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Abstract
The role of tumor suppressor protein p53 is undeniable in the suppression of cancer upon oncogenic stress. It induces 
diverse conditions such as cell-cycle arrest, cell death, and senescence to protect the cell from carcinogenesis. The rate of 
mutations in p53 gene nearly accounts for 50% of the human cancers. Upon mutations, the conformation gets altered and 
becomes non-native. Mutant p53 displays long half-life and accumulates in the nucleus and interacts with oncoproteins to 
promote carcinogenesis and these interactions present a formidable challenge for clinicians in therapy of the disease. Variety 
of approaches have been developed, through which native-like function of p53 can be restored, such as restoration of the 
native-like structure of p53, activating the p53 family members, etc. Modern scientific techniques have led to the discovery 
of a variety of molecules to reactivate mutant p53 and restore its transcriptional activity. These compounds include small 
molecules, various peptides, and phytochemicals. In this review article, we comprehensively discuss these molecules to 
reactivate mutant p53 to restore the normal function with a particular focus on molecular mechanisms.
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Introduction

One of the most studied and altered gene in cancer is 
tumor suppressor p53. p53 is regarded as “Guardian of the 
Genome” because of its role in the prevention of cancer [1]. 
Several missense mutations are often found to alter tumor 
protein p53 in its DNA-binding domain; and these mutations 
nearly account for 70% of the alterations and results in its 
wide range of cellular effects which controls diverse group of 
biological activities [2, 3]. TP53 functions as a transcription 
factor that guards the cells against different stress signals 
through activation of cellular mechanisms like cell-cycle 
arrest, apoptosis, and senescence, therefore, which serves 
as a crucial tumor suppressor [4]. During tumor develop-
ment, TP53 gene is often mutated, and this mutation may 
inactivate the protein and thereby lead to the loss of its tumor 
suppressor functions. Upon mutations and loss-of-function 
in most of the cancers, TP53 gene, the “Guardian of the 

Genome” is transformed into “Rebel Angel” [5]. In several 
other cancers, where p53 is not mutated, the wild-type func-
tion is, however, compromised through various inhibitory 
mechanisms [1, 2]. One example of such inhibitory mecha-
nisms is the overexpression of E3 ubiquitin ligase Mouse 
double minute 2 homolog (MDM2), which upon binding to 
p53 causes inhibition of its transcriptional activity and pro-
motes its proteasomal degradation, another reason is the lack 
of its chaperones or activators [5, 6]. Either because of muta-
tions or lack of chaperones, the loss-of-function of tumor 
suppressor p53 plays a significant role in initiation and evo-
lution of carcinoma. The strong association of p53 muta-
tions and carcinogenesis suggests that cancer cells equip 
themselves with a survival strategy [7, 8]. Moreover, it is 
well understood that the expression of mutant p53 does not 
equal p53 loss, and the mutated protein gains new functions 
that promote carcinogenesis [2, 3]. The clustering of muta-
tions shows that vital functions like DNA-binding activity 
are altered—suggesting that the alteration in transcriptional 
targets could be a key to the activity of mutant p53. How-
ever, it is important to note that mutations in the structural 
core of p53 gene can also have significant consequences on 
the folding of the protein [7]. These mutations ultimately 
result in the non-native conformation of the protein, which 
could arise not only because of mutation but also due to the 
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lack of chaperones [5]. Mutant p53 accumulates in a cell 
and MDM2 is no longer able to degrade it efficiently. As a 
result, mutant p53 displays extended half-life due to the non-
induction of MDM2 in the absence of wild-type p53 [5]. A 
mutant form of p53 not just accumulates in the nucleus of 
the cell, but also interacts with many other proteins. These 
novel protein–protein interactions either lead to the disa-
bling of other tumor suppressors such as p63 and p73 or 
responsible for the enabling of oncogenes such as electron 
transport system (ETS) family members, Necrosis Factor 
kappaB (NF-KappaB), etc. [9–11]. This kind of cooperation 
between mutant p53 and oncogenes furnish the cancer cell 
with a variety of strategies to promote carcinogenesis.

Given the fact that p53 is most frequently mutated in 
cancer and its characteristic gain-of-function tactic to 
promote carcinogenesis, mutant p53 becomes a promis-
ing therapeutic target for cancer treatment [2, 9, 12, 13]. 
The strategies that are commonly employed for targeting 
mutant p53 includes (a) reactivation or restoration of wild-
type p53 activity and elimination of mutant p53; (b) desta-
bilization of the oncogenic mutant p53 protein; and (c) 
inhibiting the downstream signaling resulting from mutant 
p53 gain-of-function and initiating synthetic lethality in 
the cells expressing mutant p53. The burden of mutant 
p53 in cancer cells is much higher, and due to its high 
burden, it can serve as a better substrate for reactivation 
and can be very effective in stimulating cell death path-
ways [14]. Reactivation seems to be the only strategy so 
far to counteract the effects of mutant p53, and this might 
question the possibility that is the restoration of wild-type 
p53 function sufficient for tumor eradication? In addition, 
in advanced cancers, where multiple oncogenic mutations 
like those in Ras, Myc, phosphatase and tensin homolog 
(PTEN), or phosphoinositide-3 (PI-3) kinase gene has 
taken place? The answer to these questions is yes, and 
reactivation of mutant p53 alone is sufficient for elimina-
tion of tumor-associated genetic alterations. These findings 
have been supported by several in vivo studies which have 
concluded that the restoration of wild-type p53 activity 

in mice results in rapid regression of the tumor [15–17]. 
These results are as a consequence of the central role of 
p53 in pro-apoptotic or pro-senescence response to onco-
genic stress. The presence of the other oncogenic muta-
tions would further enhance the stress and p53-mediated 
cell death upon p53 reconstitution in a tumor cell [15–17]. 
Another set of studies also suggested that the knockdown 
of mutant p53 is also a powerful strategy in reducing the 
oncogenic potential of cancer cells, expressing only mutant 
p53 [18–21], since malignant properties are supported by 
the gain-of-function transcriptional activity of mutant p53. 
In this review, we highlighted the recent information about 
the compounds, peptides, small molecules, etc. that were 
studied as mutant p53-reactivating compounds.

Approaches to reactivate mutant p53

p53 is involved in a variety of cellular responses that can 
efficiently reduce the chances of the normal cell from tak-
ing a turn towards carcinogenesis [22]. Since mutant p53 
displays longer half-life and interact with a variety of pro-
teins to promote oncogenesis, reactivation strategy is the 
most influential for the treatment of cancers expressing 
high levels of the mutant form [14]. Several strategies have 
been employed to restore the transcriptional activity of the 
mutant p53 which are summarized as follows (Fig. 1): (a) 
exploitation of temperature-sensitive characteristic for the 
possible restoration of the p53 function at the permissive 
temperature [23, 24]; (b) small peptides which restore wild-
type p53 transcriptional activity [25, 26]; (c) incorporation 
of secondary mutations or an N-terminal deletion to restore 
p53 function [27–29]; (d) small molecules may disrupt the 
complex association between p53 family members (p63 and 
p73) with mutant p53, thus restoring the tumor suppressor 
function of p63 and p73 [30]; and (e) binding of small mol-
ecules directly to the appropriate sites of mutant p53 to sta-
bilize the core domain and promote wild-type folding [30].

Fig. 1  Effect of reactivating 
molecules on mutant p53. Upon 
mutation, wild-type p53 loses 
its function and transcription 
of target genes gets repressed. 
The treatment of mutant p53 
reactivating molecules leads 
to native-like conformational 
restoration of transcriptional 
activity
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Small molecules

Small molecules are the chemical entities with low molec-
ular weight that includes metabolites, monosaccharides, 
lipids, second messengers, various natural products as well 
as a variety of drugs and xenobiotics with low molecular 
weight. From the compendious categories, variety of small 
molecules are known to act on mutant p53 to restore its wild-
type activity through different mechanisms which have been 
studied are shown in Fig. 2 and summarized below.

CP‑31398

A styrylquinazole was discovered through high-throughput 
screening and proved to restore the DNA-binding ability of 
mutant form of p53 using conformation-specific antibody 
PAb1620 as a probe [31, 32]. Treatment of this drug on 
Saos-2 (p53 null) cells expressing  p53V173A and  p53R249S 
mutants resulted in increased expression of p21 mRNA [31]. 
CP-31398 treatment resulted in reduction in tumor growth in 
urothelial cancer and induced apoptosis of tumor cells along 
with elevated levels of p21 in  APCmin colon cancer mouse 
model [33, 34]. In another study on pancreatic adenocarci-
noma cell lines, CP-31398 induced cell growth inhibition, 
apoptosis, and autophagy by activating p53 phosphorylation 
(S15) and p53-DNA binding, without affecting the total p53 
amount [35].

STIMA‑1 (SH group‑targeting compound 
that induces massive apoptosis)

STIMA-1, a CP-31398 derivative is a small molecule which 
shares the feature of CP-31398 and MIRA, in reacting with 
N-acetylcysteine and alkylate thiols in p53 restore its redox 
status which is crucial for the tumor suppressor activity of 
p53 [36]. It showed a significant mutant p53-dependent 
growth-inhibitory effect in H1299 (transfected with mutant 
 p53R175H) lung carcinoma and Saos-2 (mutant  p53R273H) 
cells [37]. STIMA-1 has also been shown to induce the 
expression of various downstream targets of p53 by increas-
ing the DNA-binding ability of mutant p53 [37].

PRIMA‑1 and APR‑246 (PRIMA‑1MET)

A cell-based assay screening of over 2000 compounds from 
national cancer institute found the compounds PRIMA-1 
(p53 reactivation and induction of massive apoptosis) 
and APR-246 [30]. PRIMA-1 [2,2-bis(hydroxymethyl)-
1-azabicyclo(2,2,2)octan-3-one] restored active conforma-
tion of mutant p53 resulted in a native state conformation 
of mutant p53. This restoration ultimately led to the DNA-
binding triggering of apoptosis [38]. Further investiga-
tions revealed that PRIMA-1 as well as APR-246 (PRIMA-
1MET), a more active methylated derivative of PRIMA-1, 
inhibited mutant p53 expressing cells as well as xenograft 
tumors in animal models [39]. With IC-50 value ranging 
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Fig. 2  Summary of mechanism of action for drugs that target mutant 
p53. Redox status is crucial for tumor suppressor activity of p53. By 
reduction of mutant p53 at specific sites, native-like conform can 
be achieved. MIRA, STIMA-1, and CP-31398 reacts with N-acetyl-
cysteine and alkylate thiols of mutant p53 resulting in its conforma-
tional restoration. Alternatively, PRIMA-1 and APR-246 are both 
converted into methylene quinuclidinone (MQ), and it is a Micheal 
acceptor that reacts covalently with the cysteines in mutant p53 and 

thus leads to an oxidative environment in the tumor cells, thereby 
restoring the reactive oxygen species (ROS)—inducing capacity to 
mutant p53. PK083, PK7088, Zn(II) Curc, RITA, and SCH529074 
bring about restoration of native structure by directly interacting with 
the mutant p53. Along with the reactivation of mutant p53, RITA 
and SCH529074 upon binding inhibit the ubiquitination of p53 by 
MDM2, thus increasing the half-life of the native-like mutant p53 
protein
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below 20 µM in a broad variety of mutant p53 express-
ing cell lines, insignificant toxicity was evident in animal 
models [38, 40]. PRIMA-1 and its analog altered several 
target genes which were induced by classical wild-type 
p53. A strong synergy has been observed between APR-
246 and DNA-damaging drugs when treated on primary 
cancer cells from patients of ovarian cancer with mutant 
p53 and the use of this compound also displayed antitumor 
activity in other cancers [41].

PRIMA-1 and APR-246 are both converted into meth-
ylene quinuclidinone (MQ), and it is a Micheal acceptor 
that reacts covalently with the cysteines in mutant p53 
and thus creates an oxidative environment in the tumor 
cells [42]. Recently, the synergistic effect of APR-246 with 
V600E/KBRAF inhibitor vemurafenib in inducing apoptosis, 
arresting proliferation and tumor growth, has been dem-
onstrated both in vitro and in vivo [43]. Currently, APR-
246 is the only mutant p53-targeting compound in clini-
cal trials that showed positive signs and promising results 
regarding clinical effects in ovarian, prostate, and hema-
tological malignancies [44–46]. Evidences that showed 
APR-246 acted via p53 reactivation includes initiation of 
cell-cycle arrest, increased apoptosis, and upregulation of 
several p53 target genes in numerous subjects [47]. This 
study, therefore, validates that APR-246 is safe at expected 
therapeutic plasma levels, can induce biological effects in 
tumor cells in vivo, and has a positive pharmacokinetic 
profile.

MIRA‑1 (mutant p53 reactivation and induction 
of rapid apotosis 1)

A maleimide derivative compound MIRA-1 (NSC19630) 
showed the preferential killing of tumor cells expressing 
mutant p53 and the potency of MIRA-1 for inducing cell 
death in a mutant p53-dependent manner is even higher than 
that of PRIMA-1 [27]. MIRA-1 and its analogs (MIRA-2 
and MIRA-3) tend to shift the unfolded conformation of p53 
towards the native structure, leading to restoration of tran-
scriptional activity. Therefore, induction of p53-dependent 
apoptosis of cancer cells expressing p53R175H, p53R248Q, 
and p53R273H has been demonstrated [27]. The study also 
reported in  vivo antitumor activity of MIRA-3 against 
human mutant p53-carrying tumor xenografts in SCID 
mice. However, the compound was toxic at higher levels and, 
therefore, has narrow therapeutic window [27]. Moreover, 
MIRA-1 treatment along with other anti-myeloma agents 
in multiple myeloma cells displayed endoplasmic reticulum 
stress mediated apoptosis in a p53-independent fashion [48]. 
MIRA-1 unaided or in synergy with dexamethasone arrested 
tumor growth and extended survival without exhibiting any 
toxicity in the mice-bearing multiple myeloma tumor [48].

PK083 and PK7088

One of the most common mutations in cancers is  p53Y220C 
which occurs in about 75,000 cases every year in the struc-
tural domain of p53 and causes the formation of a cavity 
that destabilizes its structure [49]. PK083 is a carbazole 
derived compound that binds to the cavity of the protein 
 p53Y220C and stabilizes its structure by supporting the S7/
S8 loop of mutant p53 [50], thus increasing its half-life from 
3.8 to 15.7 min [49]. It also raises the melting temperature 
by 2 °C, thereby increasing its stability [49]. Since Y220C 
occurs at the non-DNA-binding site, it is an attractive site 
for the screening of small molecules targeting p53. Similarly, 
PK7088 increases the  p53Y220C stability by increasing the 
melting temperature and causes cell-cycle arrest and apopto-
sis in tumor cells expressing  p53Y220C [51]. PK7088 induces 
p53-mediated expression of p21 and the NOXA protein. 
PK7088 works synergistically with Nutlin-3 on upregula-
tion of p21 expression [51]. PK7088 also restores non-tran-
scriptional apoptotic functions of p53 by inducing nuclear 
export of pro-apoptotic Bcl2 Associated X (BAX) protein to 
the mitochondria [51]. X-ray crystallography studies of p53 
core domain led to the design of PK083 and PK7088 [30].

RITA

A small molecule RITA (reactivation of p53 and induction 
of tumor cell apoptosis) was identified from the screening 
of chemical library followed by cell proliferation assay on 
isogenic cell lines of HCT116 (p53 wild type and p53 null). 
RITA displayed its ability to suppress the growth of p53 
wild-type cells but not p53 null cells [52]. Various studies 
have suggested the role of RITA regarding inhibition of p53 
and HDM2 both in vitro and in vivo models [53–57]. HDM-
2-mediated proteasomal degradation of p53 is often deregu-
lated in several tumors with wild-type p53 [5]. RITA was 
shown to restore the transcriptional activity of p53, there-
fore, upregulating its targets p21, NOXA, GADD45, and 
PUMA, along with other pro-apoptotic proteins like BAX, 
therefore, inducing apoptosis in these mutant cell lines [53, 
54, 56]. RITA has also been shown to display activity against 
mutant p53. It has also demonstrated the ability to suppress 
the growth of different cancers such as breast, colon, and 
lung, carcinoma as well as Burkitt lymphoma carrying 
various p53 mutants  (p53R175H,  p53R213Q/Y234H,  p53R248W, 
 p53R248Q,  p53I254D,  p53R273H, and  p53R280K) [53–57].

In vivo studies of this drug successfully demonstrated its 
potent antitumor activity against HCT116-derived tumors 
[52] and neuroblastoma-derived tumors [53] in a mouse xen-
ograft model exclusive of any systemic toxicity (Table 1). 
Nevertheless, on using RITA along with other drugs such 
as cisplatin, it enhanced cisplatin cytotoxicity synergistically 
through activation of p53 apoptotic activity in head and neck 
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cancer cells and cervical cancer cells with defective p53 
expression [55]. Many studies warrant further investigation 
to explore the mechanism of action of RITA on both wild 
type and mutant p53 [53].

SCH529074

A quinazoline-based small molecule which restores mutant 
p53 structure through its action as a molecular chaperone, 
via a mechanism similar to that of the peptide CDB3 [58]. 
SCH529074 binds specifically to the DNA-binding domain 
of p53 in a saturable manner, such that its binding restores 
the wild-type functional activity of several mutant forms of 
p53  (p53R175H,  p53R273H, and  p53R249S) [59]. Restoration of 
the Pab1620 epitope of the mutant p53 results in upregula-
tion of several transcriptional targets of wild-type p53 like 
p21, NOXA, PUMA, Cyclin G1, and BAX [59].

ZMC 1 (zinc metallochaperone‑1) or NSC319726

Zn(2+) ions are essential for tumor suppressor p53 at its cen-
tral core domain to remain in the native state [38, 60, 61], as 
described in Fig. 3. In vivo studies on mice-carrying tumor 
with mutant p53(p53R175H and  p53R273H) showed regression 
in tumor growth upon administration of zinc via improve-
ment in DNA-binding activity of p53 protein [62]. Notably, 
administration of ZMC1 produces preferentially greater 
toxicity in  p53R172H/R172H (homolog to human  p53R175H) 
mice than in wild-type mice in a dose-dependent manner 
[63]. ZMC1 might serve as an attractive therapeutic lead 
for drug development because of its exceptional nontoxic-
ity to wild-type animal models and impressive pharmacoki-
netic value when administered intravenously [63]. Another 
report also suggests that ZMC1 increases cellular ROS that 

further triggers the newly conformed  p53R175H (via post-
translational modifications), thereby inducing an apoptotic 
program [64].

The cancer drug zinc metallochaperone-1 (ZMC1) or 
NSC319726, a thiosemicarbazone family compound, was 
recognized by in silico screening methodology to selectively 
target cancer cells expressing mutant  p53R175H. This drug 
reactivates  p53R175H binding to Zn(2+) and buffering the 
free Zn(2+) ion concentration in the environment to a level, 
such that these ions can repopulate the impaired binding 
site and restore the DNA-binding ability of p53. However, 
the exact mechanism is still unresolved; one report suggests 
that ZMC1 functions as a Zn(2+) ionophore that binds to 
the Zn(2+) in the extracellular environment, passes through 
the plasma membrane, and releases it intracellularly [65].

Zn (II) Curc

A fluorescent curcumin-based Zn(II)-complex (Zn-curc) was 
tested to reactivate mutant p53 in cancer cells [66]. Zn-curc 
treatment reinstated wild-type p53-DNA binding and trans-
activation properties and also induced apoptotic cell death in 
cell lines with mutant p53  (p53R175H and  p53R273H) through 
a conformational change in the mutant protein [66]. In vivo 
studies by immunofluorescence analysis of glioblastoma tis-
sues of an orthotopic mice model showed that the Zn-curc 
complex was formed upon drug treatment, highlighting its 
ability to cross the blood-tumor barrier [66]. The mecha-
nism through which Zn(II)-curc reactivates mutant  p53R175H 
involves at least in part, induction of mutant p53 degradation 
via wild-type p53-mediated autophagy [67]. When tested 
on thyroid cancer cells, Zn(II)-curc caused reactivation of 
mutant  p53R273H and elicited p53 targeted gene expression 
in wild-type p53-carrying cells [68].
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Fig. 3  Mechanism of action Zinc Metallochaperons 1 (ZMC 1). 
Some mutations in p53 cause inactivation by a reduction in its affinity 
for zinc ion. This reduced affinity leaves the mutant protein unable 
to bind the metal at such a limited free [Zn(2+)] ion concentration 

inside the cell. ZMC1 reactivate p53R175H binding Zn(2+) and buff-
ering the free Zn(2+) ion concentration in the environment to a level, 
such that these ions can repopulate the impaired binding site and 
restore the DNA-binding ability of p53
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Phytochemicals

Phytochemicals are non-nutritive bioactive components 
from natural plants that have protective or disease-preventive 
properties. Various review articles have` summarized natu-
ral phytochemicals and their anti-cancer effects [69–71]. In 
recent years, in exploring the mechanism of action of phy-
tochemicals, many of it have been found to act on mutant 
p53 and restore its wild-type functions [72–74]. These phy-
tochemicals and their mechanism are summarized in Fig. 4.

PEITC

Phenethyl isothiocyanate (PEITC), a phytochemical derived 
from cruciferous vegetables. PEITC has been shown to act 
on mutant p53 and its restoration both in vitro and in vivo 
conditions [72, 75]. PEITC exhibits growth-inhibitory activ-
ity in p53 mutants cells with preferential activity towards 
 p53R175H by restoring p53 wild-type conformation and 
transactivation functions [72]. The treatment of cancer cells 
with PEITC restored wild-type p53 induces apoptosis by 
phosphorylation of ATM/CHK2 and by causing a delay 
in S and G2/M phases [72]. In vivo studies on xenograft 
mouse model using breast cancer, SKBR3 cells, showed 

that dietary supplementation of PEITC caused significant 
inhibition of tumor growth [72]. The phase II clinical tri-
als using PEITC have been completed and the use of this 
compound evidenced the reduction in the mutated p53 oral 
cancer cells [76].

Capsaicin

A major bioactive phytochemical capsaicin found in pepper 
showed antitumor activity by targeting several molecular 
pathways [74, 77]. Assessment of the effect of capsaicin on 
mutant p53 and its reactivation demonstrated that capsai-
cin-induced autophagy that was responsible for mutant p53 
protein degradation [77]. Retraction of mutant p53 by cap-
saicin and overexpression of  p53R175H and  p53R273H mutants 
in H1299 (p53 null) cells restored wild-type p53 activities 
leading to cell death [77].

Ellipticine

Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole) is a 
phyto-alkaloid isolated from the leaves of Ochrosia elliptica 
Labill (Apocynaceae). Ellipticine showed restoration of the 
transactivation function of several p53 mutants  (p53R175H, 

Fig. 4  Summary of phyto-
chemicals that reactivate mutant 
p53. a In PEITC (phenethyl 
isothiocyanate) treated cells the 
restored wild-type p53 induces 
apoptosis by phosphorylation 
of ATM/CHK2 and by causing 
a delay in S and G2/M phase. 
b Capsaicin induces autophagy 
mediated mutant p53 pro-
tein degradation. Retraction 
of mutant p53 by capsaicin 
restores wild-type p53 activities 
leading to cancer cell death. c 
Ellipticine along with restor-
ing the native-like structure of 
mutant p53 leading to increased 
expression of downstream tran-
scriptional targets of p53, it also 
enhances p53 mitochondrial 
translocation and initiates mito-
chondrial apoptotic pathways. d 
Piperlongumine (PL) increases 
the level of intracellular ROS 
which affects the structure and 
function of the redox-sensitive 
mutant p53 protein which gets 
activated and promotes cell 
death. PL induced oxidative 
milieu assists a weak functional 
restoration of mutant p53 via 
protein glutathionylation
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 p538R248W,  p53R249S,  p53R273H,  p53D281G, etc.), leading to 
upregulation of p53-downstream target genes p21(WAF1) 
and MDM2 [78, 79]. Conformation-specific antibodies 
Pab240 and Pab1620 confirmed the wild-type structural 
restoration of mutant p53 [79]. In vivo studies confirmed 
the induction of p21(WAF1) and MDM2 expression [79]. 
Exposure of ellipticine to the cells led to the upregulation of 
p53, death receptor Fas/APO-1, and Fas ligand [80]. Ellip-
ticine was also reported to prevent the growth of human 
hepatocellular carcinoma cell line HepG2 in a dose- and 
time-dependent manner followed by induction of apoptosis 
[78]. Moreover, ellipticine treatment also initiated mito-
chondrial apoptotic pathway via activation of caspases and 
altered mitochondrial membrane potential through regula-
tion of Bcl-2 family proteins [78] as well as enhanced mito-
chondrial p53 [81].

Piperlongumine

Piperlongumine (PL) is an alkaloid phytochemical obtained 
from black pepper (Piper longum). It increases the level of 
intracellular ROS which affects the structure and function of 
the redox-sensitive mutant p53 protein which gets activated 
and promotes cell death [82]. Testing of PL on mutant p53 
(p53R273H) cancer cell lines showed a significant increase 
in ROS production and protein glutathionylation with an 
associated increase in Nrf-2 expression and an increase in 
the wild-type-like p53 conformation of mutant p53 [73]. 
These findings advocate that Piperlongumine-induced 
oxidative milieu assists a weak functional restoration of 
mutant p53 via protein glutathionylation [73]. In an attempt 
to develop hybrid anti-cancer drugs with multiple targets, a 
molecule was generated having PL derivatives with an aryl 
group introduced at the C-7 position [83]. This composite 

structure exhibited potent antiproliferative properties against 
a variety of mutant p53 cell lines and particularly the ones 
harboring R175H mutation. Further studies revealed that the 
drug restores the wild-type biological activity and structure, 
identified by conformation-specific antibodies along with 
induction of abundant ROS generation and protein glutath-
ionylation [83].

Peptides

CDB3 (core domain binding 3)

CDB3 is a nine-residue small peptide derived from a 
p53-binding protein. CDB3 binds to p53 core domain at 
the edge of DNA-binding site and stabilizes its structure 
in vitro. CDB3 is proposed to act as a molecular chaperone 
that restores existing or newly synthesized denatured p53 
mutants  (p53I195T,  p53R173H,  p53R273H, and  p53R249S) into its 
native wild-type conformation and thus retaining its DNA-
binding activity [25, 58, 84]. In all cases, p53 target genes 
like p21, GADD45, and MDM2 were induced along with the 
trigger of p53 dependent apoptosis pathway. Fl-CDB3 is a 
fluorescently labeled CDB3 peptide which upon treatment 
on cancer cells, induced wild-type p53 to mediate apoptosis 
induced by gamma-radiation. Fl-CDB3 actively binds to and 
rescues p53 activity in cell and, thus, can serve as a strong 
lead for the advancement of novel anti-cancer therapy [84].

Peptide‑46

Peptide-46 is a synthetic 22-mer, which corresponds to the 
C-terminal amino acid residues 361–382 of p53. In vitro 
studies of this peptide has shown reactivation of and 

Table 2  Function of peptides in the reactivation of mutant p53

Peptides Sequence Forms of mutant p53 Mechanism of reactivation References

CDB3 REDEDEIEW p53R175H,  p53R273H, 
 p53R249S,  p531195T

Binds to DBD and stabilizes its structure [25, 58, 83]

Peptide-46 GSRAHSSHLKSKKGQSTSRHKK p53R273H Restored transcriptional activity [26]
Small peptides
 pCAP-250 myr-RRHSTPHPD p53R280H,p53R273H Restored transcriptional activity [85]
 pCAP-60R SFILFIRRGRLGRR RRR RRRR p53R280H

 pCAP-54 IRGRIIR p53R280H

 pCAP-325 myr-RRIRDPRILLLHFD p53R273H

Peptide aptamers
 A3 AKYCQCAAKVRVTAAM p53R175H,  p53R273H Inhibited the gain-of-function transactiva-

tion activity of mutant protein
[86]

 A29 GPVVPRTQYMSLAFGW
 A60 IQITLTGWSARVTTSG
 A79 VWAESCDDCGEYWRYV
 sA79 DVADWESCGEYWCYRV
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restoration of transcriptional activity in some mutant p53 
 (p53R273H) [26]. The introduction of peptide 46 in Saos-2 
cells with a Tet-regulatable mutant  p53R273H construct 
produced mutant p53-dependant cell-cycle inhibition and 
apoptosis, endorsing that the peptide mediates the mutant 
p53 reactivation mechanism to bring about induction of cell 
death pathways. Furthermore, peptide 46 showed similar 
effects on different human cancer cell lines carrying mutant 
as well as wild-type p53. However, no effect was observed 
against p53 null tumor cells indicating the specificity of the 
peptide [26].

Small peptides

A vast library of random peptide sequences was selected 
and validated for the purpose of mutant p53 reactivation. 
These sequences were allowed to interact with mutant 
p53 using phage display technology with an aim to iden-
tify peptides that favor correctly folded conformation of 
p53. The sequence of these peptides used in the studies 
for reactivation of mutant p53 is given in Table 2. After 
screening out a pool of small peptides with a potential for 
p53 restoration, lead peptides were synthesized and tested 
[85]. These lead peptides were studied for the restoration 
of mutant p53 in cell lines as well as in mouse xenograft 
assays. Cell line studies have suggested the effect on the 
conformation of the protein, binding to response elements 
(RE) of p53 and increased cell death upon the use of the 
small peptides. The tumor xenograft assays using the small 
peptides suggested the reduction in tumor size, and in some 
cases, the use of small peptides led to the complete sup-
pression of the tumor. The application of these peptides 
in pre-clinical studies raised the hope of novel agents for 
anti-cancer therapy [85].

Peptide aptamers

Inhibiting the gain-of-function activity of mutant p53 is an 
attractive approach for blocking tumor growth and develop-
ment of aggressive phenotypes. Peptide aptamers (PA) are 
a class of peptide molecules which upon binding to specific 
proteins can modulate its interaction and activities [86]. 
Molecular modeling techniques were used for the construc-
tion and characterization of PAs for their interaction with 
mutant p53. Transient expression of PAs was able to lessen 
the gain-of-function transactivation activity of mutant p53 
and to trigger apoptosis particularly in cells expressing 
mutant p53. Five PAs were able to interact preferentially 
with p53 conformational mutants  (p53R175H,  p53D281G) com-
paring with contact mutants  (p53R273H,  p53R248W) [86]. Fur-
thermore, binding with wild-type p53 was less efficient, sig-
nifying that the altered protein conformation is responsible 
for enhanced interactions of mutant p53. These PAs could 
provide a novel strategy to constrain the oncogenic gain-of-
function activity of mutant p53 and thus serve as a promis-
ing candidate for mutant p53-targeted cancer therapies [86].

Activating the p53 family members for p53 
pathway restoration

The p53 family members p63 and p73 hold the ability to 
trigger regression of tumor upon activation. Therefore, 
molecular approach to activate the p53 family members is 
an attractive approach for restoration of the p53 pathway in 
cells expressing mutant p53 [87]. The mechanism for the 
activation of p53 family members by various compounds is 
summarized below and is shown in Fig. 5.

Fig. 5  Activating the p53 family 
members for p53 pathway res-
toration. a APR-246, PRIMA-1, 
and Prodigiosin induce the 
expression of p73 and disrupt 
the interaction of p73 with 
mutant p53. b α-TEA upon 
combinatorial treatment with 
DOXO (doxorubicin) or CDDP 
(cisplatin), reconstitutes the p53 
tumor suppressor pathway via 
p73. This combinatorial treat-
ment induces apoptosis, cleav-
age of caspase-8 and caspase-9, 
and induction of expression of 
p73
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Prodigiosin

Prodigiosin is a red pigmented secondary metabolite 
obtained from different bacterial sources which have been 
documented for its broad bioactive potential [88].

Prodigiosin treatment on p53-deficient cancer cell lines 
induced cell-cycle arrest and apoptosis by induction of the 
expression of downstream target genes of p53 [89]. The 
compound showed similar results in cancer cells harboring 
mutant p53 by restoration of the p53 signaling pathway. 
Prodigiosin maintained the p53 signaling in mutant p53 
cell lines by inducing the expression of p73 and disrupting 
the interaction of p73 with mutant p53 [89]. In vitro and 
in vivo studies on colorectal cancer stem cells reconfirmed 
the effect of prodigiosin on the upregulation of p73 and 
restoration of p53-mediated apoptotic pathway [87].

α‑TEA (RRR‑α‑tocopherol ether‑linked acetic acid 
analog)

α-TEA is a small bioactive lipid that upon combinatorial 
treatment with doxorubicin (DOXO) or cisplatin (CDDB), 
reconstitutes the p53 tumor suppressor pathway via p73 
mediated, p53-independent manner [90]. This combina-
torial treatment induced apoptosis, cleavage of caspase-8 
and caspase-9, and induction of expression of p73, phos-
pho-c-Ab1, and phospho-JNK protein in triple-negative 
breast cancer cells (TNBC). p53 downstream targets like 
CD95/APO-1 (Fas), death receptor-5, Nova, and Bax, as 
well as Yap, were also induced because of the combinato-
rial treatment [90]. siRNA-mediated knockdown of p73, 
c-Abl, JNK, or Yap shows that p73 is a critical player in 
the induction of apoptosis and related mechanism upon 
combination treatment [90].

Conclusions and future prosectives

Given the aggressive role of mutant p53 protein in promot-
ing carcinogenesis and resistance to the existing drugs, 
the goal to reactivate mutant p53 has become requisite. 
Its been more than three decades of discovery of p53 
and has been a long journey to understand the gain-of-
function approach of mutant p53 to promote oncogenesis. 
Only recently, the concept of targeting mutant p53 have 
gained the velocity. The scientific literature now evident 
the application of various compounds, molecules and natu-
ral products to restore mutant p53 and few of them have 
reached clinical trials. These studies have suggested the 
sincere efforts of scientists and clinicians to curtail the 
notorious behaviour of mutant p53 by reactivation strate-
gies. The heterogeneity of tumors and mutant p53 poses a 

greater challenge for the development of efficient, specific 
and safe compounds.

It is the time to dust off various mechanisms and the 
targets of mutant p53 through which it functions as an 
oncogene. Elucidation of exact mechanisms of mutant p53 
interactions and downstream signaling would provide new 
insights for the discovery of therapeutics. Further inves-
tigations would be required to assess the advantages of 
these compounds over conventional chemotherapy in beat-
ing cancer cell’s strategies for proliferation and survival.
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