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Abstract. Cortical surface reconstruction is important for functional brain map-
ping and morphometric analysis of the brain cortex. Several methods have been 
developed for the faithful reconstruction of surface models which describe the 
true cortical surface in both geometry and topology. However there has been no 
explicit method for the quantitative evaluation of the whole-cortical-surface 
models. In this study, we present a novel phantom-based evaluation method of 
the cortical surface reconstruction algorithm and quantitatively validated the lo-
cal morphometric accuracy of CLASP which is one of the well-established re-
construction methods. The evaluation included local geometrical accuracy and 
performance of cortical thickness measure. The validation study revealed that 
there were some underestimations of cortical thickness measure using CLASP 
in the ventral and sulcal areas of the cortex and overestimations in the gyral ar-
eas and inferior temporal lobe. This study could present a generic metric for the 
quantitative evaluation of cortical surface reconstruction algorithm. 

1   Introduction 

The relationship between the cortical morphometry and the cytoarchitectonic and 
functional organization of the underlying cortex is a subject of much current interest 
and debate. Reconstructed cortices enable the visualization and the study of the sulcal 
and gyral patterns of an individual subject [1] and allow morphometric measurements 
such as cortical thickness [2]. To fulfill these needs, it is important to faithfully repre-
sent true cortical surface in terms of geometry. This task is difficult, because of arti-
facts such as image noise, partial volume effects, and intensity inhomogeneities [2]. 
Especially in tightly folded sulci, the exact boundaries of the cortex are hard to detect, 
because opposing sulcal banks are closer than the magnetic resonance imaging (MRI) 
resolution. This causes inaccuracies in surface extraction and subsequent morphomet-
ric measures such as cortical thickness. 

For the evaluation of the cortical surface reconstruction, there have been various 
methods such as a visual validation [3], a repeatability test of the procedure [4], and a 
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landmark-based validation [5]. In visual validation, the intersections of the recon-
structed surface with the underlying MRI intensity data are inspected. Although this is 
very intuitive and easy to perform, it cannot assess the whole cortical surface in objec-
tive and quantitative way. In repeatability test, it could answer whether the procedure 
results in similar reconstructed surface models from different scans of the same sub-
ject. However, the accuracies of reconstructions could not be measured. In the land-
mark-based validation, experts select several landmark points or draw some landmark 
areas on the MR brain volume image. Then the closest point from each landmark to 
the corresponding surface is found and the distance between them computed. This 
distance from each landmark to the estimated cortical surface serves as a measure of 
accuracy. This is a quantitative validation approach. However, when experts select or 
draw the landmarks, some biases could be induced. In addition, it is difficult to vali-
date the whole boundaries of cerebral cortex with this approach. 

In this study, we present a novel method for the quantitative evaluation of the cor-
tical surface reconstruction algorithm using an MRI simulator generating a realistic 
MRI incorporating the calculation of noise and partial volume effects. The evaluation 
strategy provides “gold standard” with which to access the performance of cortical 
surface reconstruction algorithms In previous studies, we developed a method called 
CLASP [3], an enhanced version of the iterative-morphing method first developed by 
MacDonald et al. and validated this method using a phantom-based approach. In this 
paper, we validated CLASP with phantom-based approach focused on the local geo-
metric accuracy and the performance of cortical thickness measure. 

2   Methods 

In this phantom-based evaluation, an MRI simulator [6, 7] was used to create a “gold 
standard” with which to access the performance of cortical surface reconstruction 
algorithms directly. The accuracies of cortical geometries and thickness measures 
were evaluated using phantom-based comparison detailed below. T1-weighted MR 
images (n=12) with 1.0 mm × 1.0 mm × 1.0 mm resolution and 181 × 217 × 181 
voxel dimensions were selected randomly from the datasets of the International Con-
sortium for Brain Mapping (ICBM) [8] for this evaluation. 

2.1   Cortical Surface Reconstruction and Thickness Measure 

In each brain, the white (i.e. GM/WM boundary) and pial (i.e. GM/CSF boundary) 
surface was extracted by CLASP [3]. The CLASP algorithm consists of several stages 
as follows:  

Acquired T1 MR images are preprocessed by intensity inhomogeneity correcti on 
[9] and spatial normalization to stereotaxic space [10]. Preprocessed images are clas-
sified into GM, WM, and CSF tissues [11]. The classified volumes are divided into 
left and right hemispheres for reconstructing two hemispheric cortical surfaces. The 
WM surface is reconstructed by deforming a spherical polygon model to the white 
matter boundary. A Laplacian field is generated between the WM surface resampled  
 



 A Novel Quantitative Validation of the Cortical Surface Reconstruction Algorithm 185 

to voxel space and a skeletonized CSF fraction image. The GM surface is initiated 
from the WM surface and is expanded to the boundary between GM and CSF along 
the Laplacian field. These stages are described in greater detail in the original paper 
[3]. In order to measure the cortical thickness, several preprocessing algorithms were 
required.  

 

Fig. 1. Three metrics for cortical thickness measure: Tlink is the distance between correspond-
ing points. Tnear is the distance from a vertex on the outer surface to the nearest point on the 
inner surface. Tnormal is the distance from a vertex on the outer surface to the nearest point on 
the inner surface in the direction of the surface normal. The dot lines represent improper esti-
mations of thicknesses. 

Given a surface representing the gray/CSF boundary and another representing the 
gray/white boundary, the cortical thickness measure could be performed [2]. Among 
various metrics for thickness measure, Tlink was used for the evaluation of thickness 
measure, which means the distance from a vertex on the outer surface to the corre-
sponding vertex on the inner surface, as defined by the linkages used in the two-
surface deformation of the CLASP algorithm (Fig. 1).The Tlink measure attempts to 
use the correspondence between points on the surface, which provides a measure of 
thickness that is less sensitive to fluctuations in surface normal and areas of high 
curvature. White and pial surfaces reconstructed by CLASP had the same vertex 
number, and the correspondence of each vertex between surfaces was defined. Thus, 
the cortical thickness was easily measured using the Tlink method [2]. Tnear is an-
other approach for thickness measure which indicates the distance from a vertex on 
the outer surface to the nearest point on the inner surface (Fig. 1). We used Tnear 
metric for the measure of geometric differences between two surfaces, because it 
provides robust performance without the explicit correspondence of each vertex be-
tween two surfaces. 

2.2   Phantom-Based Evaluation 

We evaluated the cortical surface reconstruction method using a phantom-based pro-
cedure. Since there is no readily-available “gold standard” with which to assess the 
performance of the surface extraction algorithm, we approached the problem with an 
MRI simulator [6, 7]. This simulator generates a realistic MRI incorporating the cal-
culation of noise and partial volume effects. For the validation, the following steps 
were performed:  
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1) pial and white surfaces were first extracted from the real MRI volume (Fig. 2 (a)). 
2) A digital phantom including four tissue types (GM, WM, CSF, and background) was 
created from the surfaces. WM voxels were defined inside the white surface, and GM 
voxels were inserted between the pial and white surfaces. To create partial volume ef-
fects, voxels on the pial surface were given probabilities of 70% for GM and 30% for 
CSF. Voxels between the exterior brain mask and the pial surface were labeled as CSF. 
All other voxels were labeled as background (Fig. 2 (b)). 3) A T1 MR image was simu-
lated from the phantom using the same parameters as the real data acquisition 
(TR=18ms, TE=10ms, slice thickness=1mm) (Fig. 2 (c)). 4) Additional substructures 
(skull, basal ganglia) were added from the real MRI (Fig. 2 (d)). 5) Pial and white sur-
faces were then extracted from the simulated MRI volume (Fig. 2 (e)). 6) Differences 
between each surface obtained from real or simulated MRI were measured. 

In this process, the surface extracted from the real data is regarded, by definition, 
as “true”. The experiment was designed to assess how well the surface extraction 
algorithm could re-capture the true surface by operating upon a simulated MRI vol-
ume derived from the true surface. CLASP was applied to the simulated MRI to gen-
erate a “test” surface. The root mean square (RMS) error between “true” and “test” 
surfaces then provided a measure of accuracy in surface extraction. To measure RMS 
error between the “true” and “test” surfaces, we calculated the distances using Tnear 
metric which are detailed in the previous section [2]. To validate thickness measure, 
we calculated the differences between “true” thicknesses and “test” thicknesses meas-
ured by Tlink. The validation of geometric accuracy and thickenss measure were 
performed on regional areas as well as on whole brain. To measure the local errors, 
we used non-rigid registration of 2-D cortical surfaces which is to find the corre-
sponding regions of the surface model between subjects. This 2-D registration method 
is described in detail in next section. 

 

Fig. 2. Process of the evaluation using phantom (a) created cortical surface (b) surface masked 
volume (c) digital brain phantom (d) phantom including skull (e) recreated cortical surface 
from phantom 

2.3   Statistical Analysis 

To find the thickness of corresponding regions of the surface model between the groups, 
the thickness value was spatially normalized using surface based 2-D registration [12]. 
In the CLASP algorithm, since the cortical surfaces start from a spherical polygon 
model, the vertices are easily transformed to the spherical model. Vertices of each sub-
ject are nonlinearly registered to an average template on the sphere by matching crowns 
of gyri between subjects using a geodesic distance map [12]. Using the transformation, 
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thickness information and local geometric errors on the vertices were transformed to a 
template. Diffusion smoothing, which generalizes Gaussian kernel smoothing, with 20 
mm FWHM (full-width half-maximum) was used to increase the signal-to-noise ratio of 
the measured cortical thickness and local geometric accuracy [13]. We then calculated 
mean difference between and error rate which is a difference value normalized by a 
thickness of “true” surface. 

3   Results 

The global geometric errors of the extracted cortical surfaces were measured by calcu-
lating the mean RMS distance between “true” and “test” surfaces. Fig. 3 shows mean 
RMS errors. The mean RMS errors was measured by Tnear (0.42 ± 0.096 mm) and 
Tnormal (2.73 ± 0.94 mm) respectively (Fig. 3). The local geometric errors were 
measured after finding correspondence between subjects. Fig. 4 shows maps of local 
geometric accuracies which were measured by RMS distance. RMS distance was 
measured by Tnear.  Incorrect estimations were found in the ventral and sulcul areas 
of the cortex. 
Cortical thicknesses using Tlink were measured and evaluated. Global/local mean 
differences between cortical thicknesses were measured from “true” and “test” sur-
faces respectively. Global mean difference of cortical thicknesses were measured on 
the left hemisphere (-0.061±0.24 mm), the right hemisphere (-0.080±0.20 mm), and 
the whole brain (-0.07±0.22 mm). Validation of local mean difference of the thickness 
revealed some errors in the specific areas (Fig. 5). There were some overestimations 
of cortical thickness measure from the “test” surface (i.e. the surface reconstructed 
from MRI phantom) in the ventral area and sulcus of the cortex. Underestimations 
were also found in the gyrus, occipital lobe, and inferior parts of temporal lobe. We 
measured also error rate of the cortical thickness. These values are normalized mean 
differences by the thicknesses of “true” surface. The overestimations of the cortical 
thicknesses were up to about 10% in the cingulated gyrus and some sulcal parts of the 
cortex. The underestimations of the cortical thicknesses were up to about 15% in the 
gyrus, occipital lobe, and inferior parts of temporal lobe. 

 

 

Fig. 3. Geometric errors of cortical surfaces. It was measured by calculating RMS distance 
between surfaces of “gold standard” and surfaces made from MR phantom images. Each col-
umn shows average RMS errors of cortical surfaces (pial/white surfaces of left/right hemi-
spheres) created from CLASP.  
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Fig. 4. Local geometric accuracies which mean the RMS distances between “true” and “test” 
surfaces. RMS distance was measured by Tnear.  Incorrect estimations were found in the ven-
tral and sulcul areas of the cortex. 

 

Fig. 5. (a) mean difference and (b) error rate between cortical thicknesses measured from “true” 
and “test” surfaces respectively. Error rate is normalized mean difference by the thicknesses of 
“true” surface. There were some overestimations of cortical thickness measure from the “test” 
surface (i.e. the surface reconstructed from MRI phantom) in the ventral area and sulcus of the 
cortex. The overestimations of the cortical thicknesses were up to about 10% in the cingulated 
gyrus and some sulcal parts of the cortex. Underestimations were also found in the gyrus,  
occipital lobe, and inferior parts of temporal lobe. The underestimations of the cortical thick-
nesses were up to about 15% in the gyrus, occipital lobe, and inferior parts of temporal lobe. 

4   Discussion and Conclusions 

Given the variety of cortical surface reconstruction methods, choosing an appropriate 
algorithm for an existing or a new problem can be quite a challenging task. Therefore, 
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an objective validation is necessary to provide the intrinsic characteristics of the 
methods, evaluate their performances and limitations. Moreover, while developing a 
new method, validation is essential in order to compare new and existing methods and 
estimate of the optimal processing parameters. However, since MR imaging, like 
many other medical modalities, is an in vivo study, validation becomes even more 
challenging and its issues are often overlooked. In this study, we conducted a quanti-
tative validation of the performance of the cortical surface reconstruction tool using 
an MRI simulator. The evaluation strategy presented in this paper using MR phantom 
provides “gold standard” with which to access the performance of cortical surface 
reconstruction algorithms. We performed simulation study in which “true” surfaces, 
initially extracted from real MR images, were used to generate simulated MRI vol-
umes which were then analyzed by the cortical surface reconstruction tool to re-
capture the original surfaces. The ability of an algorithm to re-capture this “true” 
surface from the simulated MRI volume, which now includes many confounding data 
acquisition factors (noise, loss of contrast, partial volume effects, inhomogeneity, 
etc.), could now be quantified. Although a simulator does not incorporate every aspect 
of real data, this strategy provides quantitative lower-bound performance metrics with 
which to assess algorithm performance. 

In general, the pre-processing steps such as intensity inhomogeneity correction, 
skull stripping, and tissue classification are essential to the cortical surface reconstruc-
tion. However, we were mainly interested in the performance of the final surface 
reconstruction step out of whole reconstruction procedure including pre-processing. 
Therefore, the evaluation was performed using the whole procedure. 

Despite of many advantages, a limitation to this phantom-based approach is that 
the MR phantom generated from any particular algorithm could be biased toward that 
method. This bias would underestimate the errors measured from the phantom-based 
validation. In order to overcome this limitation, it is possible that we could use an-
other algorithm to reconstruct the phantom surfaces and cross-validate between vari-
ous algorithms. The evaluation strategy presented in this paper using MR phantom 
provides “gold standard” with which to access the performance of cortical surface 
reconstruction algorithm and enables the evaluation of the specific performance 
which is dependent on applications such as thickness measure, surface area, fractal 
dimension and sulcal depth. 
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