the parties to the dispute—
namely, the scaffold spalling rate.

7. CONCLUSIONS AND DISCUSSION

As far as we are aware, no method presented in this arti-
cle has previously been applied to estimate total damage in
building structures. Some statistical work addressed to (actual
or potential) damage assessment questions has appeared. For
example, reliability analysis has been used to study the dete-
rioration over time of reinforced concrete structures (Crowder
1991), and time series analysis has been used to study vibra-
tions of high-rise buildings caused by nuclear blasts, chemi-
cal explosions, or earthquakes (Kircher 1977). But very little
has appeared on statistical techniques for assessing the total
amount of damage, deterioration, or defects in existing build-
ing structures at a single point in time. We emphasize that the
analysis presented here should not be considered as a typical
example of actual practice, but rather as a possible model of
how statistical analysis should be practiced. The data from the
three surveys discussed in this article will be made publicly
available via STATL IB.

This case study demonstrates how statistical methods can
make important contributions to assessment surveys, and thus
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how statisticians and engineers have an opportunity for use-
ful collaboration in designing and analyzing such surveys.
First, there currently are no rigorous guidelines for sam-
pling in assessment surveys to investigate masonry deteri-
oration. Although the American Society of Civil Engineers
and the American Concrete Institute have published guide-
lines on assessment surveys, there is no comparable guidance
about sampling. This is not an unusual situation according
to Dr. H. W. H. West of British Ceramic Research Ltd.
and Honorary Secretary of the British Masonry Society, who
explained the typical course of such assessment surveys in the
United Kingdom:
The very detailed surveys such as were done [in this case] with full photo-
graphic recording are rare in U.K. It is usual for the various experts to inspect
the site and report on the whole from a detailed examination of (probably the
worst!) parts in order to assess the cause of damage, apportion responsibility
and seek to minimize their client’s own liability (West 1991).

In large structures, designed sampling can save costs and
increase precision. For example, in the present case, walls
might have been strati� ed by the visible spalling rate, each
wall divided into squares, and then certain of those squares
selected at random to be surveyed in detail. If so, the total cost
would have been lower and/or the precision of the estimated
total damage greater.

Second, without sampling guidance, assessment surveys
are almost always “convenience” or “judgment” surveys of
masonry units (such as bricks) rather than true random sam-
ples. These assessment surveys generally do not rise above
the level of casual observation, and may embody very large
biases. In the present case, the scaffold drops were carried
out at unrepresentative locations. Estimates of total damage
could not be made without substantial selection bias. Hahn
and Meeker (1993, sec. 9) noted that “studies have shown
that what might be called “judgment” can lead, even uninten-
tionally, to seriously biased samples and, therefore, invalid or
misleading results.” In Section 1 we reported that the selec-
tion bias in using only the original scaffold surveys to estimate
total damage was more than 100% of the new estimate based
on calibration; see Section 5.

Third, the use of calibration allowed us to make statistically
valid estimates of the quantities of most economic interest—
the actual spalling rate ˆ and actual total number of spalls
S—at a tiny fraction of the (prohibitive) cost of a complete
census of the complex using only scaffold drops. With careful
statistical design at the outset of an assessment survey and
the use of calibration, the overall cost could be reduced to
below that of the surveys reported here, or the precision of the
estimate of total damage could be increased.

Fourth, note that in the context of combining informa-
tion, the scaffold survey had a serious weakness in selec-
tion bias, whereas the photographic and visual surveys had
a serious weakness in measurement bias. Through calibra-
tion, the strengths of the surveys were combined in such a
way that neutralized their respective weaknesses. On the one
hand, the photographic and visual surveys were censuses, and
thus selection bias was not an issue, because no selection was
made; on the other hand, the scaffold survey was the de� nitive
measurement standard for the presence of spalling.

Fifth, a binomial regression model for the number of spalls
in the 590 different wall segment–level units of the complex

circumvented the important fact that spalls were unobservable
in a good fraction of the bricks in the photographic survey.
We used the model to estimate the numbers of spalls in the
missing areas, which let us use the photographic survey to
estimate total spalls in the entire complex.

Sixth, deriving an explicit model for the data made it pos-
sible for us in the present analysis to estimate standard errors
for the calibration estimate of total damage; see Table 4. These
standard errors inform survey users that the uncertainty in the
estimate is tolerable even though the calibration used only
11 scaffold drops. In this case the sampling uncertainty—
including that introduced by missing values—turned out to be
tolerably small, whereas the selection bias was large and not
tolerable.

The problem studied here is not unusual. To give one
recent example, the brick facade of the 22-story tower
of the 25-year-old James A. Byrne Federal Courthouse in
Philadelphia’s Independence Mall had been falling onto the
surrounding sidewalks over a period of 4 years (Slobodzian
1998). A government investigation revealed that the problem
was caused by a combination of bad design and poor construc-
tion. Replacement of the entire brick facade cost the govern-
ment $25 million, because the legal time limit for � ling suit
against the builder had passed.

In conclusion, statistical methods can make an important
and useful contribution to the design and analysis of condition
assessment surveys of buildings and other structures. Costs can
be minimized, and reasonable estimates of the extent of dam-
age can be made. We strongly recommend the use of statistical
design and analysis in any large assessment survey whenever
an estimate of total damage is required.

[Received May 2000. Revised October 2000.]
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