Highways platooning using a flatbed tow truck model

Alan ALI
Gaëtan GARCIA
Philippe MARTINET

Ecole centrale de Nantes
IRCCYN
I. INTRODUCTION
- Context
- Why platooning
- Longitudinal control policies.

II. MODELING:
- Longitudinal model
- Platoon model

III. CONTROL
- Control objectives.
- Longitudinal control

IV. STABILITY AND SAFETY
- Stability
- Robustness to actuation and sensing lag
- Discussion

V. SIMULATION
- Stability
- Comparison with CTH
- Robustness

VI. CONCLUSION AND PERSPECTIVES
I. INTRODUCTION

Context:
- Highways platoons,
- Longitudinal dynamics,
- Taking into account a simplified engine model,
- Using the modified CTH control law [1],
- The flatbed tow model is proposed,
- Stability and safety conditions is found,
- Simulation using TORCS,
- A platoon of 10 vehicles with $L = 1$ m,

Scenarios:
- platoon creation
- changing the speed
- emergency stop
I. INTRODUCTION

- Why platooning:
 - Increases traffic density.
 - Increases safety:
 - Collision (Small relative velocity).
 - No human factor.
 - Reaction time is small.
 - decreases fuel consumption.
 - decreases driver tiredness
I. INTRODUCTION

• Global Control and Local Control:
 ○ Data (at least from leader, adjacent vehicles)
 ○ Sophisticated sensors (needed, Not needed).
 ○ Adaptation in the environment (Maybe, Not needed)
 ○ Communication system (need very reliable, not needed)
 ○ Trajectory tracking and inter distance keeping (accurate, Not very accurate)
 ○ *The car is totally autonomous* (No, Yes).
I. INTRODUCTION

- Variable inter-vehicle distances (according to vehicle’s dynamic):
 - Distances are proportional to velocity in Constant Time Headway (CTH).
 - Low traffic density.
 - Stable without communication.
 - The cars can work autonomously.

\[\Delta X = L + h v_i \]

- Constants inter-vehicle distances:
 - High traffic density.
 - The communication between vehicles is mandatory.

\[\Delta X = L \]
II. MODELING (LONGITUDINAL MODEL)

- Newton’s law,
- The model of the engine,
- Applying the exact linearization system,
- linear system can be obtained:

\[\ddot{x} = W \]
II. MODELING (PLATOON MODEL)

- Unidirectional spring – damper model,
- With a virtual truck running at a speed V,
- Classical CTH
- Modified CTH

Equivalent to flatbed tow truck model [3]:

[Diagram of platoon modeling with labeled elements representing force and velocity relationships]
III. CONTROL

- Control Objectives.
 - Keep a desired distance between the vehicles.
 - Make the vehicles move at the same speed.
 - Ensure vehicles and platoon stability.
 - Ensure vehicles and platoon safety.
 - Increase traffic density.
 - Ensure the stability and safety even in case of:
 - Entire communication loss between vehicles.
 - Existence of actuating and sensing lags.
III. CONTROL (Modified CTH)

- Modified CTH Control law:

\[W_i = -k_a \ddot{x}_i + k_v \dot{e}_i + k_p e_i - k_p h (v_i - V) \]

- Spacing is proportional to the difference between the velocity of the vehicle and a shared velocity

- Classical CTH

\[\Delta X_i = L + h v_i \]

- Modified CTH

\[\Delta X_i = L + h (v_i - V) \]
IV. STABILITY AND SAFETY

- String stability definition.
 - The error must not increase when it propagate through the platoon.
 - Spacing error propagation function:
 \[G_i(s) = \frac{e_i(s)}{e_{i-1}(s)} \]

- A sufficient condition for the stability of the platoon is:
 \[\| G_i(\omega) \|_{\infty} \leq 1 \quad \forall \omega \quad \text{and} \quad g_i(t) > 0 \quad i = 1, 2, \ldots, N \]

- \(g_i(t) \) is the impulse response of the propagation of spacing error.
IV. STABILITY AND SAFETY

- Spacing error propagation function:
 \[G_i(s) = \frac{e_i(s)}{e_{i-1}(s)} \]

\[
G_i(s) = \frac{k_v s + k_p}{s^3 + k_a s^2 + (k_v + h k_p) s + k_p}
\]

- Stability conditions:
 \[
 \begin{cases}
 k_a^2 - 2k_v - 2k_p \geq 0 \\
 k_p h^2 + 2k_v k_p h - 2k_a k_p \geq 0
 \end{cases}
\]

 or

 \[
 \begin{cases}
 h k_a \geq 2 \\
 k_a^2 \geq 2k_v \\
 2k_v \geq k_a^2 - \xi
 \end{cases}
\]

 or

 \[
 \begin{cases}
 h k_a \geq 2 \\
 k_a^2 \leq 2k_v \\
 2k_v \leq k_a^2 + \xi
 \end{cases}
\]
IV. STABILITY AND SAFETY

- First spacing error propagation function:

\[G_1(p) = \frac{e_1(p)}{a_{\text{leader}}(p)} = \frac{p + k_a}{p^3 + k_a p^2 + (k_v + h) k_p p + k_p} \]

\[\|e_1\| \leq \left\| \frac{e_1}{a} \right\| \max(|a_{\text{max}}|, |a_{\text{min}}|) \]

- The following condition will ensure the safety for all accelerations:

\[\|e_1\| \leq \left\| \frac{e_1}{a} \right\| \max(|a_{\text{max}}|, |a_{\text{min}}|) \leq l \]

- Safety conditions:

\[\begin{cases} k_p \geq \frac{|a_{\text{min}}|}{l} k_a \\ k_a^4 + 8 k_p k_a + 4 \frac{a_{\text{min}}^2}{l^2} \leq 4 (k_v + k_p h) k_a^2 \end{cases} \]

or

\[\begin{cases} k_p \geq \frac{|a_{\text{min}}|}{l} k_a \\ k_a^2 \geq 2 (k_v + k_p h) \\ (k_v + k_p h)^2 \geq 2 k_p k_a + \frac{a_{\text{min}}^2}{l^2} \end{cases} \]
V. SIMULATIONS

- 10 identical cars,
- Move on straight track,
- Comparison with the classical CTH,
- Check longitudinal string stability during:
 - stage A: Platoon Creation (zero to 40km/h),
 - stage B: Changing the speed (40km/h to 140km/h)
 - stage C: Emergency stop (Hard Braking)
- Check safety
 - stage C: Emergency stop at high speed (140km/h) by applying maximum allowed deceleration.
V. SIMULATIONS

- Maximum acceleration and deceleration $\pm 5 \text{ m/s}^2$
 - exceeds the comfort acceleration,
 - exceeds the ability of many vehicles,
V. SIMULATIONS

- Comparison with the classical CTH
 - Classical CTH
 - Modified CTH
V. SIMULATIONS

- Stage A: Platoon Creation (zero to 40km/h),
V. SIMULATIONS

- stage B: Changing the speed (40km/h to 140km/h)
 - The platoon is stable,
V. SIMULATIONS

- stage C: Emergency stop (Hard Braking)
 - The platoon is stable,
 - Safe
VI. CONCLUSION and PERSPECTIVES

- The control of highways platoons is addressed,
- Longitudinal control:
 - Using modified CTH control law,
 - Taking into account a simplified engine model.
 - The flatbed tow model is proposed,
- We have enhanced the work presented in [1], [2]:
 - Reducing the desired inter-vehicle distance to 1 m,
 - keeping the string stability,
 - Ensuring the safety.
- Simulations were done in following scenarios:
 - platoon creation
 - changing the speed
 - emergency stop
- This work opens the door to move CTH policy from research to real applications.
VI. CONCLUSION and PERSPECTIVES

- Studding safety in more critical scenarios:
 - Leader hard braking:
 - With full communication,
 - Without communication,
 - Follower hard braking:
 - With full communication,
 - Without communication,
- Communication delays and lags effects,
- Real experiments.
References

