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ABSTRACT

A single square centimetre of the human skin can
contain up to one billion microorganisms. These
diverse communities of bacteria, fungi, mites and
viruses can provide protection against disease, but
can also exacerbate skin lesions, promote disease and
delay wound healing. This review addresses the
current knowledge surrounding the healthy skin
microbiome and examines how different alterations
to the skin microbial communities can contribute
to disease. Current methodologies are considered,
changes in microbial diversity and colonisation by
specific microorganisms are discussed in the context
of atopic dermatitis, psoriasis, acne vulgaris and
chronic wounds. The recent impact of modern West-
ernised lifestyles on the human skin microbiome
is also examined, as well as the potential benefits
and pitfalls of novel therapeutic strategies. Further
analysis of the human skin microbiome, and its inter-
actions with the host immune system and other com-
mensal microorganisms, will undoubtedly elucidate
molecular mechanisms for disease and reveal gate-
ways for novel therapeutic treatment strategies.
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INTRODUCTION: THE HUMAN MICROBIOME

Although the human genome is over three billion base pairs
in length, it contains only about 20 000 genes, leaving

numerous biological processes to the microorganisms that
live on and within the human body (the microbiome).1 An
average healthy human body possesses 1014 microorgan-
isms – 10-fold the number of human cells.2 These bacterial,
viral, fungal and eukaryotic microorganisms are absolutely
essential to everyday life, assisting in digestion, nutrient
absorption and immune development.3,4 In contrast, a per-
turbation of these complex microbial communities can have
deleterious effects. Although in-depth analyses of the
human microbiome have just begun, the gut microbiome is
by far the most extensively studied. The human gut contains
nearly 10 trillion bacterial cells and over 2000 different
species.5 Diet, environment and genetic predisposition can
also drastically impact on species composition, and
perturbations to these microbial communities have been
linked to inflammatory bowel disease, colorectal cancer and
Clostridium difficile infections, as well as systemic disorders
that include anxiety, depression, obesity, diabetes and
autism.6–8

The bacterial communities in other parts of the body are
quite distinct from those in the gut, and differ significantly
depending on body site differences and are influenced by
pH, temperature and oxygen content.9 Despite the fact that
the skin environment would appear to be inhospitable to
microbial growth (being cool and acidic, and constantly
shedding), approximately one billion bacteria have been
identified inhabiting a typical square centimetre of the skin,
covering the surface and extending subcutaneously.10 These
diverse microbial communities create specific ecological
niches and can aid in disease prevention or contribute to
disease. For example, some bacterial species limit the
growth of others by hydrolysing sebum lipids into toxic
fatty acids, while opportunistic skin infections (such as
Staphylococcus aureus) are more prominent and becom-
ing increasing difficult to control.11,12 Similarly, large-sale
alterations of skin microbial communities have been linked
to several non-infectious diseases, such as atopic der-
matitis (AD), psoriasis, rosacea and acne.10 Altered bacte-
rial community structure, in combination with epithelialCorrespondence: Professor Alan Cooper, Department of Derma-
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dysfunction, immune dysregulation or the overgrowth of
pathogenic microbes, is a major cause of modern skin
pathologies.13

This review examines what is currently known about
diverse skin microbial communities and how they contrib-
ute to health and disease. After a brief overview of meth-
odological practices, the current knowledge about ‘healthy’
skin microorganisms and the associations between the skin
microbiome and several diseases are explored, specifically
in the context of large-sale changes in bacterial diversity
and colonisation by unique species. In addition, we discuss
the impacts of a modern Westernised lifestyle on dermato-
logical disease, as well as the potential to use these research
findings to develop novel therapeutic strategies. Further
analysis of the human skin microbiome and its associations
with disease, through interactions with the host and other
microorganisms, will undoubtedly reveal novel gateways
for medical therapies, treatment strategies and prevention
measures.

MODERN TECHNIQUES FOR SKIN
MICROBIAL ANALYSIS

The human microbiome project (HMP), a US National Insti-
tutes of Health initiative launched in 2008, has helped to
characterise the skin microbiome of healthy volunteers
and discern how it varies across different spatial niches,
individuals and time.4,9 To understand and monitor these
diverse bacterial communities on and within the skin,
several working groups in the HMP developed extensive
methodologies to examine the skin microbiome in recent
years. Prior to DNA sequencing, the experimental design
should consider which methods are best suited to the aims
of the project and the ability to produce data that is compa-
rable to previously published studies and databases. Several
additional procedural practices must also be considered
before the study begins, including avoiding contamination
by environmental DNA, storage in warm conditions, and the
exposure of the samples to researchers and clinicians. Pre-
cautions must be taken to ensure a sterile technique is
utilised, and that bacterial DNA sequences (not only live
bacterial organisms) are not introduced into the sample
from sampling equipment, lab reagents, clinicians and
so on.

To obtain samples, microorganisms from the skin can be
collected by swabbing, scraping or collecting biopsies using
sterile techniques. While swabs or scrapings are simple and
can be done quickly on large populations, only biopsies can
collect the subcutaneous organisms, even though only
modest differences have been detected between the differ-
ent collection methodologies.14 While it has been shown
that a skin swab left exposed at room temperature for 2
weeks showed little difference in bacterial community to
that of a sample from the same individual stored at −20°C,
cold storage is a standard practice and all studies should
comply with it to limit further microbial growth and long-
term DNA degradation.15 Freezing at −20°C, −80°C or in
liquid nitrogen are the most common methods, although
fixing, drying or enzyme inhibition can also be an effective

means of limiting DNA degradation or exogenous microbial
growth.16 If sterile sample collection is combined with effec-
tive storage conditions, an accurate representation of the
skin microbiome should be maintained prior to DNA extrac-
tion and analysis.

Once the samples are obtained and properly stored,
DNA extractions can then be performed. Several different
methods have been developed for the extraction of skin
microbiome samples, including the REPLI-g Midi kit
(Qiagen, Limberg, The Netherlands), Qiagen DNA
Extraction Kit (Qiagen), and DNeasy DNA Extraction kit
(Qiagen).17–19 In an effort to obtain the most accurate repre-
sentation of the microbial diversity, studies have also
explored different kit and non-kit based extraction methods.
For example, Yuan and colleagues suggest that methods
including steps to effectively disrupt bacterial cell walls
(e.g. bead beating or enzymatic lysis) will provide the most
accurate diversity profile.20 For biopsy samples that can
contain significant levels of host skin cells and DNA,
methods have been developed to limit the quantity of host
DNA recovered by maximising the amount of microbial
DNA available for sequencing.21

After DNA extraction, the specific target species or classes
of microorganisms need to be identified to determine the
most appropriate sequencing strategy. For example, bacte-
rial communities are assessed by amplifying a variable
region of the conserved 16S ribosomal RNA gene, while
fungal species can be targeted by applying 18S ribosomal
RNA gene or the internal transcribed spacer. Targeted
sequencing approaches do not require any culturing
methods and hundreds of samples can be analysed on a
single sequencing run, providing an efficient and cost-
effective means to examining microbial communities.22–24

Alternatively, shotgun sequencing can be performed, which
will identify a subset of random DNA sequences from the
sample, although the sequencing costs and bioinformatic
processing time are significantly increased.25,26 In either
approach, sequencing technologies must also be taken
into account. While Roche 454 or Illumina MiSeqs can
provide adequate sequencing coverage or depth for tar-
geted amplicon sequencing, deeper coverage attainable
through Illumina HiSeq or Pacific Biosciences technologies
may be required for shotgun sequencing.27,28 After sequenc-
ing, modelling the diversity of bacterial sequences at a
range of given sequencing depths can provide further
information to determine if an adequate depth has been
achieved.

Regardless of the sampling methods used or sequencing
approaches taken, the single most time-consuming and
essential portion of accurate microbiome analysis is done
after the DNA sequencing occurs, during the bioinformatic
processing. Quite often, large-scale computing clusters and
specific bioinformatic pipelines must be established to
understand and analyse these diverse bacterial communi-
ties from the millions of sequencing reads, evoking unfore-
seen experimental costs and hurdles. A few recently
developed pipeline programs, such as QIIME, mothur, and
MetaPhlAn, have been created to ease the burden of analy-
sis, whereas considerably more visualisation packages,
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such as MEGAN, Krona, MGAviewer, and MetaSee, aid in
data imagining and interpretation.29–35 Many of these pro-
grams focus on identifying bacterial species or groups
(operational taxonomic units), making estimates of total
species diversity within a sample (alpha diversity), and
comparing differences between samples (beta diversity).
For many specific and novel questions, the analysis
may require additional bioinformatic scripts or the devel-
opment of new analysing software or pipelines. Both pipe-
line analysis and ad hoc scripting can produce very different
results, and the findings and conclusions of metagenomic
data can be vastly different, simply because of the analysis
that was applied to the data. This has encouraged the stand-
ardisation of analysis protocols and increased the need for
computer programmers with biological knowledge or back-
grounds.36 Nevertheless, bioinformatics tools must adapt
and change as new methods and sequencing technologies
are developed, larger quantities of data are produced, and
novel scientific questions are raised.

THE HEALTHY HUMAN SKIN MICROBIOME

After the development of a suitable tool to analyse the
microbial diversity present on the human skin, Grice and
colleagues characterised the topographical and temporal
diversity of a healthy, adult skin microbiome from 20 differ-
ent skin sites.37 In all, 19 bacterial phyla were detected, but
most sequences were assigned to four phyla: Actino-
bacteria (52%), Firmicutes (24%), Proteobacteria (17%),
and Bacteroidetes (7%). Within these phyla, they found that
Propionibacterium and Staphylococci species dominated
sebaceous areas (glabella, alar crease, external auditory
canal, occiput, manubrium and back). In moist sites,
Corynebacteria species predominated (nare, axillary vault,
antecubital fossa, interdigital web space, inguinal crease,
gluteal crease, popliteal fossa, plantar heel and umbilicus),
although Staphylococci species were also identified ‘in these
regions. In dry sites, such as the volar forearm, hypothenar
palm and buttock, a mixed population of bacteria resided.
Additional studies demonstrated that physiologically com-
parable sites often harbour similar bacterial communities;
for example, the moist axillae and the popliteal fossae have
similar microbial compositions.9 Microbes were also robust
to body site, as microbes transplanted from one habitat to
another, such as from the tongue to the forehead, were not
able to consistently colonise new sites or alter existing com-
munities at a specific site.9

Since then, further studies have gone on to characterise
the development and change of the human skin micro-
biome over time. Although foetal skin is sterile in utero, skin
colonisation begins during the birthing process.38 Vaginal
microorganisms, dominated by Lactobacillus, Prevotella or
Sneathia species, coat the skin of naturally delivered new-
borns immediately following birth, whereas the skin
microbiomes of newborns delivered by caesarean section
resemble that of adult skin, which includes various
Staphylococcus, Corynebacterium, and Propionibacterium
species.39 Regardless of delivery method, the newborn skin
microbiome is remarkably less complex and diverse than

the adult skin microbiome, which suggests that the
newborn skin microbiome is more susceptible to sweeping
change and alterations. As infants come into contact with
various environmental microbiota and as different areas of
their skin develop distinct moisture, temperature and glan-
dular characteristics, distinct skin microbial communities
arise, becoming increasingly diverse over time.37 These
microbial niches and their inhabitants continue to trans-
form over time with puberty, aging and environmental
exposure.13,40 Even sporting events can homogenise
microbiomes from multiple groups of people over time.41

ASSOCIATIONS BETWEEN THE SKIN
MICROBIOME AND DISEASE

Atopic dermatitis

Classic AD occurs more commonly in skin sites that
harbour similar microorganisms, such as the antecubital
fossa and the popliteal fossa, rather than other body sites.9

Kong and colleagues found that more than 90% of AD
patients are colonised with S. aureus on both lesional and
non-lesional skin, compared with less than 5% of healthy
individuals.42 At the site of the lesion, there is a correlation
between S. aureus abundance and disease severity, suggest-
ing that an overabundance of cutaneous S. aureus and,
therefore, an associated loss of microbiome diversity, are
intimately linked to the pathogenesis of AD.42 Other studies
have also identified increases in fungal diversity and unique
anaerobic bacterial species associated with AD, including
Clostridium and Serratia species.43 These studies could
explain the effectiveness of common treatments for AD,
such as topical or systemic antibiotics, and dilute bleach
baths, which function to reduce the microbial load. In addi-
tion, the gut microbiomes of children suffering with AD
were identified to be more diverse and resembled adult
gut microbiomes, including a threefold decrease in
Bacteriodetes and colonisation of Clostridium clusters IV
and XIVa.44 Increased diversity and bacterial load in the gut
can have a significant impact on immune sensitivity, reac-
tivity and tolerance, possibly further contributing to exac-
erbations of AD. Associations between AD and the human
microbiome are likely to be linked to an increased micro-
bial load at the lesion site, as well as altered immune reac-
tivity on a systemic scale.

Psoriasis

Although psoriasis is commonly regarded as genetic in
origin, microorganisms have been implicated in the patho-
genesis of psoriasis since the 1950s. In 1955 a strong clinical
association was reported between streptococcal beta-
haemolytic group A throat infections and guttate psoriasis,
and further evidence suggested that chronic plaque psoria-
sis is related to oral streptococcal infections.45 However,
anti-streptococcal treatments or the removal of infected
oral streptococcal tissue were not successful in the treat-
ment of psoriasis, leaving the link between microbes and
psoriasis unknown.46 Recently, Fahlén and colleagues
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investigated the relationships between local bacterial
species and psoriasis by comparing the skin microbiota of
10 patients with psoriasis to 12 healthy individuals.47 In
patients with psoriasis, Proteobacteria were present at sig-
nificantly higher levels on the trunk, and higher levels of
Streptococcus and Propionibacterium were identified in
lesions than in healthy skin. Overall, bacterial diversity was
decreased in psoriasis patients, although the difference was
not significant. A further study identified two different
microbial community assemblages associated with psoria-
sis; the skin from these patients was either dominated by
Proteobacteria or Actinobacteria or Firmicutes.48 This study
was able to distinguish psoriasis patients from healthy indi-
viduals simply by the microbial diversity present on the
skin, and also noted that psoriatic lesions contained less
diversity than healthy skin. Although no specific aetiological
microbial agent has been identified, these results demon-
strate that the microbial skin habitat of psoriatic skin is less
diverse, even though the fungal and viral diversity in these
patients has not yet been investigated. This is in direct
contrast to AD, where an increased load of microbial diver-
sity may contributes to disease symptoms and progression.
Although the mechanisms underlying these altered com-
munities remain unknown it has been hypothesised that the
combination of genetic or specific inflammatory responses
elicited from unique bacterial subsets probably plays a key
role in this disease.

Acne vulgaris

The aetiology and pathogenesis of acne vulgaris, an inflam-
matory condition of the pilosebaceous unit, remains
unclear; however, the involvement of microbes is thought
to be one of the main mechanisms contributing to its devel-
opment. Propionibacterium acnes has long been implicated
as an important pathogenic factor in acne, through the
secretion of lipases, proteases and hyaluronidases that
injure the tissue lining of the pilosebaceous unit and acti-
vate classical and alternative complement pathways,
pro-inflammatory cytokines and neutrophil chemotactic
factors.49 However, as noted previously, Propionibacterium
has also been identified as a dominant commensal skin
microorganism.9 To investigate the differences between
commensal and pathogenic P. acnes strains, Fitz-Gibbon
and colleagues recently examined P. acnes from both
acne patients and healthy controls by sampling the
pilosebaceous units on the nose.50 Although the relative
abundance of P. acnes did not change between the groups
and the authors did not investigate inflamed follicles, the
strains of P. acnes on patients suffering from acne were
distinct from those on healthy individuals. Six different
strains were dominant in the acne group, whereas only one
unique strain was strongly associated with healthy skin.51

This study also identified antibiotic resistance genes in
disease-associated strains, highlighting the importance of
treatment strategies other than antibiotics. In a different
study, 16S ribosomal RNA sequencing studies have noted
that the follicles afflicted with acne are colonised by mul-
tiple bacterial species in addition to P. acnes, including

other commensal microorganisms, such as Streptococcus
epidermidis, while healthy individuals are colonised by
P. acnes alone.52 These studies show how commensal
microorganisms have the potential to be pathogenic, either
through genomic evolution or through interactions with
other local microbial species. In addition, these studies also
highlight the potential to mitigate dermatological disease
by implementing novel therapeutic solutions, such as bac-
terial competition or ecological exclusion.

Chronic wounds

Chronic wounds, that is, wounds that persist for longer
than 3 months, occur most commonly in diabetic, elderly
and immunocompromised individuals. While a bacterial
infection may not have caused the initial wound, microor-
ganisms can contribute to the lack of healing and persistent
inflammation that is associated with these lesions.49

Several studies have examined microbial communities
associated with chronic wounds from venous leg and dia-
betic ulcers.53–55 In addition to decreased bacterial diversity,
several different anaerobic bacteria, including Staphylococ-
cus, Serratia and Clostridium species, were all identified in
chronic wounds, indicating that a drastic micro-environ-
mental change allows for the opportunistic colonisation of
specifically adapted microbes. In addition, a diverse mix of
fungi, protozoa and viruses were also identified in chronic
wounds, suggesting that these communities are more
complex than initially identified.55 Although bacterial
wound communities were responsive to antibiotic treat-
ment, the fungal and viral diversity suggests that multiple
treatment strategies should be applied for successful treat-
ment.53 Given the significant morbidity and economic
burden caused by slow-healing wounds, a individualised
approach to dealing with chronic wounds, such as by exam-
ining the microbes present in a specific wound, could
provide the best individualised treatment possible, resulting
in a better way forward for healing management and
patient prognosis.56

FUTURE RESEARCH AVENUES

Each of these dermatological diseases has an identified
microbial component, although how alterations to the
microbiome cause or exacerbate these diseases remains
largely unknown. In contrast, the recent increased preva-
lence of each of these diseases has been closely tracked and
recorded. The prevalence of AD in industrialised countries
has increased over the past 30 years, now affecting up to
20% of children in industrialised countries.57 The incidence
of acne is up to 80% in most Westernised countries, even
though it remains surprisingly rare in communities with
hunter–gather diets.58,59 Furthermore, the incidence of dia-
betes, a major contributor to chronic wounds, has more
than doubled in the last 10 years in the USA.60 The recorded
increase of each of these diseases suggests that a common
element may underlie each of these epidemiological
observations.
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Several recent studies have suggested that the human
microbiome has been concurrently affected in recent
history as we have changed our diet, hygiene and
medical practices. For example, a large-scale ancient DNA
study revealed dramatic shifts in the human oral
microbiome over time, when farming was introduced in
ancient Europe and during the Industrial Revolution, sug-
gesting that dietary, environmental and cultural changes
have significantly impacted on the microbial communities
that inhabit the human body.61 More recently, several
studies have examined different microbiomes in modern
rural hunter–gatherer communities and compared them
with those from the USA or Europe.62,63 Modern hunter–
gatherers have distinctly different microbiomes and
contain numerous beneficial species that are now absent
from industrialised countries.62,64 Furthermore, the rela-
tively modern use of antibiotics has also been shown to
significantly and permanently affect the murine and
human gut microbiomes.65 Taken together, these studies
suggest that the modern microbiome is significantly dif-
ferent from what it was a century ago. Similarly, it is likely
that the modern skin microbiome has also undergone sig-
nificant changes in recent history. We can speculate that
relatively recent shifts in diet, hygiene and medicine have
affected the diversity and colonisation of specific, and
potentially protective, microbial species on the human
skin. Further alterations in gut microbial communities,
which can have significant impacts on immune develop-
ment and inflammatory responses to microbes elsewhere
in the body, may have also had an impact on skin diseases.
Further research should aim to understand how these
recent changes within the human microbiome affect
immune priming and tolerance, and how these changes
impact on the environmental triggers of specific genetic
skin diseases.

Moving forward, these investigations into the human skin
microbiome and its association with disease can also be
utilised and focused to develop novel treatment strategies.
The use of prebiotics and probiotics on the skin is an area of
research with great promise, as several interspecies
competition mechanisms have already been explored.
For example, P. acnes has been utilised to outcompete
methicillin-resistant S. aureus using fermentation, and S.
epidermidis has been shown to limit growth of Micrococcus,
Corynebacterium, and Streptococcus species in vitro.66,67 The
transplantation of ‘protective’ microbes can provide valu-
able antimicrobial therapy, if the correct conditions, such as
pH, moisture and nutrients that support transplantation can
also be co-administered.13 In addition, therapies to augment
the increased growth of commensal microorganisms or
maintain the limited growth of potential pathogens would
also be beneficial. Metagenomic analyses of skin microbial
communities can also aid in understanding the mecha-
nisms behind effective treatments, such as by monitoring
skin microbial communities before and after topical steroi-
dal treatments. In any case, the introduction of microorgan-
isms and novel treatments that alter skin microbial
communities can also have significant risks that will need
to be investigated to ensure that modified microbial

communities do not result in additional or alternative com-
plications or alterations.

CONCLUSIONS

This article reviews the current knowledge of the healthy
human skin microbiome and documents how alterations to
these communities can contribute to disease. The increased
density of bacteria (AD), reduced bacterial diversity (pso-
riasis), augmentation of commensal organisms to cause
disease and co-infections (acne), and alterations to micro-
environments and colonisation of unique species (chronic
wounds) can each contribute differently to dermatological
disease. Future studies will need to explore how changing
lifestyles, environments, and even medical practices impact
on the microbial communities on the human body. Further
research in this field will also provide key insights into how
alterations to these communities contribute to disease pro-
gression and symptoms, as well as how these microbial
communities can be manipulated for novel therapeutic
strategies.
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