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Abstract. Uncertainty measures of medical image analysis technolo-
gies, such as deep learning, are expected to facilitate their clinical accep-
tance and synergies with human expertise. Therefore, we propose a
full-resolution residual convolutional neural network (FRRN) for brain
tumor segmentation and examine the principle of Monte Carlo (MC)
Dropout for uncertainty quantification by focusing on the Dropout posi-
tion and rate. We further feed the resulting brain tumor segmentation
into a survival prediction model, which is built on age and a subset of
26 image-derived geometrical features such as volume, volume ratios,
surface, surface irregularity and statistics of the enhancing tumor rim
width. The results show comparable segmentation performance between
MC Dropout models and a standard weight scaling Dropout model. A
qualitative evaluation further suggests that informative uncertainty can
be obtained by applying MC Dropout after each convolution layer. For
survival prediction, results suggest only using few features besides age. In
the BraTS17 challenge, our method achieved the 2nd place in the survival
task and completed the segmentation task in the 3rd best-performing
cluster of statistically different approaches.
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1 Introduction

Over the past years, large improvements could be observed in brain tumor seg-
mentation. This is partly due to the adoption of the fast-evolving deep learning
approaches from the field of computer vision. An even more important rea-
son for the recent advances is the availability of public datasets and online
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benchmarks [15]. This progress has later guided research to focus on optimizing
model architectures for achieving high segmentation performance. However, as
the robustness of these systems still requires expert monitoring of results, clin-
ical applications such as radiological and high-throughput data analysis would
benefit greatly from additional uncertainty information along with a good seg-
mentation performance. Information on the segmentation uncertainty can first
leverage the trust of users on such automated segmentation systems, but it could
be also used to e.g. guide an operator in making manual corrections to the auto-
matic segmentation results. In this work, we thus focus on the largely unexplored
aspect of quantifying model uncertainty in the context of brain tumor segmen-
tation. Existing work of uncertainty in brain tumor segmentation includes a
perturbation-based approach for conditional random fields [1,14] and a level
set-based method defined via a Gaussian Process [13]. The limitations of these
techniques are their lack of transferability to neural networks and their restric-
tion to quantify uncertainty of a specific model only.

The segmentation of brain tumor compartments can be part of a radiomic
process, where features are extracted from the segmented tumor and used in
subsequent data mining [9]. A particularly important radiomic application is
the survival prediction [20], where imaging features are used within a radiomics
workflow to predict patient survival. Typically, features are handcrafted and
include regional gray-level features (e.g., first- and second-order statistics) and
morphological features (e.g., surface and volume [18]). In addition to imaging
features, clinical features such as age or extent of resection may also be consid-
ered [5]. Geometrical features such as tumor surface irregularity or enhancing
tumor heterogeneity have been reported as predictive biomarkers for patient sur-
vival [6,12,16]. However, these studies rely on manual or semi-automatic delin-
eation of the tumor compartments.

The aim of this work is twofold. First, to explore uncertainty estimation
in deep learning-based methods for brain tumor segmentation, and second, to
predict survival from age and image-derived geometrical features of a segmented
tumor shape. Therefore, as a baseline for the segmentation task, we adopt the a
full-resolution residual network (FRRN) [17] architecture. Then, we incorporate
the idea of Monte Carlo (MC) Dropout [8] to obtain model uncertainty. In an
experiment, we examine the impact of different MC Dropout position strategies
and compare the performance to the standard weight scaling Dropout [19]. For
the survival prediction task, we use the resulting fully-automated segmentations
to determine geometrical features and to build a predictive model thereof.

2 Methods

In this section, we present details of the approach subdivided for segmentation
and survival prediction.
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2.1 Segmentation

First, we present the employed convolutional neural network architecture. Sec-
ond, we focus on the method used to quantify segmentation uncertainty.

FRRN Architecture. The adopted full-resolution residual network (FRRN)
[17] is based on two streams; a residual stream and a pooling stream. The first
one is responsible for maintaining a residual path between the network input
and output. This has been shown to improve the gradient flow and thus training
[10]. Moreover, the residual stream allows the network to carry information at
full image resolution required for precise segmentation of the image details [17].
The second stream reduces the resolution by pooling operations before returning
to original resolution by upsampling. Due to the reduced resolution, the filters
on the pooling stream can capture contextual information. An important aspect
of the architecture are the connections between pooling and residual streams.
This enables the network to simultaneously combine both global and local image
information [17].

We propose a full-resolution residual network architecture with four max-
pooling/upsampling steps. The input consists of slices of all four image sequences
(T1-weighted, T1-weighted post-contrast, T2-weighted, Fluid attenuation inver-
sion recovery (FLAIR)), which we define as I = [IT1, IT1c, IT2, IFLAIR] ∈
R

m×n×4 where m and n are the in-plane resolution. The output is defined to be a
segmentation mask for the corresponding input slice I, which contains the labels
of the tumor compartments (edema, enhancing tumor and necrosis together with
non-enhancing tumor) and the background, i.e. C = {0, 1, 2, 4}. For each input
I, the network determines the posterior probability distribution p(Y | I) where
Y ∈ Cm×n. Although the prediction is performed slice-wise, the formulation can
be extended to subject volumes with I ∈ R

l×m×n×4 and Y ∈ Cl×m×n (l being
the slices).

The architecture of the network is depicted in Fig. 1. Figure 2 shows a detailed
view of the residual units (RU) and full-resolution residual units (FRRU). Due
to the anisotropy in the image resolution of the original data, we consider the
slices from all three planes (axial (a), coronal (c) and sagittal (s)) by rotating the
input volumes I to Ia, Ic and Is during training and testing. This results in three
predictions p(Ya | Ia), p(Yc | Ic), p(Ys | Is) per subject. In order to combine
them, the three outputs are averaged to p(Y | I) = 1/3

∑
j∈{a,c,s} p′(Yj | Ij)

where p′ denotes the posterior probabilities in the space of I, before determining
the maximizing class ŷ = arg maxc∈C p(y = c | I) for each voxel. Together with
the volume-wise intensity normalization (μ = 0, σ = 1), this combined prediction
on all image planes had the largest impact on our validation set performance.

Uncertainty Estimation. As presented by Gal and Ghahramani [8], Dropout
regularization can be interpreted as an approximation for Bayesian inference over
the weights of the network. A fully Bayesian network requires applying Dropout
after each convolution layer. Kendall et al. [11] showed that applying Dropout at
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Fig. 1. Full-resolution residual network with four pooling steps. Dashed lines represent
the exchange connections between the residual and pooling streams.

(a) (b)

Fig. 2. Detailed view of the units of the architecture in Fig. 1. (a) The residual unit
(RU) including its residual connection (BN: Batch normalization, ReLU: Rectified Lin-
ear Unit). (b) The full-resolution residual unit (FRRU) where pool and up adapt to
the pooling and residual stream, respectively. The 1× 1 convolution aligns the number
of feature channels among the streams. Unless specified differently, the convolution
kernels are of size 3 × 3.

key positions of the network can be sufficient for semantic segmentation, and that
it additionally favors training convergence. Following this observation, we select
the positions after each pooling layer and before each upsampling operations
as well as the position before and after the latter residual unit as key Dropout
positions (Fig. 3). Hereinafter, these positions will be referred to as core and end
Dropout positions.

The Dropouts are applied during training and test time. At test time, the
Dropouts produce randomly sampled networks, which can be viewed as Monte
Carlo samples over the posterior distribution p(W | I,Y) of the model weights
W (with subject dataset I and corresponding label set Y). K network sam-
ples are used to produce one prediction with uncertainty estimation. The clas-
sification of one voxel is determined by the average of posterior probabilities
p(y | I) =

∑
c∈C

(
1
K

∑K
k=1 p(yk = c | I)

)
over K predictions. As described by

Gal [7], the class uncertainty can be computed with the approximated predic-
tive entropy H ≈ −∑

c∈C
(

1
K

∑K
k=1 p(yk = c | I)

)
log

(
1
K

∑K
k=1 p(yk = c | I)

)
.
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Fig. 3. Dropout positions core and end used for the different Dropout strategies.

2.2 Survival Prediction

Once the tumor compartments are segmented they serve as input for the over-
all survival prediction. Subsequent paragraphs elucidate the steps to build the
survival prediction regression model.

Feature Extraction. As presented by Pérez-Beteta et al. [16], tumor geome-
try holds important information for survival prediction. Accordingly, we consider
26 geometrical features which include volumes (enhancing tumor (Vce), necrosis
(Vn), tumor core (Vc)), volume ratios (e.g., Vc

Vce
, Vc

Vn
), surface, surface irregularity,

maximal diameter as well as median, mean, quartiles and combinations of quar-
tiles of the enhancing tumor rim width. In addition to the geometrical features,
the subject’s age is included.

Feature Selection. This step identifies the most important features before cre-
ating a prognostic model. We performed filtering with extensive cross-validation
processes on the training set based on several information measurements (e.g.
Gini impurity, variance reduction with respect to target attribute). It revealed
that four seems to be the optimal number of features for our set. The four
selected features are (listed according to their importance):

1. Age
2. Tumor core (enhancing tumor and necrotic tissue) surface
3. Surface irregularity (surface compared to sphere with equal volume)
4. 1st quartile of contrast-enhancing rim width

Survival Model. With the four selected features, we train a fully connected
neural network with one hidden layer and linear activation function. Other pre-
diction models such as SVM with RBF kernels, sparse grid or combinations of
them were investigated but resulted in inferior performance.

3 Experiments and Results

In this section, we first focus on the segmentation performance of several MC
Dropout models compared to a traditional Dropout model before we perform a
qualitative evaluation of the obtained uncertainties. In a second experiment, we
are interested in the survival prediction performance.
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3.1 Segmentation

In order to examine MC Dropout, we compare four MC Dropout and one stan-
dard weight scaling (WS) Dropout [19] strategies. WS Dropout at the core posi-
tions is applied with a Dropout rate p = 0.5 (WSCore05). The four MC Dropout
strategies are: Dropout at core positions with p = 0.5 (MCCore05) and with
p = 0.75 (MCCore075), Dropout at end positions with p = 0.5 (MCEnd05) and
Dropout after every convolution layer with p = 0.5 (MCFull05).

According to Kendall et al. [11] a minimum of approximately K = 6 Dropout
Monte Carlo samples are required to improve segmentation performance (on the
CamVid dataset) compared to an architecture where the Dropout weights are
averaged during testing. For the MC Dropout models, we use a rather large
K = 20. The reason is that compared to Kendall et al. [11], we are not only
interested in an improved segmentation performance but also in exploiting the
uncertainty comprised in the K predictions.

Table 1. Quantitative results of the comparison between the Dropout strategies
WSCore05, MCCore05, MCCore075, MCEnd05, MCFull05 on the BraTS17 validation
dataset (reported as mean ± standard deviation). Bold numbers highlight the best
result for a given metric and tumor region (ET: enhancing tumor, WT: whole tumor,
TC: tumor core).

Model ET WT TC

Dice WSCore05 0.749 (±0.277) 0.901 (±0.086) 0.790 (±0.239)

MCCore05 0.756 (±0.275) 0.898 (±0.093) 0.775 (±0.245)

MCCore075 0.730 (±0.290) 0.896 (±0.103) 0.776 (±0.243)

MCEnd05 0.738 (±0.284) 0.894 (±0.114) 0.785 (±0.240)

MCFull05 0.734 (±0.299) 0.884 (±0.141) 0.768 (±0.257)

Sensitivity WSCore05 0.800 (±0.273) 0.900 (±0.130) 0.760 (±0.263)

MCCore05 0.775 (±0.273) 0.884 (±0.139) 0.721 (±0.270)

MCCore075 0.783 (±0.263) 0.894 (±0.146) 0.740 (±0.267)

MCEnd05 0.783 (±0.262) 0.882 (±0.154) 0.744 (±0.264)

MCFull05 0.759 (±0.299) 0.857 (±0.177) 0.724 (±0.281)

Specificity WSCore05 0.998 (±0.005) 0.995 (±0.004) 0.998 (±0.003)

MCCore05 0.998 (±0.003) 0.996 (±0.005) 0.999 (±0.003)

MCCore075 0.998 (±0.005) 0.995 (±0.004) 0.998 (±0.003)

MCEnd05 0.998 (±0.003) 0.996 (±0.004) 0.998 (±0.003)

MCFull05 0.998 (±0.004) 0.997 (±0.003) 0.998 (±0.004)

Hausdorff95(mm) WSCore05 5.379 (±10.068) 5.409 (±9.710) 7.487 (±8.935)

MCCore05 5.025 (±10.098) 5.255 (±10.129) 8.842 (±15.023)

MCCore075 5.425 (±9.812) 4.319 (±5.122) 8.909 (±14.292)

MCEnd05 4.671 (±9.600) 4.059 (±4.349) 7.924 (±14.616)

MCFull05 4.695 (±9.243) 4.216 (±4.166) 7.582 (±8.710)
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The comparison of the approaches was performed on the 46 subjects of
BraTS17 validation dataset [2–4,15]. All five models were trained on 265 ran-
domly selected training subjects out of the 285 subjects available in the BraTS17
training dataset [2–4,15]. The remaining 20 training subjects were used for
validation during training and model selection. Table 1 lists a summary of
the achieved results for the five methods. Additionally, the distribution of the
obtained Dice coefficients and Hausdorff (95th percentile) distances are presented
in Fig. 4.
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Fig. 4. Boxplots for the Dice coefficient (a) and Hausdorff (95th percentile) distance
(b) for the different Dropout strategies; weight scaling Dropout at core positions with
Dropout rate p = 0.5 (WSCore05), Monte Carlo (MC) Dropout at core positions
with p = 0.5 (MCCore05) and p = 0.75 (MCCore075), MC Dropout at end positions
with p = 0.5 (MCEnd05) and MC Dropout after each convolution layer with p = 0.5
(MCFull05).

On the BraTS17 challenge dataset [2–4,15] with 146 subjects, the proposed
method achieved the 7th rank in the segmentation task (results listed in Table 2).
Furthermore, the method ranked third with regards to statistical differences
among the approaches.

Table 2. BraTS17 challenge dataset results obtained by the WSCore05 model
(reported as mean ± standard deviation, ET: enhancing tumor, WT: whole tumor,
TC: tumor core).

ET WT TC

Dice 0.670 (±0.312) 0.874 (±0.121) 0.736 (±0.304)

Hausdorff95(mm) 54.791 (±127.862) 8.825 (±15.550) 31.332 (±89.496)
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As an additional output, the presented models produce uncertainty maps. A
qualitative result is shown in Fig. 5 which depicts an exemplary case of an uncer-
tainty map for each model along with the obtained segmentation. In contrast
to the models with MC Dropout, the model applying weight scaling Dropout
(WSCore05) does not perform Monte Carlo sampling. In this case, we determine
the uncertainty through the entropy of the posterior probability distribution
H = −∑

c∈C p(y = c | I) log p(y = c | I) for every voxel.

3.2 Survival Prediction

The evaluation of the survival prediction model was performed on the BraTS17
survival validation dataset [2–4,15], which is a subset (33 out of 46 subjects) of
the segmentation validation dataset. For this subset, the subject’s age is provided
with the data and is used as input for the prediction along with the computed
segmentation results. Table 3 lists the results on the validation dataset (top row).

In the BraTS17 challenge, the presented model achieved the 2nd place in the
survival task. The results achieved on the 95 subjects of the challenge dataset
[2–4,15] are presented in the bottom row of Table 3.

Table 3. Quantitative results of the survival prediction on the BraTS17 validation and
challenge datasets.

Dataset Accuracy MSE Median SE Std SE

Validation 0.424 245.7 · 103 562.8 · 103 540.7 · 103

Challenge 0.568 213.0 · 103 28.1 · 103 662.6 · 103

4 Discussion

The evaluation of the validation dataset results in Table 1 reveals that the seg-
mentation performance of all five models (WSCore05, MCCore05, MCCore075,
MCEnd05, MCFull05) is comparable. Nevertheless, the best overall performance
is achieved by the model with weight scaling Dropout (WSCore05). This is rather
surprising since Kendall et al. [11] as well as Gal and Ghahramani [8] found that
MC Dropout, besides providing uncertainty, can also improve the segmentation
performance. Since the BraTS challenge evaluation aims at achieving a high seg-
mentation performance, we used the WSCore05 model for the segmentation and
survival task at the BraTS17 challenge. Furthermore, Fig. 4 shows that the five
models with different Dropout strategies are as well comparable in terms of vari-
ation of Dice coefficient and Hausdorff distance (95th percentile). However, in
contrast to the average results in Table 1, the median and interquartile range of
the MCFull05 model are close to the WSCore05 distribution. This difference can
be explained by the rather high amount of outliers in the Dice coefficient varia-
tion of the MCFull05 model. Table 2 lists the results achieved on the BraTS17
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Fig. 5. Uncertainty maps next to FLAIR slices with the segmentation overlaid for each
Dropout strategy. The corresponding subject is CBICA ATW 1 from the BraTS17 vali-
dation dataset. As a reference, the raw T1-weighted post-contrast and FLAIR sequences
are depicted in the top left.

challenge dataset. Compared to the validation dataset results, the metrics are
inferior for all three tumor regions. Reasons might be (a) the performed model
selection according to validation dataset results, (b) the difference of the vali-
dation dataset and challenge dataset size and (c) a validation dataset that is
possibly closer to the training dataset distribution than the challenge dataset.

The qualitative results of the produced uncertainty maps in Fig. 5 highlight
that the resulting uncertainty maps of the MC Dropout models MCCore05,
MCCore075 and MCEnd05 are visually not distinctively more informative than
the entropy determined by the weight scaling model WSCore05 (without MC
samples). This problem might come from the rather complex models we use; we
could observe that even with a small number of MC samples, the MC Dropout
models achieved good segmentation performances (close to the ones shown). It
seems that the large complexity allows the models to compensate for the dropped
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weights and thus minimize the variance in the K MC samples. In contrast to the
aforementioned MC Dropout models, the uncertainty produced by the MCFull05
seems to appear more informative. It shows uncertainty where the other models
do not (e.g. most parts of the edema), and has increased uncertainty in regions
where the other models are uncertain as well. One reason for the more infor-
mative uncertainty estimation might be that a fully Bayesian neural network is
applied in MCFull05.

The results obtained for the survival prediction on the BraTS validation
dataset (Table 3, top row) are not among the best-performing, when comparing
it to the results yielding the 2nd place (Table 3, bottom row) in the challenge. We
hypothesize that this difference is due to the rather small validation dataset size
(n = 33) which might bias the outcomes. Moreover, the likewise small training
dataset size could lead to overfitting when using a large number of features. Since
our model uses only four features, the chance to overfit is greatly reduced. The
avoidance of fine-tuning towards the validation dataset could also play a role in
the discrepancy of the results. Furthermore, irregularity of tumor shape turned
out to be one of the most predictive features for patient survival which confirms
previous findings in literature [6,12,16].

In a next step, we plan to incorporate the generated uncertainty maps into
the survival prediction pipeline in order to enhance prediction performance.

5 Conclusion

In conclusion, the results show that the presented models with weight scaling
and Monte Carlo Dropout strategies achieve a good segmentation performance
and that the visually most informative uncertainty can be obtained by a fully
Bayesian neural network (MC Dropout after each convolution layer). First evi-
dence suggests that there might be a trade-off between model complexity and
model uncertainty. We could further observe that age and other geometrical fea-
tures play an important role in survival prediction. Additionally, results in sur-
vival prediction indicate a potential prevention of overfitting due to the usage of
a small number of features.
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13. Lê, M., Unkelbach, J., Ayache, N., Delingette, H.: GPSSI: gaussian process for
sampling segmentations of images. In: Navab, N., Hornegger, J., Wells, W.M.,
Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 38–46. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24574-4 5

14. Meier, R., Knecht, U., Jungo, A., Wiest, R., Reyes, M.: Perturb-and-MPM: quan-
tifying segmentation uncertainty in dense multi-label CRFs, March 2017. http://
arxiv.org/abs/1703.00312

15. Menze, B., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J.,
Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber,
M.A., Arbel, T., Avants, B., Ayache, N., Buendia, P., Collins, L., Cordier, N.,
Corso, J., Criminisi, A., Das, T., Delingette, H., Demiralp, C., Durst, C., Dojat,
M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo,
X., Hamamci, A., Iftekharuddin, K., Jena, R., John, N., Konukoglu, E., Lashkari,
D., Antonio Mariz, J., Meier, R., Pereira, S., Precup, D., Price, S.J., Riklin-Raviv,
T., Reza, S., Ryan, M., Schwartz, L., Shin, H.C., Shotton, J., Silva, C., Sousa,
N., Subbanna, N., Szekely, G., Taylor, T., Thomas, O., Tustison, N., Unal, G.,
Vasseur, F., Wintermark, M., Hye Ye, D., Zhao, L., Zhao, B., Zikic, D., Prastawa,
M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation
benchmark (BRATS). IEEE Trans. Med. Imaging 34, 33 (2014)
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Iglesias, L., Avecillas, J., Albillo, D., Navarro, M., Villanueva, J.M., Paniagua,
J.C., Martino, J., Velásquez, C., Asenjo, B., Benavides, M., Herruzo, I., Delgado,
M.D.C., del Valle, A., Falkov, A., Schucht, P., Arana, E., Pérez-Romasanta, L.,
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