


QBASIC Programming Without Stress2

The free online version





QBASIC Programming Without Stress4

CHAPTER ONE

INTRODUCTION

That Computer is changing the world is no longer news. What comes

to the curious mind is “how do I take part in the change?” One can

choose to be a computer user or maker or both. By computer user I mean

a person that makes use of facilities provided by the computer maker

such as software or hardware. The computer maker in this context is the

person who makes the hardware or the software used on a computer.

This book focuses on how to develop good software. A piece of

software is a set of instructions for a computer to execute. Just as human

beings understand different languages so does a computer. On the larger

scale a computer understands “Low Level Language” and “High Level

Language”, some books include “Intermediate level”.

A computer understanding of a “language” means that it can take

instructions based on the “language” used. The “low level language” is

the machine code (Assembly language” which is mostly machine-

specific. The high level language unlike the low level is close to human

language like English; Arabic or Chinese. The high level language is not

strictly machine-specific. Some high level languages interact directly

with the microprocessor so they are justifiably termed Intermediate level

language as earlier mentioned. JAVA, COBOL FORTRAN and BASIC

are some examples of the high level languages where C and C++ are

examples of intermediate level. Assembly language is a low level

language.



QBASIC Programming Without Stress5

At one time or the other the reader must have seen a computer or at

least a digital wrist watch. The activities of a computer are guided by

programs. The aim of this text is to give the reader a wide practical scope

in programming with QBasic. However, it should be noted that QBasic is

not all in all. As the name tries to portray (BASIC: An acronym standing

for Beginners All-purpose Symbolic Instruction Code). QBasic is the

Microsoft Corporation Version of BASIC, where QBASIC stands for

Quick BASIC.

This book is written for learners from any field (Science,

Engineering, Accounting and so on). The projects and the working

examples take a form that applies to these fields. The tips (Side Talk) are

given based on the author’s experience, over six years in teaching and

programming BASIC.

§1.1 STARTING UP

A great step you have taken

is “you’re having this book”. You

can always start to learn computer

from any point so far you have interest. Starting programming could be

taken from any language depending on your level of understanding but a

very good starting point is BASIC. After understanding a programming

language it is very easy to learn other languages. Start it up now and

there shall be no regrets.

SideTalk
You may skip to Chapter Two if you have
been programming before.



QBASIC Programming Without Stress6

§1.1.1 What you can do with programming

With programming you can achieve various mundane tasks but

compulsory tasks with ease. In the banking industry, say, hundreds of

thousands of customers have to be attended to all having different

problems. With well-developed software, it would only take a couple of

minutes to attend to a meaningful number of customers relative to the

good old days before computers. Not only here we find programming

applicable in Census, Biometrics, Statistical Analysis, Forecasting et

cetera. Basically, everything done with computer is about programming.

§1.1.2 Program Users and Program Developers

These two categories of people are computer literates. The

program users depend on the intrinsic expertise of the program

developers. As a program developer you are indeed a program user for

you cannot develop software without using it.

A program developer is otherwise known as Programmer. There

are various categories of programmers; the high level language

programmers write High level languages while Low level language

programmers write low level language although a person can do the two.

It is more “difficult” writing low level than high level.

Program developing in most cases involve a group of program

users and at times many programmers handling different subroutines

depending on the complexity of the software to be developed.

After religiously following the book you can be sure of joining

the league of excellent programmers. You are being prepared for a sound

ground in programming with the text.



QBASIC Programming Without Stress7

§1.1.3 Application Packages

Program users depend on software called application packages.

Application packages are computer programs carefully developed to suit

a specific task. A good example of an application package is AutoCAD

2004TM, although not developed with QBasic. You can develop

application packages for yourself or an establishment using BASIC. I

have done it before.

In the package form, the code is no longer ordinarily editable.

The code would have been converted to executable forms (.exe) format.

Trying to edit the .exe format will corrupt the file usually in ASCII

format.

§1.1.4 Should I Proceed?

At this point you should know if you want to be a developer or a

user. Programming is my hobby, it is fun to program. It may be

challenging in the very beginning but as you move on and practice with a

computer you will appreciate it better.

Remember, no knowledge is waste. It may seem not very relevant

now but you never can tell. Do not think programming is about stories

and lots of talks as you have been reading from the introduction, this is

just to whet your appetite.

§1.1.5 Versions of BASIC

BASIC, Beginners All-purpose Symbolic Instruction Code has

developed over the years. It has various versions but all the versions are

closely related. Some differ by numbering while others by some syntax



QBASIC Programming Without Stress8

differences. This book is not going to deal with the differences or

metamorphosis of BASIC. As it is worth mentioning for academic

purposes, we have the following versions to mention some: GWBASIC,

PC-BASIC, STRUCTURED BASIC and QBASIC.

§1.2 QUIZ

Where do you type the BASIC code you develop for computer to

execute?

(Attempt: IDE: Integrated Development Environment)

§1.3 PROJECT

Install QBASIC on your system on the Directory C:\QB45\ or

D:\QB45\ or F:\QB45\ or your most convenient drive (not on a floppy

disk). Ensure the help files are also installed.

Run the file from the command prompt, say, C:\QB45\QB.exe

ENTER study the default environment.

Create a folder named MISC on your hard disk at the locations

C:\MISC\ ( or the appropriately chosen drive above-this folder

(Directory) shall be used in the book.



QBASIC Programming Without Stress9



QBASIC Programming Without Stress10

i. Boil water
ii. Quickly add “gari”
iii. Stir to blend
iv. Ready for eating
v. Stop/Finish

Fig 2.1.1 Algorithm for “eba” making

CHAPTER TWO

§2.1 DEVELOPING A PROGRAM

This chapter will take you through the basic of what it takes to

develop a (BASIC) program. The steps are similar to what it takes in

developing most other .programs.

§2.1.1 Algorithm

This is broken down and summarized steps to execute a plan. It

“details” the “hows” of execution. A computer does not however

understand Algorithm, but it is one of the first steps in developing a

program that will not “grow old” before death. Some programmers have

the habit of just starting the code without the preliminaries and find out

later that the code is not doing what it is expected to do.

The algorithm below shows the steps to make “Eba”

The chronological order above is quite easy to follow but may be

misleading. The algorithm does not specify the quantity of water, how to

recognize the boiling water, amount of “gari” what to use to stir, what

level of blend and the temperature to be considered as cool. The

algorithm may be further broken down.



QBASIC Programming Without Stress11

Depending on the style you wish to be adopting, your algorithm

may be simple or complex. For academic purpose it should be easy to

follow by others for you cannot tell where your algorithm may be put to

special use.

§2.1.1 Flowchart

A flowchart is a schematic

representation of algorithm or the program

flow using some set of standard symbols. The

various basic symbols used are shown in Fig 2.1.2a.

SideTalk
Computer does not understand
flowchart. It is not a language!



QBASIC Programming Without Stress12

Start of Program
Start

Program flow direction

Output/Input Operation

Assignments/Statements

Connector

Decision box
?

End programStop

Fig 2.1.2a Basic Symbols used in Flowcharting

The flowchart of fig 2.1.2b shows a simple flowchart for implementing

the algorithm of Fig 2.1.1

SideTalk
A flowchart without
direction is as useless
as writing with black pen
on a black book!



QBASIC Programming Without Stress13

A decision

An input

Process starts

An input

An input

An output

A decision

A command

A decision

A command

End of process

Start

Supply 50Cl water

Apply Heat

Is water boiling?
No

Yes

Add 48Cl Gari slowly

Stir

Is the blending Ok?
No

Remove heat

Is the lump cool enough?
No

Eat with soup/stew

Stop

Fig 2.1.2 Flowchart for making 50Cl “eba”



QBASIC Programming Without Stress14

SideTalk
A computer does not
understand pseudocode

§2.1.3 Pseudocode

A pseudocode is a tool used by programmers to represent a

flowchart or it could be seen as an Algorithm made

to look like real codes. It is human-language-like. If

you understand English, you write your pseudocode

with English Language. A pseudocode is generally

easy to convert to any programming language. The listing of LST2.1.3

shows the pseudocode for the implementation of the “eba” making.

LST 2.1.3 Pseudocode for making “eba”

STEP 0: START THE PROCESS
STEP 1: SUPPLY 50Cl water
STEP 2: L1: INPUT HEAT

L2: REPEAT L1 UNTIL WATER BOILS
STEP 3: INPUT GARI TO THE BOILING WATER
STEP 4: L3: STIR THE LUMP

L4: IF THE LUMP IS BLENDED ENOUGH DO PROCEED TO L5 ELSE K3
STEP 5: L5: PLACE LUMP CONTAINER IN COLD WATER

L6: TAKE THE LUMP TEMPERATURE T
L7: IF T<= SET TEMPERATURE GO TO L8 ELSE L6
L8: LUMP IS READY

STEP 6: STOP/FINISH



QBASIC Programming Without Stress15

§2.1.4 Quadratic Equation Example

A quadratic equation is an equation of the form aX2 + bX +c = 0,

where a≠0 and a, b, c are constants. A quadratic equation is to be solved 

for X. many application problems in Mathematics, Engineering,

Economics lead to quadratic equation. Developing a program to

implement quadratic equation is worthwhile.

Of the many methods of solving a quadratic equation, we choose

the most viable to program. The quadratic formula method solves all

forms of quadratic equation using the formula:
a

acbb
X

2

42 
 The

term D = b2 – 4ac is called the DISCRIMINANT. The discriminant

determines the type of solution obtainable from an equation

I shall develop the Algorithm, flowchart and a pseudocode to

implement quadratic equation solving.

1. OBTAIN THE COEFFICIENT a, b, AND c
2. COMPUTE DISCRIMINANT
3. USE QUADRATIC FORMULA TO SOLVE FOR X
4. OUTPUT RESULTS
5. FINISH
Fig 2.1.4a Algorithm for Quadratic Equation



QBASIC Programming Without Stress16

D<0D=0

a=0

a ≠ 0

Input a, b, c

a:

D = b 2
- 4 a c

D:

O/P

E I

Start
E

O/P

I

D = - D

X1 = Re + j Im

X2 = Re – j Im

Output X1,
X2

Stop

O/P

Fig 2.1.4b Flowchart for Quadratic Equation

SideTalk
Follow the flow



QBASIC Programming Without Stress17

LST2.1.4 Pseudocode for Quadratic Equation

S T E P 0 : S T A R T
S T E P 1 : { * A C Q U I S I T I O N O F D A T A * }

L 1 : I N P U T a , b , c
L 2 : { * V A L I D A T I O N * }

I F a = O D O R E P E A T L 1
S T E P 2 : { * D I S C R I M I N A N T * }

L 3 : D = b 2 - 4 * a * c
S T E P 3 : { * E Q U A T I O N S O L U T I O N T Y P E S * }

L 4 : I F D = 0 T H E N G O T O L 9 { * E Q U A L R O O T S * }
L 5 : I F D < 0 T H E N G O T O L 1 1 { * I M A G I N A R Y

R O O T S * }
L 6 : I F D > 0 T H E N G O T O L 7 { * R E A L R O O T S * }

S T E P 4 : { * S O L U T I O N S * }

L 8 . 1 : G O T O L 1 6 { * O U T P U T * }

L 9 :

L 1 0 : X 2 = X 1
L 1 0 . 1 : G O T O L 1 7
L 1 1 : D = - D { * M A K E D P O S I T I V E * }

L 1 4 : X 1 = R e + j I m
L 1 5 : X 1 = R e - j I m

S T E P 5 : { * O U T P U T * }
L 1 6 : P R I N T O U T X 1 , X 2 , E Q U A T I O N _ T Y P E

S T E P 6 : { * E N D P R O C E S S * }
L 1 7 : S T O P



QBASIC Programming Without Stress18

SideTalk
This book adopts the style

using Bold and Uppercase for
Keywords

A keyword is the “unit
word” in the programming
language and is not used as a
variable!

§2.1.5 BASIC CODE

This is the actual language this book is preparing you for. This

chapter is not enough to give a full mastery

of the code. A sample code is written in

BASIC to perform simple addition is

shown in the listing of LST2.1.5.

10 REM Simple Addition Program
20 CLS
30 DIM X, Y, Z AS INTEGER
40 INPUT X, Y
50 LET Z = X + Y
60 PRINT “ X + Y =” ; Z
70 END



QBASIC Programming Without Stress19

§2.2 SUMMARY

Developing a good program involves using any or all of the tools

vis-à-vis Algorithm, Flowchart and Pseudocode. Using any of these tools

not only helps you to write good code but gives others reading your code

better meaning. It is easier to understand your solution from these tools

than going through your code!

§2.3 QUIZ

What is the difference between a connector and Start/Stop

symbols of a flowchart?

(Connector is smaller)

§2.4 PROJECT

Develop a flowchart to attend and diagnose a patient for Malaria.

The flowchart should prescribe drug, sleep or otherwise. Your flowchart

should be standard.



QBASIC Programming Without Stress20



QBASIC Programming Without Stress21

CHAPTER THREE

§3.1 VARIABLES AND ASSIGNMENTS

In analytical sciences and other fields variables are used to define

real terms, for example I=PRT/1ØØ used in simple interest computation

has the variables P, R, T and I. in biological science, the rate of growth

of bacteria follows the equation N=N0e
λt where N, N0, λ and t are

variables. In fluid mechanics, the Laplacian equation has variables x, y, z

and t as in the steady flow equation 0
2

2

2

2

2

2
















t

z

t

y

t

x

Though variables appear in different fields the value they can

“hold” differ. For example I in the first example is in %, t in the second

example is a time and x in the third is in metres. In computer

programming it is necessary that a code defines the nature of data a

variable can hold. By default, QBASIC allows a variable to be used

without prior declaration in non-string usage.

To the QBASIC programmer, variables can take any of the form

Integer, Long, Single, Double or String. Deciding what type a variable

should take depends on experience. The table below gives a guide on the

data range for the variables.



QBASIC Programming Without Stress22

TABLE 3.1 VARIABLES

VARIABLES IDENTIFIER VALUE RANGE

INTEGER %
-32768 TO +32767

(16 bit Signed Integer)

LONG &
-2147483648 TO +2147483647

(32 bit Signed Integer)

SINGLE !
7 digits accuracy- Single

precision floating point - ++

DOUBLE #
16 digits accuracy – Double

precision floating point - ++

STRING $

Alphanumeric – Theoretically 2

billion characters. If followed by

*n where n is an integer, it is a

fixed length byte - see TYPEs

++(Limited accuracy at extremes for values are approximations)

Floating point variables are the exponential valued terms. 3X1Ø15

is a floating point value. The value is the same as 3e15 or 3E15

§3.1.2 DECLARATION OF VARIABLES

As a good programming style, good enough to develop on other

programming languages, it is wish enough to make declaration of

variable names as a type. In Africa, people are named by events, wishes

or otherwise. Some programmers use this method when naming

variables. The keywords DIM, REDIM, or DIM SHARED are used.

The abridged program listing LST3.1.2 shows declaration of variables.



QBASIC Programming Without Stress23

SideTalk
It is a preferred style to name variable like
MatA(); Tel; DOB; NameCandidate rather
than using, A; T; D; N. Note carefully that
space is not allowed within a variable and
keywords are not allowed to be used as
variables.

SideTalk 2
QBASIC allows either of the following forms:
1Ø DIM X AS INTEGER ‘ or DIM X%
2Ø DIM Age AS STRING ‘ or DIM Age$

SideTalk
By default a non-string variable has a value
Ø while a string variable has empty value

SideTalk 2
X=2+5Y
2 + 5y=X are good expressions/equation in
Mathematics. The first is permitted in
QBASIC but not the second

§3.1.3 Assignment in BASIC

To make assignment in

programming is to assign value to

variable. The BASIC assignment is

similar to the equality of a variable to

a value or expression in

Mathematics. Unlike in Mathematics,

the expression or the value cannot be

on any side of choice but on the right.

It is easy to point out that

X=X+5 does not make any sense in

Mathematics as it means X – X = 5 or

Ø=5! In BASIC programming

X=X+5 means assign to a variable X

the last value of X plus 5. If in the

lines of Code preceding X=X+5, the

LST3.1.2 Declaration of Variables [Abridged]
.

.
5Ø DIM X AS INTEGER
6Ø DIM Age AS STRING
7Ø REDIM MatrixA(5Ø,5Ø)
8Ø DIM Ratio AS SINGLE
9Ø DIM SHARED myUsableMat (15, 15) AS STRING
.
.
.



QBASIC Programming Without Stress24

value of X was, say, X=1Ø, the assignment statement X=X+5 means

X=15. If the same line is executed again, the value of X becomes 2Ø.

The abridge program listing of LST3.1.3 shows simple assignment and

output on the right.

LST3.1.3
.
.

. OUTPUT

5Ø LET X=6
6Ø LET X=X+1Ø
7Ø PRINT X 6
8Ø PRINT X+1Ø 16
9Ø LET X=X+1Ø
1ØØ PRINT X 26
.
.

The statement in line 8Ø will not increase X by 1Ø but only prints out the value of
X+1Ø



QBASIC Programming Without Stress25

SideTalk
The misuse of / and \ will not flag
error but will cause a semantic error.
The code 1Ø Y=5/2

2Ø X=5\2 will give different
values 2.5 and 2 respectively.

BASIC OPERATORS

* For multiplication
+ For Addition/Increment/String concatenation

- For subtraction/decrement
/ For division
\ For integer division

§3.1.4 Operation on variables

There are basic operations possible on variables as it is obtained

in Mathematics. The basic operators used in BASIC are:

§3.1.4.1 String Manipulation

Strings are alphanumeric. This

implies that they can contain special

characters including the special ASCII

characters. Variables for values like

telephone numbers, social security number (as used in the US), names of

people or Objects and so forth are to use string variables. The code listing

of LST3.1.4a shows a single handling of string variables.



QBASIC Programming Without Stress26

Strings are extensively used in programming, it therefore require

the knowledge of how to be manipulated. QBASIC has some built-in

functions to manipulate strings.

I will maintain that practicing on a computer is the best way to

put all these theory into practice. The example following gives a good

understanding of string manipulation.

LST3.1.4a Sample String handling

1Ø DIM Age AS STRING

2Ø DIM Sex AS STRING

3Ø DIM Names, Tel AS STRING

4Ø CLS

5Ø PRINT “You are welcome”, “ Respond to the following :”

6Ø PRINT: PRINT

7Ø INPUT “Type your name:”; Names

8Ø INPUT “Type your sex:”; Sex

9Ø INPUT “Type your age:”; Age

1ØØINPUT “Type your Telephone Number:” Tel

11Ø CLS

12Ø INPUT “PRESS ENTER”, REP$

13Ø PRINT: PRINT: PRINT

14Ø PRINT “THE ID JUST ENTERED >:”

15Ø PRINT Names; Sex; Age; Tel

16Ø END

SideTalk
Repeating the listing LST3.1.4 without
the lines 1Ø, 2Ø an d 3Ø will cause a
runtime error for lines 7Ø, 8Ø an d9Ø as
the variable Names, Sex and Age will be
assumed to be non-string. Adding the $
sign at the end of the variables can
prevent the error as in line 12Ø.



QBASIC Programming Without Stress27

LST3.1.4b String Manipulation

52Ø A$= “What is the length of this word ?”

53Ø Lt= LEN(A$)

54Ø PRINT “The length is =”Lt

55Ø B$= “QBASIC Programming…”

56Ø C$ =UCASE$(B$)

57Ø PRINT C$

58Ø D$=LEFT$(B$, 6)

59Ø E$=RIGHT$(A$,6)

6ØØ F$=MID$(C$,8,7)

61Ø G$= MID$(C$,1,6)

62Ø H$=LCASE$(G$)

63Ø PRINT “The manipulated strings output >”

64Ø PRINT C$

65Ø PRINT D$

66Ø PRINT E$

67Ø PRINT F$: PRINT G$: PRINT H$

.

.

.

SideTalk
The output of the functions in listing LST3.1.4b should be
carefully studied. The output screen below shows the result
of the abridged code:
Hint: spaces are included in the counting of strings for they
are also strings. (See 3.1.4.1)



QBASIC Programming Without Stress28

Use the syntax format below for the string functions:

LEN (string or String Variable) Read Only

UCASE$(string or String Variable) Converts to upper case

LCASE$(string or String Variable) Converts to lower case

RIGHT$(string, length of string from right) Read only

LEFT$(string, length of the string from left) Read only

MID$(string, start position, length of variable) Read only

OUTPUT SCREEN

The length is 33
QBASIC PROGRAMMING…
The manipulated strings output >
QBASIC PROGRAMMING… C$
QBASIC D$
word? E$
PROGRAM F$
QBASIC G$
qbasic H$

Press any key to continue
LEN(“Adeniyi”) 7
UCASE$(“Adeniyi”) ADENIYI
LCASE$(“Adeniyi”) adeniyi
RIGHT$(“Adeniyi”, 3) iyi
LEFT$(“Adeniyi”,3) Ade
MID$(“Adeniyi”,2,5) deniy



QBASIC Programming Without Stress29

§3.1.4.2 Concatenation of strings

This is the “merging” of two or more strings parts to form a single

string with the use of the “+” operator. Strings can be concatenated after

manipulation or concatenated and manipulated. For example we may

want the first letter of a name to be uppercase (capital letter) and the rest

be in lower case. The listing of LST3.1.4c illustrates simple

concatenation of strings.

1ØØØ Part1$= “University”

1Ø1Ø Part2$ = “of”

1Ø2Ø Part3$ = “Ilorin”

1Ø3Ø Part$ =Part1$ + Part2$ + Part3$

1Ø4Ø PRINT Part$, UCASE$(Part$)

1Ø5Ø Fullname$ = “ADENIYI”

1Ø6Ø FirstLetter$ =LEFT$(Fullname$, 1)

1Ø7Ø Remain$ = MID$(Fullname$, 1, 6)

1Ø8Ø Formatted$ = UCASE$(Firstletter$) + LCASE$(Remain$)

1Ø9Ø PRINT Formatted$, Fullname$

SideTalk
The only operator that works in string
manipulation, of the operators described
above, is the concatenation operator “+”

OUTPUT SCREEN
University of Ilorin
UNIVERSITY OF ILORIN
Adeniyi ADENIYI

Press any key to continue



QBASIC Programming Without Stress30

SideTalk
To print a string, you put
quotation marks but a
string variable does not
need a quote e.g “A $” is
not it.

§3.2 OUTPUT STATEMENT

The method used to get out the result of calculations or strings

and other variables either to the monitor or hard copies on paper or to

memory devices are by output statements. Although you have coming

across some output statements, this section is dedicated to output

statements.

§3.2.1 Print and Print Using

PRINT is a keyword in QBASIC for outputting to the monitor

(Screen). It is very easy to use but may require some formatting for a

“beautiful” output. PRINT 2 will print 2 to the screen, the same is to

PRINT “2” but the 2 here is a string. This will make more sense by

comparing the output of PRINT “2*2” and PRINT 2*2. While the

output of the former is 2*2 the latter gives 4.

Printing with gaps is possible by use of

comma and semi-colon. The former gives a wider

gap than the latter. The codes PRINT 1,2,3,4 and

PRINT 1;2;3,4 look similar but the outputs are

respectively:

1 2 3 4 and 1 2 3 4 (notice the printing zones)

PRINT USING is also a keyword in QBASIC like PRINT but

has special formatting characteristic which will require special skill to do

with PRINT. The syntax is PRINT USING “format string”, [variables].

The listing of LST3.1.2 gives a simple use of PRINT & PRINT USING.



QBASIC Programming Without Stress31

LST3.2.1 Print and Print Using

1Ø CLS

2Ø INPUT “Enter the number of males”;Nm

3Ø INPUT “Enter the number of females”;Nfm

4Ø PRINT USING “The class has ###.# % of males”’1ØØ*Nm/(Nm+Nmf)

5Ø PRINT “The percent of females =”;1ØØ*Nmf/(Nm+Nmf);”%”
You can get output like:

The class has 23.75 of males

The percent of females =76.3333333333333333%

Observe the formatting of the first one.
You should try run the following code:

10 CLS
20 DIM FirstName$, LastName$
30 FirstName$ = "Akinwale"
40 LastName$ = "Ajasin"
50 PRINT USING "!"; FirstName$; LastName$
60 'Line 50 prints the 1st letters of the two string expressions i.e. AA
70 PRINT USING "\ \"; FirstName$; LastName$
75 'Eight spaces between backslashes,
80 'prints Ten characters from FirstName$ i.e. Akinwale
90 PRINT USING "\ \"; FirstName$; LastName$; "!!"
95 'Three spaces, prints Akinwale and a blank. Note the overlap
110 PRINT USING "! "; FirstName$; 'First character from FirstName$ and
120 PRINT USING "&"; LastName$ 'all of LastName$ on one line i.e. A Ajasin
130 ' Note there is a space after !
140 END

SideTalk
The # sign is used to represent figures
(numeric). If your program is that of giving
values and the unit it is good to use PRINT
USING. For temperature program we can
employ the style below:
PRINT USING “Temperature=###ØF”; Temp
For Pressure:
PRINT USING “Pressure=###e##N/m2”; Pres
For Law or Constitution quoting:
PRINT USING “Section ##, Sub-Section ## ”; St,
Sbst

§3.2.2 Printing to file/LPRINT

As your programming

sills increase, you may need to

handle files or “big” data as well

as printing out results on paper

from line printers. QBASIC is

equipped with this facility.



QBASIC Programming Without Stress32

LST3.2.2a Printing to file

1Ø REM Open the file for output mode for result only

2Ø OPEN “C:\MISC\test.dat” FOR OUTPUT AS #1

3Ø PRINT “The other Prints are output to file not to the screen as this.”

4Ø PRINT #1,“This is the beginning of the file”

5Ø PRINT #1“A new line on the File”

6Ø PRINT #1, 5ØØ-2ØØ*1Ø

7Ø CLOSE #1

8Ø…..

SideTalk
To view the output of the Simple code listing
LST3.2.2.a, you can use the explorer, notepad
or follow the following steps:
File | Dos Shell > On the DOS prompt enter Cd\,
enter Cd Misc, next enter Edit Test.dat to view
the result. Use File | Exit to close the window
then enter Exit on the Dos prompt to return to
QBASIC environment or as appropriate.

Printing to file requires that you open file for the type of access

you require first then use the PRINT #fileNum[,…] then CLOSE the

OPEN file channel. The listings of LST3.2.2 show a simple use of

printing to file. See Chapter Seven for more files.

LPRINT: You can send output to paper using the LPRINT

keyword. The output will be similar to what you see on your screen using

the PRINT keyword. To run the code with LPRINT statement, you must

ensure you have a line printer and paper. It should be noted that paper

margin etc can be set from QBASIC. To see more on this press F1 on the

typed word LPRINT.



QBASIC Programming Without Stress33

LST3.2.2b Using LPRINT

1Ø LPRINT “This is from QBASIC”

2Ø LPRINT “_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _”

3Ø LPRINT: LPRINT: LPRINT

4Ø A$=” I am learning fast”

5Ø Money =4ØØ

6Ø LPRINT USING “Please pay =N= ###.## K because”, Money;

7Ø LPRINT A$

8Ø END

SideTalk
REM is a keyword meaning
Remark. QBASIC ignores
everything following REM on the
same line

Run the code in LST3.2.2b if you have a printer connected and

powered. It will run perhaps only with a line printer.

§3.2.3 WRITE #

WRITE # and PRINT # are similarly used but the output may

vary in some cases. WRITE # does not put superfluous spaces as does

PRINT #. It is better to use PRINT # with LINE INPUT # and WRITE

# with INPUT #. Run the code listing LST3.2.3a and LST3.2.3.b. Open

the two output files and make comparison as regards the output formats

and the memory sizes.



QBASIC Programming Without Stress34

LST3.2.3a WRITE #

1Ø CLS

2Ø REM A program written for comparison sake

3Ø REM

4Ø OPEN “C:\MISC\DUMMY1.TXT” FOR OUTPUT AS #1

5Ø WRITE #1, “This is the WRITE program Output”

6Ø WRITE #1, 1, 2, 3,4,5,6

7Ø WRITE #1, “A”, “B”, “C”, “D”

8Ø DIM Counter%

9Ø FOR Counter%1 =1 TO 5Ø: REM A looped Printing

1ØØ WRITE #1, Counter%;

11Ø NEXT

12Ø PRINT “Done”

13Ø CLOSE 1: REM Close the opened file

14Ø END



QBASIC Programming Without Stress35

§3.3 INPUT STATEMENT

There are various sources of input to a computer system. Input

can be from keyboard, file, mouse, ports, joystick and so forth of concern

here are the keyboards and files.

§3.3.1 Input / Input #

INPUT: Used to get data from the keyboard. The data is accepted

after pressing the return (Enter) key. The INPUT$(val), where val is a

number specifying the number of keys pressed, does not require the

return key to accept value. Another family of the input is the INKEY$. It

is any key pressed or not pressed. If a key is not pressed the value of

INKEY$ is “”.

LST3.2.3b PRINT #

1Ø CLS

2Ø REM A program written for comparison sake

3Ø REM

4Ø OPEN “C:\MISC\DUMMY2.TXT” FOR OUTPUT AS #1

5Ø PRINT #1, “This is the PRINT # program Output”

6Ø PRINT #1, 1, 2, 3, 4, 5, 6

7Ø PRINT #1, “A”, “B”, “C”, “D”

8Ø DIM Counter%

9Ø FOR Counter%1 =1 TO 5Ø: REM A looped Printing

1ØØ PRINT #1, Counter%;

11Ø NEXT

12Ø PRINT “Done”

13Ø CLOSE 1: REM Close the opened file i.e. Dummy2.txt

14Ø END



QBASIC Programming Without Stress36

LST3.3.1a Using Input

1Ø CLS

2Ø INPUT X

3Ø INPUT “Enter the value of Y”; Y

4Ø INPUT A, B, C

5Ø LET D = X + A + B + C + Y

6Ø PRINT “”The sum of all values entered =”; D

8Ø END

INPUT#: This is used to “read” data from an input file or a

random access file. Before INPUT# could be used, the data format must

be known to avoid

error, such trying to

read a string like

integer. The program

listing of LST3.3.1

shows a simple use

of the INPUT

statements.

The response of line 4Ø is not as friendly as line 3Ø. Line 4Ø

gives a question mark but line 3Ø requests by printing the quoted string

“Enter the Value of Y”. The values to be input are specified after the

quotation. The punctuation after the quotation determines whether there

will be a question mark or not. The statements:

INPUT “Do you like Rice”; Ans$ and INPUT “Do you like Rice?”, Ans$ will

be the same. While the first puts a question mark as result of the

semicolon, the second does not include a question mark because of the

comma but the question mark shown is the question mark in the

quotation. Use comma or semi-colon depending on if you are asking

question or requesting.

The listing of 3.3.1b shows a simple program using INPUT$ and

INKEY$ functions. You will come across some codes which you will

soon get to learn about.



QBASIC Programming Without Stress37

LST3.3.1b Using INKEY$ and Input$

1Ø CLS

2Ø PRINT “WELCOME TO AN INTERACTIVE”;

3Ø PRINT “SESSION”

4Ø PRINT: PRINT

5Ø PRINT “Press C to Continue”

7Ø DIM Reply AS STRING

8Ø Reply=INPUT$(1)

9Ø IF Reply= “X” THEN 14Ø

1ØØ IF Reply= “C” THEN

11Ø PRINT “Press Any Key to Continue”

12Ø DO : LOOP UNTIL INKEY$ <>””

13Ø END IF

14Ø CLS: PRINT “Done”

15Ø END

SideTalk

Putting a Semicolon to the end of a

PRINT Statement will cause the next

Print Statement to Print immediately

following it rather than go to the next

line. See lines 20 and 30

A colon implies a new line see line

120. It is useful when you mistakenly

skipped the line and you don’t want to

erase. It should be noted that a colon

after a REM Statement will not be

EXECUTED and that the first command

is executed first.



QBASIC Programming Without Stress38

Of the INPUT# family is the LINE INPUT#, it is used to “read”

from a Sequential file (see Chapter Seven). It takes the whole content of

a line in the file. The program listing of LST3.3.1b creates a file and uses

both INPUT # and LINE INPUT # to get records from the Created file.

LST3.3.1c Using INPUT # and LINE INPUT#

1Ø CLS

2Ø DIM ClientID, NumCalls AS INTEGER

3Ø DIM Tel$, NameC$: DIM m%, I%

4Ø OPEN “C:\MISC\LINP.txt” FOR OUTPUT AS #1

5Ø REM Line 4Ø Opens a file to be written to

6Ø ‘This is same as REM i.e the Apostrophe

7Ø CLS

8Ø PRINT “A SIMPLE TELEPHONE BOOK”

9Ø INPUT Enter the number of Clients”; Num%

1ØØ FOR I% =1 TO Num%

11Ø INPUT “Client Name”, NameC$

12Ø INPUT “Client Telephone Number”; Tel$

13Ø INPUT “Number of Calls made”; NumCalls

14Ø ClientID=1ØØØ= I%

15Ø PRINT #1, ClientID; NameC$; Tel$; NumCalss

16Ø PRINT

17Ø NEXT

18Ø CLOSE 1: DIM Rec

19Ø CLS: OPEN C:\MISC\LINP.txt” FOR INPUT AS #2



QBASIC Programming Without Stress39

§3.3.2 Read and Data

If have you have small size data for analysis or manipulation,

instead of always supplying the data at run-time (every time you run the

program) you can use READ and DATA pair. It is to be noted that

2ØØ PRINT “THE Telephone Book Content”

21Ø PRINT “ID”, “NAME”, “TEL-NUM”, “CALLS”: PRINT

22Ø FOR I%=1 TO Num%

23Ø LINE INPUT #1, Rec$

24Ø PRINT Rec$

25Ø NEXT

26Ø REM The code of 22Ø-25Ø is similar

27Ø ‘ to the listing below:

28Ø CLOSE 2

29Ø OPEN “C:\MISC\LINP.txt” FOR INPUT AS # 1

3ØØ REM Note that once you CLOSE the file you can

31Ø ‘use the same number notice that lines 29Ø and 4Ø are the

315 ‘ same

32Ø PRINT

33Ø FOR I%=1 TO Num%

34Ø INPUT #1, ClientID, NameC$, Tel$, NumCalls

35Ø PRINT ClientID, NameC$, Tel$, NumCalls

36Ø NEXT

37Ø REM Line 34Ø requires that you know the format of the file

34Ø CLOSE 1

39Ø PRINT “Done”

4ØØ END



QBASIC Programming Without Stress40

READ and DATA are complimentary; you cannot read without data

otherwise you encounter a runtime error.

The format by which you wish to read your data is the way you

store it. The program listings of LST3.3.2a give a simple use of the

“tool”.

This program prints out the whole Data. Note that line 4Ø and 6Ø

are the same but they do different things. The first READ reads four data

in the DATA statement. It is not compulsory that you spilt the data as

done in 2Ø and 3Ø. The entire data can be on a single line or split into as

many data lines as desired. They may not necessarily be following i.e.

one of the data line may be placed in line 75 while the other in 2Ø.

QBASIC does see the data as data not as separate data.

LST3.3.2a Using Read and Data I

1Ø CLS

2Ø DATA 5, 1Ø, 12, 14

3Ø DATA 6, 7, 9, Ø

4Ø READ A, B, C, D

5Ø PRINT A, B, C, D

6Ø READ A, B, C, D

7Ø PRINT A, B, C, D

8Ø END

SideTalk

You place DATA anywhere in the

Program (Read will search for its

colleague) except in Loops or

subroutines depending on the

neatness you desire for your code.



QBASIC Programming Without Stress41

LST3.3.2b Using Read & Data II

1Ø CLS

2Ø DATA “Nigeria”, “Ghana”, “Uganda”, “Niger”

3Ø DATA “Cameroon””, “S/Africa”, “Congo”

4Ø DATA 196Ø, 1956, 1955, 196Ø, 1963, 199Ø, 2ØØ1

5Ø DATA “COUNTRIES”

6Ø DIM I%: DIM Country$: DIM Yr

7Ø FOR I%=1 TO 7

8Ø READ County$

9Ø PRINT UCASE$(Country$), “Number =”,I%

1ØØ NEXT

11Ø FOR I%=1 TO 7

12Ø READ Yr

13Ø PRINT USING “Country Number # was visited in ####”, I%, Yr

14Ø NEXT

15Ø END



QBASIC Programming Without Stress42

If the data were stored as shown below, it would have been easier

to manipulate. Care should however be taken so as not to read a string

data with an integer variable. The program listing of LST3.3.2c is a better

modification of LST3.3.2b. the positioning of the data is not the case but

the format used.

Data can be in excess of the read encountered but the number of

READ encountered (or Read Request) should not be more than available

Data. An error flag is displayed “OUT OF DATA” if such is allowed to

happen.

Running the code below will flag such error:

LST3.3.2c Using Read & Data III

1Ø CLS

2Ø PRINT “Countries Visited and Year of Visit”

3Ø DIM I%, Country$, Yr%

4Ø FOR I%=1 TO 7

5Ø READ Country$, Yr%

6Ø PRINT County$; “VISITED:”, Yr%

7Ø NEXT

8Ø DATA “NIGERIA”, 195Ø, “GHANA”, 1952

9Ø DATA “CAMEROON”, 1953

1ØØ DATA “TOGO”, 196Ø, “NIGERIA”, 197Ø

12Ø DATA “USA”, 2ØØ4, “CANADA”, 2ØØ4

13Ø END



QBASIC Programming Without Stress43

`

The error is flagged when I% =5 (5th time of entering the loop). In

some situations, the same set of data may be required elsewhere after

been read using READ statement, there is a keyword used to refresh

DATA reading “Pointer”. RESTORE is a keyword that is used to start

reading DATA from the first data statement. The listings of LST3.3.2d

show the use of RESTORE statement.

5Ø DATA 4, 8, 13, 42

6Ø FOR I%=1 TO 6

7Ø READ Num%

8Ø PRINT Num%

9Ø NEXT



QBASIC Programming Without Stress44

LST3.3.2d Using RESTORE

1Ø CLS

2Ø DATA Ø.5, Ø.3, Ø.9

3Ø DIM A

4Ø DIM B, C, D AS SINGLE

5Ø READ A, B, C

6Ø D= 4*A – B + C

7Ø PRINT “First Time D=”; D

8Ø RESTORE

9Ø REM Line 8Ø Starts another Read from Data value Ø.5

1ØØ READ D, B, C

12Ø A=D^2+B^2+C^2

13Ø A=4*A

14Ø PRINT “Second Time A= “; A

15Ø REM Removing line 8Ø causes OUT OF DATA

16Ø REM Error flag.

17Ø END



QBASIC Programming Without Stress45

§3.4 SUMMARY

Memory is allocated for the type of variable declared. This

chapter discussed the following variable types INTEGER, SINGLE,

DOUBLE and STRING with emphasis on QBASIC String Manipulation

Functions and Concatenation of strings to suit a desired purpose.

Assignment in mathematics is not as in QBASIC.

Computer takes input from keyboard, files and other sources.

Data is taken in using the keywords INPUT, LINE INPUT and READ,

others are INPUT$ and the INKEY$. Output can be on the monitor, hard

paper or memory devices using PRINT, PRINT # and WRITE#.

§3.5 QUIZ

What is wrong with the following listings?

1Ø my Value=1Ø

2Ø Print = 6Ø

3Ø PRINT #1, “Out of Data”

4Ø DIM A$ AS STRING

5Ø A$=”QUIZ”

6Ø A$=A$* “3RD QUIZ”

7Ø DATA=3, 5, 6, 7

8Ø READ A, B, C, D

9Ø END



QBASIC Programming Without Stress46

Attempt:
1Ø Space not allowed,

use: myValue
2Ø Keyword should not be used as
a variable
3Ø File should not be opened
before bringing to file
4Ø DIM A$ OR DIM AS STRING
5Ø Correct
6Ø * is not allowed to manipulate
Strings but +
7Ø = not required
8Ø Correct
9Ø Correct
-----* Program has no meaning



QBASIC Programming Without Stress47

§3.6 PROJECT

Develop a program starting as described in Chapter 2, to manage

the records of a small shop. The program should be able to print available

stock or record new stock and prices. You have to take into account,

accounting practice, though the simple case: i.e. How to treat a cash book

etc.



QBASIC Programming Without Stress48

Bibliography

 Microsoft QuickBASIC online help

 Gary Cornell (1997) Visual Basic 5 from the Ground Up,

McGraw – Hill, Berkeley, California



QBASIC Programming Without Stress49



QBASIC Programming Without Stress50

CHAPTER FOUR

§4.1 CONTROLLING THE FLOW

This is the heartbeat of programming. A good programmer must

be keen to controlling the flow of the program. The way instructions

go/flow in a code determines the output of a program, therefore, call to

mind the acronym Garbage-In-Garbage-Out-GIGO. This chapter shall

discuss the basic ways to control the actions of the computer using

QBASIC.

Chapter two discussed the skeletal control of program using

flowcharts. It is aimed in this chapter to learn converting ‘those flows’ to

software (QBASIC Codes).

§4.1.1 LOOPING

Looping in this context means doing a particular operation

repeatedly for a ‘period’ controlled by a set condition such as number of

passes through the loop or otherwise as is discussed below. QBASIC has

some looping ‘blocks’ for achieving looping:

FOR-[EXIT FOR]-NEXT loop

DO-[EXIT DO]-LOOP loop

LOOP –UNTIL loop

WHILE-WEND loop

Depending on the situation and/or your ‘love’ for the type they

can be variously manipulated.



QBASIC Programming Without Stress51

§4.1.1.1 FOR-NEXT loop

This is the simplest and ‘mostly used’ looping block. The syntax

is:

FOR Counter = InitialValue to Upperlimit [STEP Increment]

Line(s) of code(s)

[EXIT FOR]

NEXT [counter]

Expressions in the square bracket may be left out depending on

the situation.

If counting is desired in the steps not 1 then the increment step is

to be included. It should be noted that the increment can be negative and

decimals. The listing LST4.1.1a shows a simple use of FOR-NEXT

loops.

LST4.1.1a Using FOR-NEXT
1Ø CLS
2Ø DIM i%, j
3Ø FOR i%=Ø TO 1Ø
4Ø PRINT i%
5Ø NEXT i%
6Ø PRINT
7Ø FOR i%=1ØØ TO 25 STEP -5
8Ø PRINT i%
9Ø NEXT
1ØØ FOR j=Ø.2ØØ TO Ø.2Ø6 STEP Ø.ØØ1
11Ø PRINT j
12Ø NEXT

13Ø END



QBASIC Programming Without Stress52

FOR A=…TO
..

NEXT C

FOR B=…TO ..

FOR C=…TO ..

NEXT A

NEXT B

FOR A=…TO
..

NEXT A

FOR B=…TO ..

FOR C=…TO ..

NEXT C

NEXT B

Fig 4.1.1 FOR-NEXT structure (Nested FOR)

NESTED FOR:

There can be two or more FOR-NEXT statements within one FOR-

NEXT. However, the Nesting of the FORs should start from the

‘innermost’ loop. The structure is as shown in Fig 4.1.1

In some situations a looping may be required to be stopped to

continue with the program, the

optional EXIT FOR statement

comes in after checking a

condition as the listing of

LST4.1.1b shows.

The listing LST4.1.1b

does not have any output but it only aims at showing a sample placement

LST4.1.1b Using EXIT FOR
1Ø CLS
2Ø DIM I%, J%
3Ø FOR I%=5Ø TO Ø STEP -1Ø
4Ø FOR J%=1 TO 7
5Ø IF 2*J%-I% <1Ø THEN EXIT FOR
6Ø NEXT J%
7Ø IF I%\1Ø =4 THEN EXIT FOR
8Ø NEXT I%

9Ø END



QBASIC Programming Without Stress53

of the EXIT FOR. The program will stop when I%=4Ø by the integer

division of line 7Ø. The EXIT FOR of line 5Ø is for the J% loop while

that of line 7Ø is for loop I%. it should be noted that the EXIT of a For-

Loop is inside the loop.

Care should be taken when using ‘Counters’ in a loop. To

understand how non-integer counters may be unpredictable, you may run

the lines of code below and take note of the increment towards the end

part of the output. This point should be carefully taken to avoid some

bugs in your programs. It is most advisable not use integers.

LST4.1.1c Non-Integer counters
1Ø CLS
2Ø DIM foo AS SINGLE
3Ø FOR foo=Ø TO Ø.1 STEP Ø.ØØØØØ1
4Ø PRINT USING “#.#########”;foo

5Ø NEXT: END



QBASIC Programming Without Stress54

§ 4.1.1.2 DO-LOOP

Another looping block is the Do-Loop. The Syntax is:

DO [Condition]

[Statement(s)]

[EXIT DO]

LOOP

The optional condition is a logical comparison or a values

magnitude check. If the condition is omitted and there is no condition to

run the EXIT DO or go out of the Loop e.g. with GOTO

lineOutOfTheLoop, the loop is an endless loop (The program will never

stop! - If the Program is not yet compiled to an executable file Ctrl +

Break is used to abruptly terminate the Program).

Note that the condition is firstly checked before control ever goes

into the loop unlike the DO-LOOP-UNTIL block (see next section). The

program listing of LST4.1.1d shows a simple use of the Do-Loop.

LST4.1.1d Using the Do-Loop
1Ø CLS
2Ø DIM I% : I%=Ø
3Ø DO WHILE I%<=1Ø
4Ø I%=I% + 1
5Ø PRINT I%

6Ø LOOP



QBASIC Programming Without Stress55

Compare the output of LST4.1.1d with changing the Line 3Ø to

3Ø DO WHILE I %< 1Ø

Care should be taken in positioning increments in Do-Loops. The

output of the code will change if the lines 4Ø and 5Ø are interchanged.

As done in FOR-NEXT loops, Do-Loops can be nested too. This

is described in LST4.1.1e

This arbitrary code listing would do similarly if line 7Ø is

changed to:

7Ø DO WHILE i%<2Ø AND Quit$= “F”, but if the user types a letter

other than “F” the program, will stop unlike the original code. The

optional [EXIT DO] can be used to abruptly ‘move’ out of a Do-Loop by

setting a condition within the loop such as

IF Day$= “Sun” THEN EXIT DO

LST4.1.1e Nested Do-Loop
1Ø CLS
2Ø REM Nested Do-Loop
3Ø DIM i%, j%, Quit$
4Ø REM Initialising the Variables
5Ø LET i%=Ø
6Ø LET j% =Ø : LET Quit$ = “F”
7Ø DO WHILE (i% < 2Ø) AND NOT (Quit$= “T”)
8Ø DO WHILE j% < 4Ø
9Ø PRINT USING “i=##  j=##”; i%,j%
1ØØ j%=j%+2
12Ø LOOP
13Ø PRINT “QUIT T/F?”
14Ø Quit$=INPUT$(1): Quit$=UCASE$(Quit$)
15Ø i%=i%+5
16Ø LOOP
17Ø END

SideTalk
The LET keyword is
optional

Try to limit the
number of nesting
not to run out of
stack memory!



QBASIC Programming Without Stress56

§4.1.1.3 LOOP UNTIL

The other form of the Do-Loop where the condition is checked

after execution of the loop is as in the Syntax below:

DO

Statement(s)

[EXIT DO]

LOOP UNTIL (condition(s))

The program listing of LST4.1.1f shows a simple use of the LOOP-

UNTIL form of DO.

LST4.1.1f Using Loop Until
1Ø CLS
2Ø DIM i, Sum, j AS INTEGER
3Ø i=1ØØ: Sum= Ø
4Ø DO
5Ø PRINT “Sum of all Squares from Ø to “; i;
6Ø FOR i=Ø TO i
7Ø Sum=Sum + j^2
8Ø NEXT
9Ø PRINT “ =”;Sum
1ØØ Sum=Ø
11Ø REM This initialization is to clear last Sum
12Ø PRINT
13Ø i = i -1Ø
14Ø LOOP UNTIL i=Ø
15Ø PRINT “DONE”

16Ø END



QBASIC Programming Without Stress57

§4.1.1.4 WHILE-WEND

While-Wend is another looping block, it has a similar structure

with the first Do-Loop structure discussed. This structure is used in file

processing (just a matter of preference). The syntax is as shown below:

WHILE condition(s)

...statement(s)

WEND

The listing of LST4.1.1g shows a simple file processing with While-

Wend structure.

The advantage of using the WHILE over the DO is that the

number of records is not required before the entire record can be

accessed. The keyword EOF means ‘End of File’ and the value 1

signifies the file number, so the function EOF() returns true when the

LST4.1.1g Using While-Wend

1Ø CLS: DIM Rec$
2Ø OPEN “C:\MISC\LINP.txt” FOR INPUT AS #1
3Ø REM This program assumed you have executed the program
4Ø REM listing of LST3.3.1b once
5Ø REM Program to Output the content of the file
6Ø WHILE NOT EOF (1)
7Ø LINE INPUT Rec$
8Ø PRINT Rec$
9Ø WEND
1ØØ PRINT “EXECUTED”

11Ø END



QBASIC Programming Without Stress58

Cursor reaches the Last line in the open file. Lines 22Ø-25Ø of

LST3.3.1b can be replace with 6Ø-9Ø of LST4.1.1g

§4.1.2 CONDITIONAL STATEMENTS

Although conditional statements have been used in most of the

codes, it is now time to formally discuss conditional statements. There

are three of such to be discussed here.

§4.1.2.1 IF-THEN-[ELSE]

This is a straight line conditional ‘structuring’ statement of the

format:

IF LogicalCondition THEN lineNumber/Command ELSE Linenumber/Command

The code below LST4.12a shows a simple use of this format:

The ELSE 6Ø of LST4.1.2a may be ignored. If Days is not 31 the

Program will not go to line 8Ø but the next line which is still 6Ø.

LST4.12a Using IF-THEN I

1Ø CLS: DIM Rep$, Days
2Ø INPUT “Enter A or B”; Rep$
3Ø IF Rep$= “A” THEN PRINT “Typed A” ELSE PRINT “Typed B”
4Ø INPUT “How many days are in January 2ØØ1”; Days
5Ø IF Days=31 THEN 8Ø ELSE 6Ø
6Ø PRINT “You missed the answer!”
7Ø GOTO 9Ø
8Ø PRINT “Correct!”

9Ø END



QBASIC Programming Without Stress59

The limitation of the ‘one- line’ IF-THEN statement is that only one

command is executable i.e. the statement after the THEN keyword is

only one. The next section caters for this ‘problem’ or incapability.

§4.1.2.2 BLOCK-IF

The Block-If statement syntax is:

IF LogicalCondition THEN

Statement(s) executed if condition is true

[ELSE]

Statement(s) executed if condition is not true

END IF

The statements could be other block-Ifs. The ELSE is optional but

there must be the END IF to signify the end of the block-If. Any attempt

to run the cod without the End-If causes an un-trappable error-Block IF

without END IF. Notice carefully that unlike the one line IF THEN

earlier discussed; the THEN after the logical condition does not have

either any line number or statement directly following it on a line. Any

attempt to put such in the front of THEN stops it from being a Block-IF

structure, therefore running the code would cause an error- END IF

without block IF. Also placing the Block in a FOR-NEXT loop or a

similar loop should be carefully done. You must complete the block IF

before ending the loop, otherwise an error of the types described above is

flagged and may be confusing to the new programmer.

The program listing of LST4.1.2b shows a simple use of Block IF

statement.



QBASIC Programming Without Stress60

The End-IF of 8Ø closes the IF of 4Ø while that of 14Ø closes IF

of 1ØØ. The IF of 3Ø closed at 15Ø. Note the order of the closing and

my style of indenting.

§4.1.2.3 SELECT-CASE

This is another conditional statement structure which, I see as

‘neater’ than block-IF, can be used for as series of conditions follows the

syntax below. It can also have embedded within it other select case

structure(s) as the statement(s):

SELECT CASE variable

CASE ConditionI

Statements

CASE ConditionII

SideTalk
For All the select Case
structures there must be
corresponding END SELECT

LST4.1.2b Using Block-IF

1Ø CLS: DIM Age
2Ø INPUT “Enter the Age of the Pupil”; Age
3Ø IF Age<12 THEN
4Ø IF Age>7 THEN
5Ø PRINT “This pupil to watch the movie”
6Ø ELSE
7Ø PRINT “Movie not recommended for this pupil”
8Ø END IF
9Ø ELSE
1ØØ IF Age<18 THEN
11Ø PRINT “Grade 2 Film Recommended”
12Ø ELSE
13Ø PRINT “Mature, Any Grade Recommended”
14Ø END IF
15Ø END IF

16Ø END



QBASIC Programming Without Stress61

Statements

CASE ConditionIII

Statements

CASE ConditionN

Statements

[CASE ELSE]

Statements

END SELECT

The statements are executed if the conditions are true most of the

times the case condition are chosen that only one of the condition would

be true otherwise a bug may crawl into your code. Notice the optional

[CASE ELSE] segment, it is for execution only when none of the

conditions is evaluated as true. The program listing of LST4.1.2c shows a

simple use of the Select Case Structure.

LST4.1.2c Using Select Case
1Ø CLS
2Ø DIM Age%
3Ø INPUT “Enter Age of Candidate”; Age%
4Ø SELECT CASE Age%
5Ø CASE IS <=12
6Ø PRINT “Candidate: Infant”
7Ø CASE 13 TO 19
8Ø PRINT “Candidate: Teenager”
9Ø CASE 2Ø TO 79
1ØØ PRINT “Candidate: Adult”
11Ø CASE 8Ø TO 89
12Ø PRINT “Candidate: Octogenarian”
13Ø CASE ELSE
14Ø PRINT “Candidate: Over Aged”
15Ø END SELECT

16Ø END

SideTalk
Whatever is quoted in the
front of PRINT is a String.
Do not confuse the new
line delimiter “:” with the
colon used here



QBASIC Programming Without Stress62

LST4.1.2d “Embedded” Select Case
1Ø CLS
2Ø REM Program for Salary Scale of a Small Coy
3Ø DIM StaffID$, StaffCat$
4Ø DIM StaffOldSal, StaffNewSal AS SINGLE
5Ø PRINT “New Adjustment to Old Salaries of Staff”
6Ø INPUT “Staff Category (Senior/ Junior )”; StaffCat$
8Ø INPUT “Last Salary =N=”, StaffOldSal
9Ø REM S or J could be typed to represent the Staff
1ØØ REM category for convenience.
11Ø StaffCat$= MID$(StaffCAt$,1,1) : REM i.e. First Letter
12Ø StaffCat$=UCASE$(StaffCat$) : REM Capitalize the letter
13Ø SELECT CASE StaffCat$
14Ø CASE “J”: REM Junior Staff
15Ø SELECT CASE StaffOldSal
16Ø CASE IS < 5ØØØ.#
17Ø StaffNewSal=1.25*StaffOldSal
18Ø REM 25% Increase
19Ø CASE ELSE
2ØØ StaffNewSAl=1.15*StaffOldSal
21Ø REM 15% Increase
22Ø END SELECT
23Ø CASE “S” : REM Senior Staff
24Ø SELECT CASE StaffOldSal
25Ø CASE IS < 5ØØØØ.#
26Ø StaffNewSal=1.13*StaffOldSal+ 1ØØØØ.Ø
27Ø REM 13% Increase and 1Ø,ØØØ bonus
28Ø CASE ELSE
29Ø StaffNewSAl=1.Ø8*StaffOldSal+4ØØØØ.Ø
3ØØ REM 8% Increase and 4Ø, ØØØ bonus
31Ø END SELECT
32Ø CASE ELSE: REM Wrong Category entry for staff
33Ø PRINT “Wrong Category entry for staff”
335 PRINT “PRESS ANY KEY”
34Ø DO: LOOP UNTIL INKEY$ <> “”
35Ø CLS
36Ø GOTO 5Ø
37Ø END SELECT
38Ø PRINT “New Salary =N=”; StaffNewSal

39Ø END



QBASIC Programming Without Stress63

The indentation of the Case(s) helps to watch for the positioning

of the End –Select. This becomes helpful especially when the Select Case

is embedded within Select-Case. LST4.1.2d shows a simple “embedded”

select case structure.

§4.1.3 ITERATION

The solving of some real mathematical equations can only be

achieved by iteration. Iteration is a repetitive substitution of values into

an equation from values gotten from the equation starting with an initial

guess. There are various schemes used to iterate, these include but not

limited to: Newton-Raphson iterative scheme, direct subject of the

formula and so on plus the Gauss-Seidel iterative scheme (see chapter 6).

Although this is not a mathematical text, I shall take pain to

explain briefly iterative schemes and write codes in QBASIC.

§4.1.3.1 NEWTON-RAPHSON

Given a function f (x) =0 to solve for x, the Newton Raphson

iterative scheme requires that you find the first derivative of f(x) (i.e.

f’(x) or
x

f




). The solution of f(x) =0 is given by

)1.4(
)(

)(

0
'

0
0 

xf

xf
xxN

Where x0 is the most recent value obtained or the initial guess

value, and xN is the value evaluated from equation 4.1 the value x0 is



QBASIC Programming Without Stress64

assigned xN and re-substituted in the equation 4.1 until the difference

between xN and x0, before substitution, goes to a set condition.

If after a large number of iteration the difference is rather growing

out of bounds the system of equation is said to be diverging, if it is not

diverging and the value of xN is always getting close to x0, after

subsequent iteration, the system is said to be converging. To have a more

elaborate background on Newton-Raphson consult book(s) on Calculus

and Analytical Geometry. Fig 4.1.3 shows the Algorithm for Newton-

Raphson scheme.

1. Define the function f(x)=0
2. Take the first derivative fprime(x)=0
3. Define convergence criteria (epsilon) eps=Value
4. Set a counter=0 and the Max iteration number ItMax
5. Set a guess value for the Solution(root) x0 = Init

6. Evaluate xN from the equation

7. Compute convergence, say,

8. Assign X0=XN
9. Increment counter (Counter =Counter +1)
10.Compare the conv and eps (True or False)
11.If step 10 is false, compare counter

and ItMax (Counter > ItMax= True/False)
12. If step 11 evaluates true, stop there is no convergence
13.If step 10 is true, i.e. is true, i.e. system has converged

then stop the process
14. Output the convergence result
15.stop the process

Fig 4.1.3 Algorithm -NR



QBASIC Programming Without Stress65

SideTalk
Dr. J. A. OMOLEYE
(Mechanical Engineering
Department –University of
Ilorin- has a modified N-R
scheme to evaluate other roots of
a polynomial at a go. It should
be seen that the N-R algorithm is
for a single root!

The program listing of LST4.1.2e attempts to find the roots of x3 +

x -2=0. (Note: the equation must be equated to zero then make f(x) =0

i.e.

f(x) = x3 + x -2=0

where the derivative f’(x) = 3x2 + 1)



QBASIC Programming Without Stress66

§4.1.3.2 “Subject of the formula”

By subject of the formula I mean attempting to make the variable

split into parts where it will exist on both sides of the equation but only

the single variable is on one side i.e. given a function g(x) such that we

can express x=f(x). for example given g(x)=x2 +4x-10 =0 we can write

x=(10-x2)/4 and xx 410 

With these two functions we can iterate for the two roots (if the equations

will converge). Standard mathematical text books will give more light on

conditions for convergence in iterations.

LST4.1.2e N-R Programming

1Ø REM A simple NR program by:
2Ø ‘ A.A. ADENIYI
3Ø ‘
4Ø ‘********************************************
5Ø DIM Counter, ItMAX AS INTEGER: DIM Conv
6Ø DIM Init, XN,XØ,Eps AS SINGLE
7Ø Counter=Ø : ItMAX=1ØØØ: Eps=Ø.ØØØ1
8Ø PRINT “N-R Solution of F(x)=x^3 + x – 2 =Ø”
9Ø INPUT “Enter the guess root” ; Init
1ØØ XØ=Init
1Ø5 DO
11Ø XN=XØ-(XØ^3+ XØ-2)/(3*XØ^2 +1)
12Ø Conv=ABS((XN-XØ)/XN)*1ØØ
13Ø XØ=XN
14Ø Counter=Counter +1
15Ø LOOP UNTIL (Conv<=Eps) OR (Counter> ItMAX)
16Ø IF Counter> ITmax THEN
17Ø PRINT “No convergence after Iterations =”; Counter
18Ø PRINT “Retry with another guess value”
19Ø ELSE
2ØØ PRINT “Converged”
21Ø PRINT “Root x=”; XN
22Ø PRINT “Iterations=”; Counter
23Ø END IF
24Ø END



QBASIC Programming Without Stress67

Unlike the Newton-Raphson scheme there is no need for

differentiation as XN=f(x0 for example to solve x2 + 4x - 10 we use:

0

0
2

410
4

)10(
xxor

x
x NN 


 in place

of

)42(

)104(

0

00
0






x

xx
xxN

You may want to try Newton-Raphson and the “Subject of the

formula” method for this system of equation and compare the number of

iterations. There is one advantage here; the two equations (or the number

of equations) will converge to different roots whereas Newton-Raphson

convergence depends on the initial choice. If an equation has solutions

x=2.5 and x= -1. Initial guess values of x=3 and x=-1.5 will give different

convergence to evaluate the two roots.



QBASIC Programming Without Stress68

§4.2 SUMMARY

Controlling the flow of program depends on the ability of the

programmer to use looping statements and conditional statement plus his

intuitive reasoning as regards pitfalls in codes.

Looping can be achieved in about four ways or more ranging

from the simple FOR-NEXT structure to the WHILE-WEND. Loops can

be simple or complex as the situation may necessitate.

This chapter discussed three conditional statement structures from

the simple IF-THEN to the versatile SELECT-CASE structure. To close

the chapter a very important tool in computation was discussed, iterative

scheme with the development of algorithm and sample program on

iteration.



QBASIC Programming Without Stress69

§4.3 QUIZ

(1) To wait for user to press any key appeared in which program

listing(s) in this chapter?

§4.4 PROJECT

(a) Develop a program to solve a polynomial of the form





n

i

i
i xaxf

0

)(

f (x) =a0 + a1x + a2x
2+……….anx

n

Where a0, a1, a2 ……….an are constants to be entered at run time.

(Use N-R scheme or otherwise)

(b) Develop a program to compute GPA of Students using the

GPA format following:



QBASIC Programming Without Stress70












N

i
i

N

i
i

Credit

PoCredit

GPA

1

1

int)(

Crediti =Credit Unit of each registered course i

Pointi = Point in course i

Where point is obtained from:

SCORE POINT

70-100 5

60-69 4

55-59 3

50-54 2

0-40 0

(Hint: Use 10 courses to make project easy. The results should be

entered: -Use Select Case and Do-Loops)



QBASIC Programming Without Stress71

Bibliography

 A. A. ADENIYI (2003) – Computer Analysis for Presentation of

Students Results Using Visual Basic – Mechanical

Engineering Departmental Project, University of Ilorin.

 Dr. J. A OMOLEYE – Unpublished lecture note on QBASIC for

MEE5Ø5 (University of Ilorin)

 Erwin Kreyzig (1999) – Advanced Engineering Mathematics,

John Wiley & Sons, INC, New York



QBASIC Programming Without Stress72



QBASIC Programming Without Stress73

CHAPTER FIVE

§5.1 ORGANIZING A PROJECT

A completely design program to perform a specific set of tasks is

termed project in this book. A project should be designed to be robust i.e.

should be able to stand test of time as regards error input and life span. A

well-organized project like every other projects starts from good

planning.

To write a very good project, pencil work is very essential. It is

highly tempting to sit by a computer and start programming without prior

planning. Although one may write code that will “perform” what is

expected of it but organized planning cannot be overemphasized (I used

to be victim).

The steps below would be a good guide but it is by no means the

standard set by Microsoft Corporation (See http://www.msn.com for

more). The steps have proven good in my various projects:

1. Defining the task to be performed

2. Developing Algorithm on the task

3. Testing Algorithm with sample(expected) input

4. Repeating (2) if (3) does not work well

5. Developing flowchart (if convenient)

6. Setting out variables

7. Setting out variables

8. Programming in modules (parts)

9. Testing (with different users and repeating necessary steps when

errors are found) and Debugging. You use functions keys F4(View

output), F8 (Step run), F3 (Search) etc .



QBASIC Programming Without Stress74

SideTalk
If you don’t use
REM in your
code you may
soon get
confused with
your own code!

SideTalk
DIM SHARED
is used to allow
a variable to be
passed to a
subroutine

After reading this chapter you should be able to write good and

“user friendly” codes as well as understandable codes. The chapter takes

you through using functions and subroutines.

§5.1.1 Remarking, Dimensioning and Programmer-friendly –

Declarations

Remarking

This is putting comments at strategic positions in your code. This

does not in any way affect the output or the

program flow. The aim is to assist the programmer

or any person going through the program to get a

feel of what is going on at various stages in the

program. The keyword used is REM or the

apostrophe (‘) sign. Any other statement or

“stories” written in front is ignored by the interpreter.

Do not see remarking as a source of high memory for your code it

is not! However it is boring to boring to over-remark.

Dimensioning

To dimension a variable is to allocate or reserve memory space

for the variable. Variables could be static

variables dimensioning is DIM or REDIM. The

REDIM is used to re-dimension an earlier

dimensioned variable.



QBASIC Programming Without Stress75

When naming variables, it is advisable to use “names” that you

will easily recognize. Using variables like x, y or t can be confusing

when you are managing a big project (as experience has shown). You can

use names of up to 256 characters! However, you cannot combine

characters like underscore, #,*,-,&, / or other “non-regular characters”

but you can combine alphabets A-Z with numerals 0-9. It should be noted

that keywords should not be used as variable names. There should be no

space between and numerals should not start a name.

The following names are good examples of variables:

Telephone$, XAxisValue, Gradient, Interest, MatA(Row, Col) etc.

Programming-friendly Declarations

Just as variables should be “friendly-dimensioned”, functions and

subroutines should be given friendly names. All these friendliness

discussed is not for the machine but the programmer. The following

function names are friendly enough: Grad(x1,x2,y1,y2),

Cot(x),Log10(x), Parse(Text$) etc and the subroutines following are

friendly named: Delay, Sort, WelcomeScreen, TExitScreen, and

TestPrint.

Note that keywords are not to be used to name either functions or

subroutines. Note that Screen, Exit and Print are keywords.

Unlike variables, functions and Subroutines are Declared instead

of Dimensioned. The syntax is

DECLARE FUNCTION functionName(Variable(s) type(s)) AS Type

e.g. DECLARE FUNCTION Log10(X AS SINGLE ) AS SINGLE



QBASIC Programming Without Stress76

Where Log10 is the function name

X is the parameter passed to the function

“AS SINGLE” is the type returned by the function (the X AS

SINGLE means a variable X of type SINGLE is passed to the Function.

To Declare a Subroutine, the syntax is

DECLARE SUB subroutineName(Parameter(s)Passed)

For example:

DECLARE SUB WelcomeScreen()

DECLARE SUB TestPrint(NPages%)

DECLARE SUB TExitScreen(x%, y%)

If you do not type the DECLARE line, after running the code, the

statements are automatically included in your IDE (like a template) but

you can edit (the signatures) if the variable types are not similar to what

you desire. Note however that no statement, not even the traditional CLS

or REM should come before DECLARE keyword in your code.

§5.2 FUNCTIONS

There are two kinds of functions: The Built-in and the User

Defined functions. If you ever used calculators such as CASIO FX 991™

or Purpo™ you will find functions on the keyboard (built-in) also you

can insert formulas to perform some calculations (User-Defined).



QBASIC Programming Without Stress77

SideTalk
The trigonometric functions built-in with
QBASIC are evaluated in Radians i.e.

You have to convert to

The log function is not to base 10 but to
base e i.e. but

§5.2.1 Built-in functions

These are functions that come with the “machine” –QBASIC

comes with some set of functions such as SIN( ), COS( ), LOG( ), SGN(

) etc. To get more of the built-in functions see the Help file that comes

with your QBASIC.

§5.2.2 User-Defined Functions (UDF)

As the Built-in

functions cannot satisfy all

the forms of

equation/functions that exist

there is a need to be able to

create functions to be able to

create functions that are user

defined. User defined

functions can be a

combination of Built-in functions and others functions.

UDF can be built instead of repeatedly writing “same code”. User

Defined Functions are basically two in structure as discussed below.

§5.2.2.1 DEF FN

This is the simpler of the user defined functions. It does not

require the DECLARE statement earlier discussed, the syntax being:

DEF FN functionName(Variable1[,Variable2][,…])=Expression code



QBASIC Programming Without Stress78

LST5.2 Using DEF FN

10 REM Program to Display Log to base 2

20 ‘ from 10 to 15 in steps of 0.2

30 DEF FNLog2(x) =LOG(x)/LOG (2)

40 CLS: DIM Values AS SINGLE

45 PRINT “Value---------------------------------Log Base 2”

50 FOR Values=10 TO 15 STEP 0.2

60 PRINT Values, FNLog2 (Values)

70 NEXT

80 END

The use requires you to pass the variables values to the FN

FunctionName(). The program listing of LST5.2 shows a simple use of

DEF FN form of UDF.

Observe that the variable name used in defining the function in

LST5.2 live 30 is x but another variable (Values) was used when the

function was “called”. It is just to show you that the variables are passed

by reference. You can pass any variable of similar type. If in the example

just given, you type the function as Log2(Value) instead of

FNLog2(Value) of line 60, you receive error or 0 is given as the result.



QBASIC Programming Without Stress79

Such functions must be prefixed with FN to show that they are Functions

(and not just a variable or a subroutine)

The variable(s) list must be similarly passed otherwise an error is

generated. If a function is defined as

DEF FNGrad(x1, x2, y1, y2) = (y2-y1)/(x2-x1)

The call to the function must pass four variables (i.e. values) to

the function FNGrad any attempt to run the line FNGrad(2,4) will give an

error. Running FNGrad(2,3,6,8) will give a good value.( Running

FNGrad(0,0,3,4) will crash your program unless you put error trapping

codes-(why?)- See 5.5).

§5.2.2.2 Declare Function-Function

A more flexible user defined function

type is discussed now. The function defined

earlier can only be defined on a single line and

various conditions cannot be easily

programmed.

The structure requires the DECLARE FUNCTION structure

discussed earlier. The structure is:

DECLARE FUNCTION fname(x,y,z…)

.

.

.

FUNCTION fname(x,y,z,…)
Statement(s)
[EXIT FUNCTION]
[Statement(s)]

END FUNCTION

SideTalk
Type the keyword
FUNCTION and the
function name then
press enter to go to the
Module. End Function is

added automatically.



QBASIC Programming Without Stress80

LST5.2b Using Function-End Function

DECLARE FUNCTION grad(x1,x2,y1,y2) AS SINGLE

10 CLS

20 REM Evaluating gradient of slopes

30 PRINT “Enter coordinates A(x1,y1) and B(x2,y2)”

50 PRINT “ FOR 5 POINTS”

60 DIM Inc AS INTEGER

70 FOR Inc =1 TO 5

80 INPUT “x1, y1”; x1, y1

90 INPUT “x2, y2”; x2, y2

100 PRINT “Slope of line =”; grad(x1,x2,y1,y2)

110 NEXT

120 END

As earlier mentioned, typing the DECLARE FUNCTION line is

“optional”; it is automatically included if not typed. The FUNCTION-

END FUNCTION part does the computation or necessary logic.

Although you can type the function anywhere in the code, it is

automatically put in a module. If you are inexperienced you may feel

your code is gone. You can access all the modules by pressing the F2

function key and select the function you want to edit (you may decide to

include or remove variable(s) passed to the function-it is allowed, but

you have to be careful).

When I write functions I keep them at the end of my main

program in this book. The program listing of LST5.2b shows a simple

use of function.



QBASIC Programming Without Stress81

Obviously, this type of function is flexible and can be multi-

purpose. Observe the use of the function name. it does not require the

prefix FN unlike the DEF FN that requires it. When equating the name

(grad), the parenthesis was not included (see LST5.2b lines 180 and

200).

There can be as many functions as required in a project and the

functions can call themselves as well as a function call itself (recursion).

However, care should be taken because too deep calling may cause out of

stack memory error.

§5.3 SUBROUTINES

Some activities need to be performed similarly in more than one

place in a project. To avoid wasting space or unnecessary making the

FUNCTION grad(x1,x2,y1,y2)

130 DIM Numerator , Denom AS SINGLE

140 Numerator=y2-y1

150 Denom =x2-x1

160 IF Denom=0 THEN

170 PRINT “SLOPE Vertical /Same Point A=B”

180 grad=8888888.8888888888888;: PRINT “Infinity”

190 ELSE

200 grad=Numerator/Denom

210 END IF

END FUNCTION



QBASIC Programming Without Stress82

project very large, subroutines are written. Subroutines are similar to

functions in writing and placing but unlike a function, a sub does not

return a value. Every other thing like passing variables or parameters is

similarly done.

This book identifies three types of subroutines: “GOTO”,

GOSUB, and CALL-SUB structures. See following sections for more.

§5.3.1 GOTO

GOTO statement is not a standard subroutine statement. It is used

to transfer control to a line number (or line label). Note that it is spelt

GOTO and not GO TO! The structure is:

100 Statements play: Statements

120 GOTO 90 done: Statements

GOTO play

The line labels are play and done with colon in the front.

It is regarded as a bad programming style to use GOTO as a

subroutine programming tool; even a good programmer limits the use of

GOTO in use.

§5.3.2 GOSUB

GOSUB has a pair RETURN which must be encountered at the

end of the subroutine action. There may be many GOSUBs in a project

but there must be at least one RETURN to be encountered. Many

GOSUB statements can refer to a single line number (where the

RETURN statement is).



QBASIC Programming Without Stress83

LST5.3a Using GOSUB/RETURN

10 CLS

20 PRINT “GOSUB PROGRAMMING”

30 GOSUB 100

40 GOSUB 150

50 GOSUB 300

55 GOSUB 500

60 END

‘XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

100 PRINT “AT 100”

110 PRINT “AT 110”

150 PRINT “AT 150”

300 PRINT “AT 300”

400 RETURN

500 PRINT “TRYING SECOND RETURN STATEMENT”

510 PRINT “LINE 510”

520 RETURN

The structure is:

.

.

.
GOSUB lineNumber/lineLabel
.
.
LineNumber/lineLabel

-----------
RETURN

The program listing of 5.2c shows a simple use of GOSUB



QBASIC Programming Without Stress84

LST5.3b GOSUB II

10 CLS : DIM a, b, c, d, x1, x2

20 INPUT "a, b, c "; a, b, c

30 d = b ^ 2 - 4 * a * c

40 IF d = 0 THEN GOSUB 1000

50 IF d > 0 THEN GOSUB 2000

60 IF d < 0 THEN GOSUB 3000

70 PRINT "DONE"

80 END

1000 x1 = b / (2 * a)

1010 x2 = x1

1020 PRINT "Equal Roots x ="; x1

1030 RETURN

2000 GOSUB 4000

2010 x1 = (-b + SQR(d)) / (2 * a)

2020 x2 = (-b - SQR(d)) / (2 * a)

2030 PRINT "X1 ="; x1; " X2 ="; x2

2040 RETURN

3000 GOSUB 4000

3010 PRINT "X= ";

3020 PRINT b / (2 * a); " +/- j"; SQR(-d) / (2 * a)

3030 RETURN

4000 PRINT "THE SOLUTION OF THE QUADRATIC EQUATION”

4010 PRINT a; " X^2 +"; b; "X +"; c; " =0"

4020 RETURN

Note that all the GOSUB statements encountered RETURN

although there are only two RETURN statements but four GOSUBs.

Another program on quadratic equation using GOSUB is shown

in LST5.3b.

Make LST5.3b robust e.g.
avoid a=0 or string entry



QBASIC Programming Without Stress85

§5.3.3 CALL-SUB

Subroutines are written like the functions of section 5.2.2.2. To

transfer control to a subroutine, the keyword CALL is used (although it is

optional you use CALL- you can just type the SUB Name and it is

called). The DECLARE statement for Subs is:

DECLARE SUB SubName(Parameter(s))
.
.
SUB SubName(Parameter(s))
-
-
-
END SUB
The function key F2 is also used to access Subs. The program listing of

LST5.3c shows a use of CALL-SUB.

LST5.3c Call Sub

DECLARE SUB Animate (Text$)

DECLARE SUB Welcome ()

DECLARE SUB REQUEST ()

10 CLS

20 DIM SHARED Text$

30 Welcome

REM Also CALL Welcome

40 DO

50 REQUEST



QBASIC Programming Without Stress86

60 LOOP UNTIL Text$ = "Quitting the Animation"

70 END

80 REM

SUB Animate (Text$)

180 CLS : DIM Ltxt

190 COLOR 14: REM Give color to the text

200 Ltxt = LEN(Text$)

210 DIM i% ‘Delay

220 FOR i% = 1 TO Ltxt

230 PRINT MID$(Text$, i%, 1);

240 SLEEP 1' FOR Delay = 1 TO 95100: NEXT

250 NEXT: PRINT : PRINT

260 FOR i% = Ltxt TO 1 STEP -1

270 PRINT MID$(Text$, i%, 1);

280 SLEEP 1 ' FOR Delay = 1 TO 39100: NEXT

290 NEXT

291 PRINT : PRINT

292 PRINT "Press Any Key"

293 DO: LOOP UNTIL INKEY$ <> "": CLS

END SUB

SUB REQUEST

150 PRINT : PRINT : PRINT "Quit to Stop"

160 INPUT "Type your Text"; Text$

170 CLS

171 IF Text$ = "Quit" THEN Text$ = "Quitting the Animation"

172 Animate (Text$)

END SUB



QBASIC Programming Without Stress87

§5.4 USER DEFINED TYPES

User (i.e. programmer) has the type-block handy to make special

type of definitions. This Type definition assists in organizing projects. A

project on books in the library may need user defined types to ease the

many declarations that may be required. The book project example will

be used to throw more light on types. The structure is:

TYPE VariableType
Dimension statements

END TYPE
.
.
.
DIM Variable as VariableType
.
.
.
Variable.DimensionStyle=...
.
.
.

SUB Welcome

100 CLS

110 Text$ = "Welcome to Simple Animation"

120 Text$ = Text$ + "Brought to you by AcubeSoft of Nigeria"

140 Animate (Text$): PRINT: PRINT

END SUB



QBASIC Programming Without Stress88

The program listing of LST5.4a shows a typical use of the Type

structure.

The advantage of the Type structure becomes apparent when you

need an array of such “type”. (See chapter six for more on arrays). The

example below (LST5.4b) uses array with Type structure.

LST5.4a Using Define Types

10 CLS

20 TYPE Book

30 Author AS STRING * 15

40 Publisher AS STRING* 25

50 Edition AS STRING * 13

60 YrPublished AS INTEGER

70 END TYPE

80 DIM Text AS Book

90 INPUT “Enter Author’s Name”; Text.Author

100 Text.Publisher = “Université de AcubeSoft”

110 Text.Edition = “1st Edition”

120 Text.YrPublished = 2004

.

.

END



QBASIC Programming Without Stress89

LST5.4b Music Type Example

10 CLS

20 TYPE Music

30 Composer AS STRING*25

40 Album AS INTEGER

50 Producer AS STRING*25

60 CopiesSold AS INTEGER

70 END TYPE

80 DIM NCas, i%

90 INPUT “Enter no of cassette”; NCas

100 DIM Song(NCas) AS MUSIC

120 FOR i%=1 TO NCas

130 PRINT “For song”; i%; “Please Supply the following data”

140 INPUT “COMPOSER : “;Song(i%).Composer

150 INPUT “PRODUCER : “;Song(i%).Producer

160 INPUT “ALBUM : “;Song(i%).Album

170 INPUT “COPIES SOLD : “;Song(i%).CopiesSold

180 NEXT

190 CLS

200 PRINT “Make Request for a song”

210 PRINT “Specify Number between 1 & “;NCas

220 INPUT i%

230 SELECT CASE i%

240 CASE 1 TO NCas

241 PRINT “For the input we found result as:”

250 PRINT “COMPOSER : “;Song(i%).Composer

260 PRINT “PRODUCER : “;Song(i%).Producer

270 PRINT “ALBUM : ” ;Song(i%).Album

280 PRINT “COPIES SOLD : ”;Song(i%).CopiesSold

290 CASE ELSE

300 PRINT “Invalid Input”

310 END SELECT

320 END



QBASIC Programming Without Stress90

Do you have a feel that it is pretty good to use Types? However,

Type structure may not be supported by your version of QBASIC. The

Visual Basic programmer will find it very useful.

§5.5 ERRORS

Errors are bound to occur during the course of running or

programming. This chapter briefly discusses errors; the discussion is

brief for you have to get some experience on your own from which you

will soon develop your own philosophy about errors.

§5.5.1 Program-Time

When programming, two types of errors can occur, the two are:

(i) Syntax Error and (ii) Semantic Error.

Syntax error is an error that occurs as a result of wrongly

“syntaxing” of keywords. A very common one to beginners

(programmers) is typing “T” and Zero i.e. TØ for TO in the FOR-NEXT

loop. The interpreter is intelligent to respond to syntax errors by flagging

suggestions e.g. “Expected TO”, “FOR WITHOUT NEXT”, “NEXT

WITHOUT FOR”, “SELECT CASE WITHOUT END SELECT”,

“EXPECTED IDENTIFIER” etc.

The intelligence of the interpreter, however, should not be taken

as a complete wizard. Following “all” the suggestion may completely

change the idea of the program you are coding! To avoid many errors,

strictly follow the structures of the keywords or statements to the letters.



QBASIC Programming Without Stress91

Semantic errors are errors that the interpreter (or the compiler or

the assembler) will not catch! Semantic error occurs as a result of either

or all of the following:

i. Mistyping variables

ii. Wrong Algorithm

iii. Not clearing memories or wrong initialization of variables

iv. Wrong placement of line or lines of codes

v. Counting loops with non-integers etc

(i) Mistyping variables

Some programming languages have facilities for handling this

type, for example Visual Basic uses Option Explicit to track variables

misspelt. If you have the following lines of code in QBASIC

1ØØ XO=5Ø

12Ø PRINT XØ

Line 1ØØ is “X” and letter “O” whole line 12Ø is letter “X” and number

zero. The expected output is 5Ø in line 12Ø but the output is zero or the

value X0 was before line 1ØØ. This is a very serious bug in programs.

(Note that QBASIC is not case sensitive, do not use same letters of

different cases to mean different things, it will rather be updated! e.g.

1Ø Ada=5ØØ

.

.
2ØØ ADA=15

..

.
5ØØ aDA=2Ø
52Ø PRINT Ada



QBASIC Programming Without Stress92

The output is 2Ø not 5ØØ, this is a simple semantic error if you

expected the result to be 5ØØ because of the difference in cases.

(ii) Wrong Algorithm

It is vital that your Algorithm is correct otherwise you may end

up getting unexpected output (Garbage-In-Garbage-Out: GIGO).

Do not see computer as a genius. It only responds fast to your

ingenious programs in a very fast way than you could do. Compare the

two Algorithms of Figures Fig5.5a and Fig5.5b. They are intended to

prepare Rice.



QBASIC Programming Without Stress93

Did you observe any bug in Fig5.5a? You may bother to study it

before I point them out.

Comparing Fig5.5a and Fig5.5b

5.5a does not specify the size of the pot to be used for the cooking

( a big bug!), The quantity of water required to cook the rice was not

specified, the rice of Fig5.5a may be prepare well but the salt distribution

will be poor, in Fig5.5b you add salt before the boiling not after!

1. Get a cup of rice
2. “Wash” the rice
3. Boil for ten minutes
4. Add a spoon of salt
5. Serve

Fig5.5a Algorithm for Rice I

1 Get a cup of rice
2 “Wash” the rice
3 Place a Size A pot on fire
4 Put 50cL water in the pot
5 Add the rice
6 Put 1 spoon of Salt
7 Boil for ten minutes
8 Serve

Fig5.5b Algorithm for Rice II



QBASIC Programming Without Stress94

Although the two Algorithms are not perfect but has pointed out how

wrong Algorithm could cause error.

(iii) Not Clearing Memories or Wrong Initialization

The “expected” value of i% by the programmer of the lines below

is 53 but a rather different output was got!

110 i%=0 : REM Initialization

111 FOR i%=1 TO 50

112 PRINT Mat (i%)

113 NEXT

114 I%=I%+3

115 PRINT I%

The code assumes Mat is a matrix earlier defined, the Output of line

115 is 54 not 53, find out why.

§5.5.2 “Run-Time”

Pressing the function key F5 runs your code. All what happens

during this period is referred as Run Time. Any error that happens here is

referred as Run-Time Error. What causes error here can be either/all of:

 Wrong input

 Program crash

 Wrong Code etc



QBASIC Programming Without Stress95

(i) Wrong input

DOS traps this kind of error by giving a response “Redo from

Start”. If an expected input is an integer and a String is supplied or inputs

to be separated with comma(s) are not rightly supplied, this error is

encountered until the right input is supplied. The statement INPUT a, b, c

expects input line 5, 3, 4.05 etc

(ii) Program Crash

A program crashes if the flow encounters lines of code that are

malicious. The following could crash your code:

a. Using an array without pre-dimensioning

b. Using an array beyond its dimensioned capacity

c. Assigning a value beyond the dimension type e.g. if X is an

integer, assigning value X=89080980808080808902344554421

will crash your code (see Table 3.1 in Chapter 3)

d. Requesting for unavailable drive(s) e.g. The use of OPEN

keyword on an unconnected disk drive.

e. Encountering lines causing division by zero.

f. Running out of stack space (e.g. as a result of over looping-

break down loops to avoid this)

g. etc



QBASIC Programming Without Stress96

(iii) Wrong Code

Wrong syntax in code may not all be trappable when doing the

programming depending on the size of your code or the complexity of

the syntax, any attempt to run the part of the program crashes the

program. The good thing is suggestions are made; however, it may not

help!

(iv) Wrong placement of line or lines of codes (or Counting with non-

Integers)

If you count loops with non-integer variables you may fall into

error pit, so watch out! You may get errors if you position the line or

lines of codes wrongly. Your Algorithm may be right but the placement

matters. The following set of programs will give different outputs

C= 10
DO
PRINT C
C=2*C
LOOP UNTIL C>100

C= 10
DO
C=2*C
PRINT C
LOOP UNTIL C>100



QBASIC Programming Without Stress97

§5.6 TRAPPING ERRORS

Most errors that might occur in your programs can be envisaged

during your programming. QBASIC has a way of tracking down some

trappable errors using error statements. The following are used:

ON – ERROR / RESUME Structure

ERR.NUMBER Statement

(i) ON ERROR/RESUME

(a)The structure is:

lineNumber/LineLabel: ON ERROR GOTO lineNumber/Label

.

.

.

lineNumber/LineLabel: Statements

RESUME lineNumber/label/NEXT

(b) lineNumber/Label: ON ERROR RESUME NEXT

The two types cause program flow to be transferred to a line number

/ or label or to the next line if an error occurs. The program listing of

LST5.6a shows a simple use of error statements.



QBASIC Programming Without Stress98

Place the error handling “subroutine” such that it cannot be

encountered unless there is an error. It is traditional to place Error

handling routines after the END statement. The code of LST5.6b

handles the Error of the fact that there would be a division by zero.

LST5.6a Error Program I

10 ON ERROR GOTO handler

20 OPEN “A:\text.dat” FOR INPUT AS #1

30 REM Try to open a file in a floppy

40 DIM i: i=1: DIM Ex AS INTEGER

45 REM Ex=10000000000000000000 ‘See Explanation

50 DO

55 i=i+1

60 GET i, NameTxt$

70 PRINT NameTxt$

80 LOOP UNTIL i=3

90 END

100 REM Error handling part

Handler:

PRINT “FILE NOT FOUND OR”

PRINT “FLOPPY NOT READY”

PRINT “CHECK FAULT”

PRINT “ENTER R TO RESTART”

PRINT “ENTER S TO STOP”

IF INPUT$(1) = “R” THEN RESUME 10 ELSE RESUME 90



QBASIC Programming Without Stress99

An error handling subroutine could have been written to get a

better output,

Handler: PRINT “Infinity”

RESUME NEXT

This is placed after line 120 but the line 50 would look like this:

50 ON ERROR GOTO Handler

(ii) ERR.NUMBER is used to return the error code for the particular type

of error. The various trappable errors have numbers used to recognize

LST5.6b Error Programming II

10 CLS: DIM x AS SINGLE

20 PRINT “Y = 11/(2-x)”

30 PRINT “Values near the asymptote of Y”

40 DEF FNY(x)=11/(2-x)

50 ON ERROR RESUME NEXT

60 FOR x=1.9 TO 2.1 STEP 0.001

70 PRINT “x = “; x

80 PRINT “Y = “; FNY(x)

90 NEXT

100 PRINT “AT ASYMPTOTE Y= Infinity”

120 END



QBASIC Programming Without Stress100

them, so that wrong information is not supplied. The code LST5.6a

would always flag error even if you have a floppy with file name

A:\test.dat, but the flag would indicate that the file is not found, assuming

line 45 were not REM. The error would have been that the value assigned

to Ex (an integer) is beyond the maximum integer value. To check for

such as simple “Select Case Err.Number” could be used to see if the

error, the “Case Else” could message that the error is something else.

§5.7 IMPLICATION OF ERRORS

The errors you commit in your programs could go a long way to

affect lives of people, it may come in financial, health or otherwise. The

following story should “warn” you.

Some year before 1997, the operator of a pool maintenance

company in New Jersey got the idea to use computer to monitor his

customers’ pool heaters. Using a microcomputer and a modem, he

developed a program that would connect by phone with the heaters,

check for correct operation and adjust temperature.

After a few weeks of operation, he got a frantic call from one of

his client – the water in the pool was 1000 and rising! He drove to the

pool and adjusted thee the temperature by hand. Later he was able to find

a bug in his program. Fortunately, nobody was injured by the scalding

water (P.38 Berman). Should you jump to such a pool, would you wish

well for “whoever is responsible- the programmer!”



QBASIC Programming Without Stress101

This other story exists; A programming error in an AT & T™

Telecommunication switch shut down AT & T long-distance service for

9 hours blocking approximately 5 million calls(P.39 Berman).

Also a software error at Bank of New York lost an estimate of

$5million in 1985 (P.39 Berman).

The programmer should always aim for a bug free code.

According to Mary Laude, a member of the Technical staff at Sun

Microsystems and a Test engineer, fixing an error in the field costs about

3 times as much as fixing the same error before release [to the

market](P.43 Berman).

One of my friends (a programmer) once said, jokingly, that he can

put some bug in his codes so that he will be called for maintenance in the

nearest future. I told him it was a bad habit to do that. You don’t have to

bug your code before you will be called for a maintenance routine. If you

see it as your duty to perform maintenance, it is the duty of the

maintenance department or section of the organization to decide whether

to give you to maintain or give the contract to other developers, if they

are not satisfied with your code. I’ll prefer you sell your ability so that

you may be called for other projects or recommendations be made about

you. Care has to be taken in whatever step you take in life, for the future

may not forgive!



QBASIC Programming Without Stress102

§5.8 SUMMARY

This chapter has taken you through basics of organizing a

QBASIC project. It discussed making Remarks and using friendly codes.

You have gone through Functions and Subroutines as well as using error

traps in programming.

The following chapter takes you through array programming and

some useful Algorithms.

§5.9 QUIZ

How do you pass a value from one Subroutine to another in a

module? Attempt: Use DIM SHARED

§5.9 PROJECT

Design and program a customized Calculator for the following

functions: ln(x); Cos-1x ; FahCel(x) and CelFah(x).

FahCel: Fahrenheit to Celsius

CelFah: Celsius to Fahrenheit converter.

The program should give room for user to select the kind of function she

wants.

Hint 1: Use Do-Loop and Select Case for the Input$. The calculator

should display the function list (with a Sub) as shown below:



QBASIC Programming Without Stress103

Hint 2: Use a convergent series to find In or ArcCos

see a standard text for the series e.g.:

 Advanced Engineering Mathematics – Erwin Kreyzig

 Engineering Mathematics- K. A Shroud

*******************************************
* SELECT THE FUNCTION NUMBER *
*-------------------------------------------------------------*
* 1. In(x) *
* 2. ArcCos(x) *
* 3. FahCel(Temp) *
* 4. CelFah(Temp) *
* 0. Quit *
*******************************************



QBASIC Programming Without Stress104

Bibliography

 Berman A. Michael (1997), Data Structure VIA C++: Objects by

Evolution, Oxford University Press, New York (Oxford).



QBASIC Programming Without Stress105



QBASIC Programming Without Stress106



















60.150000.102000.1000

50.15000.10030.80

00.40050.25900.250

.MMat

CHAPTER SIX

§6.1 WORKING WITH ARRAYS

An Array is defined as an impressive display or a series. It is also

defined as a type of data structure that has a multiple values. In the

programming sense, an array is an “organized” storage of data with a

variable. By being organized does not necessarily mean that it is a sorted

or an arranged collection, it is organized in the sense that “Virtual

positioning” exists in an array

In an array, a Matrix-like positioning is used to place data. The

Mathematical equivalent of programming array is the Matrix. If you have

not worked with Matrices before, the following examples should give

you a picture. Let us define a Matrix M as a store of information on the

Prices of 3 Books in 3 years.

The columns represent the years while the rows represent the

books. Matrix M could be expressed in clearer terms as:



QBASIC Programming Without Stress107



















3.....Pr2.....Pr1.....Pr

3.....Pr2.....Pr1.....Pr

3.....Pr2.....Pr1.....Pr

.

YrinCoficeYrinCoficeYrinCofice

YrinBoficeYrinBoficeYrinBofice

YrinAoficeYrinAoficeYrinAofice

MMat



















333231

232221

131211

.

MMM

MMM

MMM

MMat

In mathematics, each item of the matrix is called an element. For

easy programming, it is interesting to be able to point to an element of a

matrix. The matrix M is also presented in elemental terms:

That is, an element of a matrix could be represented as

 ji,Mij, ( i.e. where i and j are integers). The i represents the row

and j represents the column. The Matrix below represents a generalized

Matrix A.





















nmn

ij

m

m

aa

a

aaa

aaaa

A

...

....

..

.

1

22221

1131211



QBASIC Programming Without Stress108

§6.1.1 Dimensioning Arrays ( DIM & REDIM)- Matrix

The size of the matrix A above is n X m. by size, it does not mean

the amount of bytes or the memory unit, but it means the allocated

memory locations for the data. It is necessary to pre-allocate memory for

an array before it is used anywhere in the program, although if the array

size is less than 10 it may not be required, however, it is a good practice

to dimension your arrays to prevent error.

DIM and REDIM are used to tell your computer ( or QBASIC) to

either allocate space or reallocate space respectively for your matrix. The

syntax is:

DIM VariableName( Integer[,Integer][,Integer])

REDIM VariableName( Integer[,Integer][,Integer])[AS type]

The AS type could be included if the data type is known, it is

safer to leave it out when in doubt. However, it must be included if the

data type is a string. The following are typical examples:

DIM MatA(5Ø,1Ø), MatB(1Ø,1Ø)

DIM X(5Ø), ExtraLag(5,1Ø,3)

Dim SoxN(1Ø,1Ø) AS STRING

DIM Age$(12,1Ø) : ‘ This is string Array

The default starting position in rows or columns counting is from

1 but you may change the default Dimensioning to start from zero by

placing the statement OPTION BASE Ø before any DIM or REDIM

keywords. (You may want to put OPTION BASE 1; to tell your code

reader that you count from 1, though not necessary)



QBASIC Programming Without Stress109

§6.1.2 Manipulating Arrays

A database becomes useless if it could not give real life values.

To make sense with a set of data it has to be manipulated. There are

various ways by which an array (matrix) could be manipulated. You may

even have your own format, sections 1 to 5 give some manipulations on

arrays.

§6.1.2.1 Matrix Addition

Like we perform addition on non-array variables it is possible

with matrices, but unlike the addition of the latter, the former requires

elemental addition. Addition of matrices is the addition of corresponding

elements of the matrices. This implies that two matrices A and B can

only add if they have same dimension ( the two must be string types if

you are to add strings or each element be converted (to string) before the

addition).

A man owns two book shops where he sells mainly four types of

books. The sales for three days in the shops are respectively:













































2310

400

131

302016

1050

026

244

535

BShopAShop

The listing below (LST6.1a) shows a simple (non-flexible) program he

used to find the sale from the two shops.



QBASIC Programming Without Stress110

LST6.1a A Simple Matrix Addition

1Ø CLS

2Ø PRINT “BIG JOE BOOKS, IKARE”

3Ø REM SHOP A

4Ø DATA 5,3,5,4,4,2,6,2,Ø,Ø,5,1Ø

5Ø REM SHOP B

6Ø DATA 16,2Ø,3Ø

7Ø DATA 1,3,1

8Ø DATA Ø,Ø,4

9Ø DATA 1Ø,3,2

1ØØ REM Compare the two Arrangement of data !

11Ø REM

12Ø DIM ShopA(4,3), ShopB(4,3) , Sales(4,3)

13Ø REM The array sizes are equal.

14Ø REM Put the data in the Arrays

15Ø DIM Rows, Cols AS INTEGER



QBASIC Programming Without Stress111

16Ø REM Shop A

17Ø FOR Rows=1 TO 4

18Ø FOR Cols=1 TO 3

19Ø READ ShopA(Rows,Cols)

195 REM Why not put Code Here?

2ØØ NEXT

21Ø NEXT

22Ø FOR Rows=1 TO 4

23Ø FOR Cols=1 TO 3

24Ø READ ShopB(Rows,Cols)

25Ø NEXT

26Ø NEXT

265 ‘YOU COULD HAVE PLACE 24Ø IN 195 TO AVOID 22Ø-26Ø

27Ø REM Find Sum and Output Result

29Ø REM ******************************************

295 PRINT “SALES FROM 2 SHOPS”

296 PRINT “ IN 3 DAYS ON FOUR BOOKS”

3ØØ PRINT “DAY1”, “DAY2”, “DAY3”

31Ø FOR Rows=1 TO 4

32Ø PRINT “BOOK”; Rows

33Ø FOR Cols=1 TO 3

34Ø Sales(Rows,Cols) = ShopA(Rows,Cols)+ShopB(Rows,Cols)

35Ø PRINT Sales(Rows,Cols),

36Ø NEXT

37Ø PRINT

38Ø NEXT

39Ø END

SideTalk

Remove the PRINT of line

37Ø in LST6.1a and watch

out for a mess up



QBASIC Programming Without Stress112

If you have 3 matrices, one for Surname the other for Middle

name and the last for First name, of 50 people. It should not be difficult

to get a new matrix MatNames to contain the whole names (Surname:

made Capital and a comma placed in front; other names with the first

letters capital like this: ADENIYI, Akinola Abdul. The dimension is

something like Dim A(5Ø) etc.)

§6.1.2.2 Matrices Multiplication

Of more interest in mathematics is the multiplication of matrices.

It is highly important that you follow the order used in matrix

multiplication otherwise, you end up getting figures but they will merely

be garbage!

Suppose you have two matrices A(n,m) and B(q,r) i.e. the

dimension of A is n×m and B is q×r. For you to be able to multiply

matrices A and B

(a) m must be equal to q ( i.e. m=q), the column of the

first matrix must be equal to the Column of the

second

(b) multiplication of matrices is not commutative ( i.e.

A × B ≠ B × A) 



QBASIC Programming Without Stress113

A ( n , q ) × B ( q , r ) = C(n, r)

B ( q , r ) × A ( r , m) = C(q, m)

Equal

O/P

(c) resulting matrix, i.e. product matrix has a size n × r

e.g.

The example below is the multiplication of two matrices A(4,3)

and B(3,2)























121110

987

654

321

A


















61

23

110

B

(Although you cannot add A + B but A × B is possible-why? Can you

get B × A?)“See the 7-structure and note that Dot represents multiplication i.e.

3.4=12”


































































6.122.111.100.123.1110.10

6.92.81.71.93.810.7

6.62.51.41.63.510.4

6.32.21.11.33.210.1

61

23

110

121110

987

654

321























104145

77103

5061

2319



QBASIC Programming Without Stress114

To see the 7 structure look at this:

Does this still make sense? C= Row of A X Col of B summed- How far?

The question now is how do you write a QBASIC code to effect

matrices multiplication? Just as in development of other programs, let us

do it by Algorithm – coding method.

Figure Fig6.1 shows an algorithm on multiplication of two

matrices MatA and MatB.



QBASIC Programming Without Stress115

1. Request the array size of each matrix: MatA and MatB say

MatA(m×n) and MatB(q×r)

2. Check the condition for multiplicity of the two matrices i.e.

n=q

3. Flag error and stop if n≠q else Dimension MatPrd(m×r) 

4. Request/Enter the data for the matrices

5. Multiply the rows (elements) of MatA with the columns

(elements) of MatB individually and sum. This is done for

each row and corresponding columns to get the new matrix

MatPrd(m×r)

6. Output the result MatPrd(m×r)

7. Stop

Fig 6.1 Matrices Multiplication Algorithm



QBASIC Programming Without Stress116

The Algorithm would be made clearer by using the flowchart of

Fig6.2 (Note however that this flowchart is not the best, but to assist a

beginner – think about improving it)

R
ow

<=
m

=

< >

Start

m=? n=? q=? r=?

Allocate MatA(m×n),MatB(q×r)

S q : n

Col =1

MatA(Row,Col)=
?

Row =1

Row=Row +1

Row :
m

a

b

Col=Col+1

Col :

a

Col<=n

b

Col = 1

Row = 1

MatB(Row,Col)=
?

R
ow

<=
q

Row=Row +1

Row : q

e

C
ol

<
=

rCol=Col +1

Col : r



QBASIC Programming Without Stress117

The flowchart and Algorithm above is hereby converted to a QBASIC

code (see LST6.1b)

e

SumElement =Ø

i=1

j=1

k=1

SumElement = SumElement + MatA(I,k)*MatB(k, j)

k=k+1

t

f

p

k:
k < = n

f

MatPrd(i,j)=SumElement
SumElement=Ø

j :

j < = r
p

j=j+1

i=i+1

g

j<= r

Output MatPrd
(i,j)

i:
i < = m

g

j=1

j = j + 1

t

i=1

j: r

x

i <=m

i = i +1

Stop

i: m X

s



QBASIC Programming Without Stress118

LST6.1b Matrix Multiplication Code

1Ø CLS: DIM m, n, q, r AS INTEGER

2Ø PRINT “MULTIPLICATION OF MATRICES”

3Ø PRINT “*********************************”

4Ø PRINT : PRINT “To multiply A(m×n) and B(q×r)”

5Ø INPUT “Enter m”;m

6Ø INPUT “Enter n”;n

9Ø INPUT “Enter q”; q: INPUT “Enter r”; r

1ØØ PRINT: PRINT

11Ø IF q<>n THEN 999

12Ø DIM MatA(m,n), MatB(q,n), MatPrd(m,r)

13Ø REM “Entering matrix A”

14Ø DIM Col , Row

15Ø FOR Col =1 TO n

16Ø FOR Row =1 TO m

17Ø PRINT “A (”; Row; “,”; Col; “) =”;

18Ø INPUT MatA(Row,Col)

19Ø PRINT “ ”;

2ØØ NEXT Row : PRINT

21Ø NEXT Col

22Ø REM Entering Matrix-B

23Ø FOR Col =1 TO r

24Ø FOR Row = TO q

25Ø PRINT “B(”;Row; “;”;Col;”) =”;

26Ø INPUT MatB (Row ,Col)

27Ø PRINT “ ”;



QBASIC Programming Without Stress119

28Ø NEXT Row

29Ø PRINT

3ØØ NEXT Col

31Ø DIM SumElement, i, j, k

32Ø SumElement =Ø

33Ø FOR i=1 TO r

34Ø FOR j =1 TO r

35Ø FOR k =1 TO n

36Ø SumElement = SumElement + MatA(i,k)* MatB(k,j)

37Ø NEXT k

38Ø MatPrd(i,j)=SumElement

385 SumElement=Ø

39Ø NEXT j

4ØØ NEXT i

41Ø REM Output Section

42Ø PRINT “PRODUCT OF A×B”

43Ø FOR i =1 TO r

44Ø FOR j =1 TO m

45Ø PRINT MatPrd(i,j),

46Ø NEXT j

47Ø PRINT

48Ø NEXT i

49Ø PRINT “DONE”

5ØØ PRINT “******************************”

999 PRINT “USE ANOTHER TIME…THANK YOU”:

1000 END



QBASIC Programming Without Stress120

§6.1.2.3 Matrix Determinant

In many applications in Physics, Mathematics, Economics and

Engineering, Matrix determinants are of invaluable use. The

determination of determinants is discussed below. Note however that the

complexity of determinants is a function of the dimension of the matrix.

A square matrix is a matrix with number of rows equal the

number of columns. You find determinants of square matrices. I shall

explain determinants of matrices starting with the 2×2 square matrix

shown below:











2221

1211)22(
aa

aa
A , the determinant is represented as

2221

1211

aa

aa
 and the determinant Det A or ΔA=a11

.a22 – a21
.a12

(Note the cross multiplication)

Another matrix, but a 3×3 square matrix A(3×3)



















333231

232221

131211

)33(

aaa

aaa

aaa

A and the determinant is

3231

2221

13

3331

2321

12

3332

2322

11

333231

232221

131211

aa

aa
a

aa

aa
a

aa

aa
a

aaa

aaa

aaa

DetA 

)()()( 223132211323313321122332332211 aaaaaaaaaaaaaaa 

Note: The sign coefficients of the elements are (-1) i+j where i, j are the

row and column numbers respectively.



QBASIC Programming Without Stress121

Let us now consider the 4×4 matrix A (4×4)























44434241

34333231

24232221

14131211

aaaa

aaaa

aaaa

aaaa

A

434241

333231

232221

14

444241

343231

242221

13

444341

343331

242321

12

444342

343332

242322

11

aaa

aaa

aaa

a

aaa

aaa

aaa

a

aaa

aaa

aaa

a

aaa

aaa

aaa

aDetA 

The breakdown continues as with the 3×3 matrix determinant above.

The program listing of LSt6.1c

shows a simple program to find the

determinant of a 3×3 matrix.

LST6.1c Determinant for a 3×3 matrix

1Ø REM Program Determinant

2Ø CLS

3Ø PRINT “Enter the Matrix A(3×3)”

4Ø PRINT “******************************”

5Ø DIM N AS INTEGER, I AS INTEGER, J AS INTEGER

7Ø DIM SHARED A(N,N)

SideTalk

LST6.1c is a kind of On The Fly

Programming (OTFP)-No good for

a serious programmer, though the

job is done!



QBASIC Programming Without Stress122

8Ø FOR I=1 TO N

9Ø FOR J=1 TO N

1ØØ INPUT “A”; A(I,J)

11Ø REM Take next

12Ø NEXT

13Ø NEXT

14Ø SUM=Ø

15Ø REM Pass the crossed matrix to a function

16Ø ‘to determine a 2×2 determinant

17Ø DIM COL,ROW

18Ø FOR COL=1 TO N

19Ø SUM=SUM+(-1)^(1+COL)*CROSSEDMAT(COL)*A(1,COL)

2ØØ NEXT

21Ø PRINT “DETERMINANT =” ; SUM

22Ø END

FUNCTION CROSSEDMAT(COL)

23Ø REDIM MAT(2,2)

24Ø DIM CLM

25Ø FOR I=1 TO 2

26Ø FOR J=1 TO 2

27Ø SELECT CASE COL

28Ø CASE IS =1

29Ø CLM=J+1

3ØØ CASE IS =2

31Ø IF J=COL THEN CLM=J+1 ELSE CLM=J

32Ø CASE IS =3

33Ø CLM=J

34Ø END SELECT

35Ø MAT(I,J)=A(I+1,CLM)

36Ø NEXT

365 NEXT

37Ø CROSSEDMAT=MAT(1,1)*MAT(2,2)-MAT(2,1)*MAT(1,2)

END FUNCTION



QBASIC Programming Without Stress123

§6.1.2.4 Cramer’s Rule

To solve a problem involving n-unknowns, it requires n-equations

(which are not linearly dependent). The assumption is that the variables

are linear (i.e. not to power greater than 1). There are various methods by

which a system of simultaneous linear equations can be solved.

If you ever did elementary mathematics, you should be familiar

with the substitution and elimination methods. Some of these methods do

not prove viable always especially when the order of the “matrix” system

(i.e. the simultaneous equations) is big. It is expected that there should be

other more powerful systems (especially those that can be coded for a

computer for use in industrial or research application).

Cramer’s rule and Gauss-Seidel iterative methods are methods

treated in this book but note that there are other methods: Gaussian

Elimination, Gauss-Jordan to mention just two.

The Cramer rule would by explained for the 33 matrix system

below:

1

2

asformmatrixinexpressedissystemThis

1

3

2

1

3

2

1

333231

232221

131211

3333232131

2323221121

1313212111

SsystemgivesbackgmultiplyinthatNote

S

b

b

b

x

x

x

aaa

aaa

aaa

bxaxaxa

Sbxaxaxa

bxaxaxa

























































Experience is not taught but

gained- Erwin Kreyzig



QBASIC Programming Without Stress124

The solution of the system of equations is:
















3

3

2

2

1

1

x

x

x

Where

33231

22221

11211

3

33331

23221

13111

2

33323

23222

13121

1

333231

232221

131211

baa

baa

baa

aba

aba

aba

aab

aab

aab

aaa

aaa

aaa









(Note the replacements)

It is obvious that the solutions exist only if 0 - equations not

linearly dependent. Obviously, your ability to code the Cramer’s rule

depends on if you can code determinants. The Algorithm below (Fig6.3)

is used for the Cramer’s rule.



QBASIC Programming Without Stress125

Note, when programming, to find determinants, all that is

required is to pass the array into the subroutines that handle determinants,

say. Note also that you can reserve a dummy matrix whose columns are

changed. You may follow the Algorithm below (Fig6.4) to achieve step 4

of Fig6.3

1. Enter matrix A(n×n)

2. Enter matrix B(n)

3. Determine the determinant 

4. For n-times, determine determinants nii ,...2,1

5. For the n-solutions ( 0 )

nix
i

i ,...2,1, 





6. Output nixi ,...2,1, 

7. Stop

Fig6.3 Cramer’s rule Algorithm



QBASIC Programming Without Stress126

At the end of the day you should come up with a very lengthy code ( a

project indeed). The good thing is that you will have a system for

solving an n×n matrix – using your personal software!

The program listing of LST6.1d shows a crude code to solve a

3×3 system of equations by the Cramer’s rule.

1. Define a dummy matrix DumMat(n×n)

2. Define i=1

3. Read Array A(n×n) into DumMat(n×n)

4. Read into Column I of DumMat(n×n), Array B(n)

5. Pass DumMat(n×n) into the Determinant sub and obtain i

6. Increment I, until i=n, repeat step 3

7. Stop

Fig6.4 The Determinants of many Matrices

LST6.1d Program – Cramer

DECLARE SUB WELCOME()

REM -----------------------------------------------

REM PROGRAMMER AcubeSoft of Nigeria

REM-------------------------------------------------

REM--------------------------------- 1ØTH JUNE 2ØØ4

DIM A(3,3),B(3)

DIM TempMat(3,3)

CLS

PRINT “*****************************************”

PRINT “***********CRAMER’S RULE*************”

PRINT “******************************************”



QBASIC Programming Without Stress127

FOR I=1 TO 3

FOR J=1 TO 3

INPUT “A=”;A(I,J)

NEXT

INPUT “B=”; B(I)

NEXT

WELCOME

DIM Z, CURRENTCOL, DT, R, C, CMAT

DIM MAIN AS INTEGER

DIM DET(4)

REM FIND THE MAIN DETERMINANT

MAIN=1

REM LOAD THE TEMPORARY ARRAY

FOR Z=Ø TO 3

CURRENTCOL =Z

GOSUB LoadTempMat

GOSUB DETERMINANT

DET(Z+1)=DT

NEXT

IF DET(MAIN)=Ø THEN

PRINT “Sorry this system cannot be solved by crammers rule”

PRINT “….Exiting”

GOTO LastLine

ELSE

PRINT “The solutions are:”

FOR J=1 TO 3

PRINT USING “X# = #######.###”,J, DET(J+1)/DET(MAIN)

NEXT

END IF

LastLine: END



QBASIC Programming Without Stress128

REM _________________________________________

LoadTempmat:

FOR R=1 TO 3

FOR C=1 TO 3

IF C=CURRENTCOL THEN

TempMat(R,C)=B(R)

ELSE

TempMat(R,C)=A(R,C)

END IF

NEXT

NEXT

RETURN

CROSSEDMAT:

FOR I=1 TO 2

FOR J=1 TO 2

SELECT CASE COL

CASE IS=1

CLM=J+1

CASE IS = 2

IF J=COL THEN CLM=J+1 ELSE CLM=1

CASE 3

CLM=J

END SELECT

MAT(I,J)=TempMat((I+1,CLM)

NEXT

NEXT

CMAT=MAT*1,1)*MAT(2,2)-MAT(2,1)*MAT(1,2)

RETURN

REM________________________________



QBASIC Programming Without Stress129

The code you have here is a handy tool for solving, any solvable,

3×3 matrix. Note however that Cramer’s rule is not generally regarded

as good for solving matrix systems (the reason is probably for the

complexity in finding determinants).

DETERMINANT:

SUM=Ø

REM Pass the Crossed Matrix to find 2×2 Det.

FOR COL=1 TO 3

GOSUB CROSSEDMAT

SUM=SUM+(-1)^(1+COL)*TempMat(1,col)*CMAT

NEXT

DT=SUM

RETURN

SUB Welcome()

REM _________________________________

CLS

PRINT “xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx”

PRINT “xxxxx CRAMMER’S RULE xxxxxxxxxx”

PRINT “xxxxx FOR SYSTEM OF MATRICES (3×3) xxxxxxx”

PRINT “xxxxx BY: ACUBESOFT OF NIGERIA xxxxxxx”

PRINT “xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx”

END SUB



QBASIC Programming Without Stress130

§6.1.1.1 Gauss-Seidel Iteration

This is another method for solving a system of equations of the

form AX=B. unlike the previously described methods, it starts by taking

a guess set of values for the solutions and then iterate using the

“arranged” equations until there is convergence (if it converges).

The Gauss-Seidel iteration is better explained using the matrix

system below:

)................(
1

...........................................................................

...........................................................................

)................(
1

)................(
1

)................(
1

asexpressedbecansystemthisthatseetodifficultnotisIt

.....

..........

..........

.....

.....

......

112211

32321313

33

3

23231212

22

2

13132121

11

1

332211

33333332131

22323222121

11313212111

























nnnnnn

nn

n

nn

nn

nn

nnnnnnn

nn

nn

nn

xaxaxab
a

x

xaxaxab
a

x

xaxaxab
a

x

xaxaxab
a

x

bxaxaxaxa

bxaxaxaxa

bxaxaxaxa

bxaxaxaxa



QBASIC Programming Without Stress131

.....3,2,10athatconditionOn the ii ni  For the iteration, initial

guess values are assigned for n21 x,.....x,x . These are substituted in the

first equation to get a “new” 1x . In the next equation the updated value

of 1x is used to get 2x , this new value is used to get 3x and the process

continues until nx . The iteration is repeated until the convergence

criterion say
max

ξ is reached using the equation:

1,2,3....ni,
max

ξnew
i

xold
i

x
(max)

i
ξ  . The

equation should firstly be checked to ensure that

.....3,2,10athatconditionOn the ii ni  if anyone equals zero, the

matrix should be rearranged.

To get an easy programming, the equation could be expressed as:

example.anasmatrix33ausemeLet

matrix.angularUpper triU

matrixIdentityI

matrixngularLower triaLwhere









 bUxIxLx



QBASIC Programming Without Stress132

 UIL

:formtheofisthis

3

2

2

000

200

350

100

010

001

04.02.0

004

000

and

3

2

2

x

x

x

10.40.2

214

351

15

12

10

x

x

x

521

12624

15255

:asexpressedbecanmatrixThis

1515x25xx

1212x6x24x

1015x25x5x

3

2

1

3

2

1

321

321

321

bX

X

or

































































































































































































QBASIC Programming Without Stress133

Following is an Algorithm for the Gauss-Seidel iteration

The program listing of LST6.1e is to execute Gauss-Seidel

iterative scheme.

1. Enter the Matrices A, B

2. Check Aii

3. If Aii=Ø quit else proceed to 4 (A more robust version should

try to rearrange)

4. Define matrix L, U and b

5. “ xn=b-LxØ-UxØ”

6. For i=1 … n, Read guess xØ(i).

7. Compute xn(i) with xn=b-LxØ-UxØ

8. Update xØ(i) for xn(i)

9. Compute error term

10. Repeat 7 to 9 for i=1 … n

11. Check for convergence

12. Stop at Convergence or repeat 7 if iteration has not exceeded

maximum number of iterations.

13. Stop {Gauss-Seidel}

Fig6.4 Algorithm-Gauss Seidel



QBASIC Programming Without Stress134

LST6.1e Program-Gauss Seidel

1Ø ON ERROR GOTO LastLine

11 CLS

2Ø PRINT " GAUSS-SEIDEL ITERATION"

3Ø PRINT "INPUT MATRIX AX=B"

4Ø PRINT " Where aii <> Ø "

5Ø PRINT : PRINT : PRINT : DIM N AS INTEGER

6Ø INPUT " ENTER THE ORDER OF THE MATRIX N="; N

7Ø REDIM A(N, N), b(N), XNew(N), XOld(N)

8Ø REDIM Eps(N)

9Ø DIM EpsMax: INPUT "ENTER CONVERGENCE Eps"; EpsMax

1ØØ DIM i, j, k AS INTEGER

1Ø1 DIM SumUp, SumLow, Eps(N), True, Cnt

11Ø PRINT "******************************************"

115 PRINT " BUSY...."

12Ø FOR i = 1 TO N

13Ø FOR j = 1 TO N

14Ø PRINT "A("; i; ","; j; ")=";

15Ø INPUT A(i, j)

16Ø NEXT j

17Ø PRINT "B("; i; ")=";

18Ø INPUT b(i)

19Ø NEXT i

2ØØ REM TEST FOR aii

21Ø FOR i = 1 TO N

22Ø IF A(i, i) = Ø THEN ‘ You can modify this line to cater for this type!

23Ø PRINT "MATRIX NOT SUITABLE"

24Ø PRINT USING " At least A(#;#)=Ø"; i; i



QBASIC Programming Without Stress135

25Ø GOTO LastLine

26Ø END IF

27Ø NEXT

271 DIM DMat(N)

272 FOR i = 1 TO N

273 DMat(i) = A(i, i): REM Temporarily Store the Column Elements

274 NEXT

28Ø REM Convert to L and U and b

29Ø FOR i = 1 TO N

33Ø b(i) = b(i) / DMat(i)

3ØØ FOR j = 1 TO N

31Ø A(i, j) = A(i, j) / DMat(i)

32Ø NEXT

34Ø NEXT

341 ERASE DMat

35Ø REM Read in Values for L and U

36Ø FOR i = 1 TO N

37Ø FOR j = 1 TO N

38Ø IF j <= i THEN k = Ø ELSE k = 1

39Ø U(i, j) = A(i, j) * k

391 IF j >= i THEN k = Ø ELSE k = 1

392 L(i, j) = A(i, j) * k

393 NEXT

4ØØ NEXT

41Ø PRINT "Enter initial guess values"

42Ø PRINT "Press Z to use Ø throughout"

43Ø PRINT "Press N to enter values"



QBASIC Programming Without Stress136

44Ø IF UCASE$(INPUT$(1)) = "Z" THEN

45Ø FOR i = 1 TO N

46Ø XOld(i) = Ø

47Ø NEXT

48Ø ELSE

49Ø FOR i = 1 TO N

5ØØ PRINT "X "; i; " = ";

51Ø INPUT XOld(i)

52Ø NEXT

53Ø END IF

54Ø PRINT "Busy....."

55Ø SumUp = Ø: SumLow = Ø: Cnt = Ø

56Ø DO

57Ø : 58Ø FOR i = 1 TO N

59Ø FOR j = 1 TO N

6ØØ SumUp = SumUp + U(i, j) * XOld(j)

61Ø SumLow = SumLow + L(i, j) * XNew(j)

62Ø NEXT

63Ø XNew(i) = b(i) - SumUp - SumLow

64Ø Eps(i) = ABS(XOld(i) - XNew(i))

65Ø XOld(i) = XNew(i)

66Ø SumUp = Ø: SumLow = Ø

67Ø IF Eps(i) <= EpsMax THEN True = 1 ELSE True = Ø

68Ø NEXT i

69Ø Cnt = Cnt + 1

7ØØ IF Cnt > 4ØØ THEN

71Ø PRINT "THE SYSTEM DID NOT CONVERGE"



QBASIC Programming Without Stress137

§6.2 SORTING ALGORITHMS

There are various Algorithms developed to sort an array. More

often than not you will want to sort an array. It may be paramount to find

the best way out. While some are easy to code some execute fast. The

72Ø GOTO LastLine: REM You can use EXIT DO here

73Ø END IF

74Ø LOOP UNTIL True = 1

75Ø PRINT "Converged after "; Cnt; "iterations"

76Ø PRINT : PRINT SPACE$(25); "SOLUTIONS"

77Ø PRINT

78Ø FOR j = 1 TO N

79Ø PRINT USING "X## = "; j;

8ØØ PRINT XNew(j)

81Ø PRINT

82Ø NEXT

83Ø PRINT "Done !": PRINT "Yet another Y/N ?"

84Ø IF UCASE$(INPUT$(1)) = "Y" THEN 1Ø

85Ø REM CAN YOU SEE WHY REDIM was used at Line 7Ø?

999 END

LastLine: PRINT "ERROR! The Matrix caused Error "

PRINT " Try another [Use other guess]"

PRINT "Avoid too large Array size"

PRINT " Thank you for using this program"

1ØØØ GOTO 999



QBASIC Programming Without Stress138

following are viable ways of sorting arrays: Bubble sort, Shell Sort,

Quick Sort, Insertion sort, Exchange sort to mention a few.

§6.2.1 Bubble Sort

It loops through an array and makes comparison with adjacent

items of the array to check whether they are out of order. If they are not

out of order, keep looping through the array until no items are swapped,

this implies a sorted array. Unfortunately this is the slowest of all. The

program listing of LST6.2a tries to execute Bubble sort.

LST6.2a Program Bubble Sort

CLS

REM GENERATE RANDOM NUMBER ARRAY

RANDOMIZE TIMER

DIM A(5Ø), I, J

FOR I=1 TO 5Ø

A(I)=INT(1ØØ*RND(Ø))

PRINT A(I),

NEXT

PRINT “UNSORTED LIST”

REM DO SORT

1ØØ PRINT “SORTING STARTED =” ; TIME$

FOR I=2 TO 5Ø

FOR J=5Ø TO I STEP -1

IF A(J-1)>A(I) THEN

‘SWAP A(J-1), A(J) OR

Temp=A(J-1)



QBASIC Programming Without Stress139

§6.2.2 Shell Sort

This algorithm was discovered by Donald Shell about 37 years

ago. The method works similarly to the Bubble sort but instead of

comparing adjacent items in an array, it takes items that are half-way

between the first and the last items in the array, in its initial comparison.

If the array is not yet in tune, it swaps them. It then determines the

halfway point again and repeats the process. This halving of the items

and the logical comparison is not stopped until adjacent items are being

compared. This would have ensured that most item in the array are been

sorted. A loop through the array, finally, goes same way as the Bubble

sort and the array is therefore said to be sorted.

If you have 1GHz Giga pro VIA Samuel processor, in less than 4

seconds you could sort an array of 5ØØØ integers with Shell sort but

that take over 5 seconds for Bubble sort! You may want to compare the

A(J-1)= A(J)

A(J)= Temp

END IF

NEXT

NEXT

FOR I=1 TO 5Ø

PRINT A(I);

NEXT

PRINT “SORTED”

2ØØ PRINT “SORTING ENDED AT =”; TIME$

END



QBASIC Programming Without Stress140

speed of sorting of similar arrays by sorting a large arrays on your

system, a simple trick would help you get the sorting time: print time

(using the statement PRINT TIME$) at the beginning (before sorting)

and after sorting, see lines 1ØØ and 2ØØ of LST6.2a.You can compare

the data generation time and the sorting time, you will be surprised to

see that it take more time to generate than sorting using an efficient

sorting Algorithm.

The LST6.2b is for the Shell sort Algorithm.

LST6.2b SHELL Sort

CLS

REM Generate the Array

GOSUB GenARRAY

PRINT "SHELL SORT"

PRINT "SORTING Initiated "; TIME$

PRINT "Busy......."

DIM Asize, Inc, Hold

Asize = UBOUND(B)

Inc = Asize \ 2

DO UNTIL Inc < 1

FOR i = Inc + 1 TO Asize

Hold = B(I)

FOR j = i - Inc TO 1 STEP -Inc

IF Hold >= B(j) THEN



QBASIC Programming Without Stress141

§6.2.3 Merge Sort

EXIT FOR

ELSE

B(j + Inc) = B(j)

END IF

NEXT j

B(j + Inc) = hold

NEXT i

Inc = Inc \ 2

LOOP

PRINT “SORTED ARRAY…”

FOR i = 1 TO m

PRINT B(i)

NEXT

PRINT "Array Sort completed "; TIME$

END

GenARRAY:

DIM B(5ØØØ)

PRINT “UNSORTED ARRAY”

FOR i=1 TO 5ØØØ

B(i)=CINT(RND*1ØØØ)

PRINT B(i);

NEXT

PRINT

RETURN



QBASIC Programming Without Stress142

The Algorithm follows the form:

To sort an Array
If an array has no one entry stop
SORT (the first Half)
SORT (the second half)
COMBINE (the two); i.e. MERGE

STOP
The listing of LST6.2d shows a code for the Merging Sort. Assuming an

Array A() exists.

LST6.2d PROGRAM MERGE SORT

DECLARE SUB MergeSort(A(),Start%, Finish%)

DECLARE SUB ArrayMerge (A(), Start%, Middle%, Finish%)

REM MERGE SORT

REM Put Code to generate A()

‘ DIM Mdl,St, Fin : REM Middle, Start, Finish

‘ DIM B1,E1,B2,E2, TempLoc

REM B=>Beginning E=> End and TemLoc=> Temporary Location

PRINT “********************************************************************”

REM The procedure used is a RECURSIVE method where a Sub is REM

CALLED in itself.

MergeSort(A(),Start,Finish)

FOR i=1 TO UBOUND(A)

PRINT A(i);

NEXT: PRINT “SORTED”

END



QBASIC Programming Without Stress143

SUB MergerSort(A(),Start,Finish)

DIM Mdl AS INTEGER

IF Start< Finish THEN

Mdl=(Start+Finish)\2

MergeSort A(), Start, Mdl

MergeSort A(), Mdl+1, Finish

ArrayMerge A(), Start, Mdl, Finish

END IF

END SUB

SUB ArrayMerge (A(), Start, Middle, Finish)

REDIM ATemp( Start TO Finish) :’ AS TYPE

‘Note that you can dim this way using to keyword

DIM B1,E1,B2,E2 AS INTEGER

DIM TempLoc, i AS INTEGER

B1=Start

E1=Middle

B2=E1+1: E2=Finish

TempLoc=Finish

DO WHILE ((B1<=E1) AND (B2<=E2))

IF A(B1) <=A(B2) THEN

ATemp(TempLoc)=A(B1)

TempLoc=TempLoc + 1

B1=B1+1



QBASIC Programming Without Stress144

§6.3 SUMMARY

You have been taken through some ways of handling arrays

which included allocating memory to a variable as an array, storing data

in array variables, making an array as user defined type.

The chapter also takes you through some mathematical

applications with matrix by explaining and programming some of the

Algorithms.

Finally, this chapter explains sorting arrays. You find codes for

Bubble, Shell and Merge sorts, all of which you can modify to suite your

future requirements.

ELSE

ATemp(TempLoc)=A(B2)

TempLoc=TempLoc + 1

B2=B2+1

END IF

LOOP

IF B1<= E1 THEN

FOR i=B1 TO E1

ATemp(TempLoc)=A(i)

TempLoc = TempLoc +1

NEXT

END IF

FOR i= Start TO Finish

A(i)=ATemp(i)

NEXT

END SUB



QBASIC Programming Without Stress145

§6.4 QUIZ

How many sub 2×2 matrices are obtained by finding the

determinant of an 8×8 matrix?

6.5 PROJECT

(a) Design and code a QBASIC code that visually exhibits the

performance of the three sorting scheme explained in this

chapter.

Hint: The array could be used to determine the heights of bars of

different colours (or pie chart of different colours and angles) drawn

side by side, the sorting should then be shown. You may read up

graphics to know how to use lines ( See chapter eight)



QBASIC Programming Without Stress146

(b) Find out the speed of your system and fill the chart below ( right

in this book (with pencil)

COMPUTER SPEED:

TYPE: (E.G. PENTIUM IV)

S/N ARRAY SIZE ALGORITHM TIME START TIME END TOTAL TIME TAKEN

1 500

Bubble

Shell

Merge

2 1,500

Bubble

Shell

Merge

3 4,000

Bubble

Shell

Merge

4 10,000

Bubble

Shell

Merge

5 500

Bubble

Shell

Merge

Comment on your result and possibly forward to

engradeniyi@gmail.com.



QBASIC Programming Without Stress147

Bibliography

 Erwin Kreyzig (2001),Advanced Engineering Mathematics, 8 Ed.,

John Willey & Sons, Inc, New York

 Rob Thayer (1998), Visual Basic 6 Unleashed, Sams Publishing,

United States of America



QBASIC Programming Without Stress148



QBASIC Programming Without Stress149

CHAPTER SEVEN

§7.1 WORKING WITH FILES & DATA

DOS commands can be executed within your QBASIC code. The

following is a list of some of the file handling DOS commands:

MKDIR: To make a directory (called folder in Windows OS)

RMDIR: To remove a directory from a disk

KILL: To delete a file from a disk

SHELL: This is a function used to run any .com, .exe, .bat

etc file.

You have these handy, however, care should be taken not to

corrupt a file or delete file(s) (You may not be able to retrieve or restore

deleted or corrupted files!). Suppose you have a floppy disk on the floppy

drive and you run the code:

You can run the following:

WARNING!

DO NOT RUN THIS MALICIOUS CODE!

No warning, just delete all!

10 CLS

20 KILL “A:\*.*”

30 END



QBASIC Programming Without Stress150

§7.1.1.1 Sequential files

At this stage you should have at least a vague idea of what a file

means in computer programming. A sequential file is similar to audio

tape. To get a data from it you start from the beginning and play till you

get to where you want and push stop when you are through. There is no

automatic way to get to any location within an audio cassette.

It is advisable to use sequential file only if:

(i) The information rarely changes in the file

LST7.1a Simple File Handling

10 CLS: ON ERROR GOTO 9999

20 MKDIR “A:\Folder”

25 PRINT “Folder Created”

30 OPEN “A:\Folder\Trial.dat” FOR OUTPUT AS #1

40 CLOSE 1

50 KILL “A:\Folder\Trial.dat”

55 PRINT “Folder Deleted!”

58 PRINT “LOADING MARIO please wait…”

60 SHELL “C:\MISC\XMARIO.EXE”

70 REM Assuming the game XMario.exe is installed on C:\Misc

80 PRINT “Loaded and done!”

90 END

999 RESUME NEXT



QBASIC Programming Without Stress151

(ii) The processing is from “start to end”

(iii) Adding to the file is to the end.

(But try to avoid it if you can).

To create “a sequential file” from your code, use the statement:

OPEN FileName FOR OUTPUT AS #FileNum

If the file name already exists, the content is deleted! The file

name may be a path e.g. C:\MISC|Acube.dat. if the path is not specified,

QBASIC places the file in the current directory of the executing program.

Not that you cannot use the following characters in naming in DOS \, ?,

:,*, <, >, ;, or |. However, you should follow the rules for filenames that

DOS imposes.

 8 Characters or less plus 3 letters extension ( optional)

 Characters: A-Z, 0-9, ( ), {, }, @, #, $, %, &, !, -, _, ~, /

 Not case sensitive

Reading from a Sequential file

Use the statement:

OPEN FileName FOR INPUT AS #FileNum

(where FileNume=1,2,3,…)



QBASIC Programming Without Stress152

To read from the open sequential file, use:

INPUT #FileNum, VariableName(s) for example:

OPEN “C:\MISC\Dummy.dat” FOR INPUT AS #1

INPUT #1, Age$

PRINT Age$

CLOSE 1

The keyword CLOSE is like pressing STOP after playing a

cassette.

Adding to a Sequential File

To add data or record to a sequential file you use the statement:

OPEN FileName FOR APPEND AS #FileNum

Then you use the WRITE # or PRINT # to do the actual appending as in

the example below:

INPUT “C:\MISC\Dummy.dat” FOR APPEND AS #2

WRITE #2, “This is an appended text: WRITE #”

PRINT #2, “This is another appended text: PRINT #”

CLOSE 2

END



QBASIC Programming Without Stress153

Editing the content of a Sequential file

It is possible that you make changes to a sequential file although

it is pretty involved. You can use the Algorithm below to effect editing

on a sequential file:

§7.1.1.2 Random Access file

Unlike in a sequential file,

a Random access file allows you

to locate a record say 20th position without necessarily going through the

19th record. This saves a considerable amount of time.

OPEN OriginalFile (For INPUT)

OPEN TempFile (For OUTPUT)

INPUT Field from OriginalFile

DO UNTIL EOF (OriginalFile Number)

Check Condition

True{WRITE Changes to the TempFile }

False{WRITE Field to the TempFile}

GET NEXT field value from OriginalFile

Continue Loop

CLOSE OriginalFile

KILL OriginalFile

ReName TempFile AS OriginalFile

CLOSE {TempFile Number}

STOP {Algorithm}

Fig7.1a Algorithm – Editing Sequential file

SideTalk
To rename a file
NAME “C:\MISC\Test.bas” AS “C:\MISC\New.bas”
(Note the path must be on the same drive but not
necessarily on the same directory)



QBASIC Programming Without Stress154

The command for setting up a Random-Access file is analogous

to that of a sequential file e.g.

OPEN “C:\MISC\Musicals.RND” AS #3 LEN=100

The LEN=100 means that each record can hold 100 characters.

There is no need to include FOR OUTPUT or APPEND as you did in

sequential file. In Random-Access file you can read and write

simultaneous. The underlying files in your OS config.sys file set the only

restriction.

As in sequential files you use the CLOSE command. Here you

use the GET and PUT commands to read and write to an .rnd file.

§7.1.1.3 Binary files

Binary files are like random-access files in that the open

statement allows you to read and write simultaneously to the file, unlike

the other types, binary files techniques allow you to manipulate any kind

of file (i.e. not just text files). The technique allows you to edit any byte

of a file.

The command for setting up binary file is:

OPEN FileName FOR BINARY AS #FileNumber

You use INPUT$() function to read from such a file. I believe you

might have tried to open a file and saw horrible looking characters, if not

try the following (BE CAREFUL NOT TO MAKE ANY CHANGES

OTHERWISE YOU WILL CORRUPT THE FILE!).



QBASIC Programming Without Stress155

(i) Open a new window in QBASIC

(ii) Write a simple BASIC code to print the sum of all integers

from 0 to 100, then the square root of all numbers from 201 to

215 in steps of 0.1

(iii) Save the file (As QBASIC fast load i.e. not as file readable by

other program) as “c:\test.bas”

(iv) Close the file

(v) On the DOS prompt enter EDIT C:\Test.bas or open the file

C:\Test.bas with Notepad on windows

(vi) If you do not have QBASIC on your system try to open a

picture file with Notepad to see them (horrible looking

“creatures”)

You will see what I mean by horrible characters. Opening a

bitmap file with a text editor gives similar action.

With Binary mode, you can open and print the contents of any

file, regardless of any embedded control characters:

Do the following, draw a circle in Bitmap (Microsoft Paint) and

save as C:\MSIC\Circle.bmp close the file and run the following lines of

code:

OPEN “C:\MSIC\Circle.bmp” FOR BINARY AS #4

DIM i%, C$

FOR i=1 TO LOF (4)

C$=INPUT$(1, 4): REM Single Character

PRINT C$



QBASIC Programming Without Stress156

NEXT

CLOSE 4

END

Handling Binary files is beyond this kind of introductory text.

§7.1.2 Storage Devices and Access types

The following are the storage devices that are commonly used:

o Hard disk

o Floppy disk (3 ½ ‘ or 5 ¼ ‘ )

o Compact Disk (CD)

o Zip disk etc

While you can Read or Write to your hard disk and floppy you

cannot write to a CD-Rom (ROM means Read-Only memory). If your

floppy disk is write-protected, you can only read but cannot write;

although you can uncover the write-protect notch to give you a write-

access.

You can make a file have an access you want by using the

following:

OPEN path [FOR MODE] [ACCESS access] AS [#][Number][LEN=RecordLength]

Where:

1. path = Path or file name

2. MODE = Any of APPEND, BINARY, INPUT, OUTPUT or

RANDOM

3. access = READ, WRITE or READ WRITE

e.g. OPEN “Test.txt” FOR BINARY ACCESS READ AS #2

(Allows reading but no changing)



QBASIC Programming Without Stress157

4. LOCK= SHARED ( e.g. on a network), LOCK READ, LOCK

WRITE, LOCK READ WRITE

Lock controls what other process can do on the same file:

e.g.

OPEN filename FOR BINARY ACCESS READ LOCK READ AS #1

5. Number = any free number 1, 2 ,3 …511

6. RecordLength: an integer from 1 to 32,767, in Random Access it

implies Record length; in Sequential file it implies number of

characters buffered by the OS.

§7.1.3 Editing Data (Edit Command)

As you code big programs, you later deal with huge size of data. I

once worked on a data from a device that measures atmospheric data

every 3 minutes interval. The program requires finding average and other

Physical values fields from 1998 to 2000! It means finding the average of

3 minutes values within February 28th 1998 to November 2000!

You cannot open such Data on your QBASIC IDE. You can view

such data from the EDIT window. From your IDE select DOS Shell and

on the DOS prompt ENTER EDIT filename to view the content of such a

large file.



QBASIC Programming Without Stress158

§7.2 FILE STATEMENTS

The generalized OPEN statement without the Access and Locking

is:

OPEN pathname [FOR MODE] AS #Number

The modes are OUTPUT, INPUT or APPEND and RANDOM or

BINARY just discussed.

OUTPUT

This creates a new file (sequential). If the path name already

exists, it deletes the content and makes it ready for output. It should

however be noted that you cannot open a read only disk for output (see

7.1.2)

APPEND

It allows you to add extra record to an existing file, if the file does

not exist, before, it creates a new file. It is not allowed to append to a

read-only file.

§7.2.1 GET & PUT

These file statements work with Random Access file to Read or

Write to a particular position. The example following (LST7.2a)

illustrates well their use (in file processing – note that they exist in

graphics statements)



QBASIC Programming Without Stress159

LST7.2a GET & PUT-File

CLS

OPEN “C:\MISC\MUSICALS.RND” AS #1 LEN = 95

REM Assuming the file Musicals.Rnd

‘Contains Record in the following format

‘ Artist, Title, Country

TYPE Music

Artist AS STRING*25

Title AS STRING*50

Country AS STRING*20

END TYPE

REM LEN=25+50+20

DIM MusicDesc AS Music

GET 1,12, MusicDesc

PRINT “ The Artist in the 12th record has :”

PRINT “NAME: = ”; MusicDesc.Artist

PRINT “Title of Song = ”; MusicDesc.Title

PRINT “Country where produced =”; MusicDesc.Country

PRINT “CHANGED THE THIRD RECORD”

INPUT “ Name ”; MusicDesc.Artist

INPUT “ Song title ”; MusicDesc.Title

INPUT “ Country ”; MusicDesc.Country

PUT 1,3, MusicDesc

END



QBASIC Programming Without Stress160

The format is:

GET FileNumber, RecordPosition, Record

PUT FileNumber, RecordPosition, Record

§7.2.2 CLOSE

To close a file, opened using the OPEN statement, use:

CLOSE [FileNumber][,FileNumber2][…...]

e.g. CLOSE 1, 2, 3

It must be preceded by an open statement. After closing a file

number same number could be used to open same or another file. Note

that if after closing the code references an open statement calling an

already close file number, it amounts to a run time error. However if the

file numbers are ignored, all the open files are closed.

§7.2.3 KILL

The KILL statement is used to delete a file. You can only delete a

file that is not on read only disk. You cannot delete from a CD-Rom say.

The KILL statement is: KILL filename

e.g. KILL “C:\MISC\Test.dat”

Running the KILL statement after deleting the file flags an error :

FILE NOT FOUND – A trappable error.

§7.3 DATABASE

A database is a large store of data held in a computer and easily

accessible to person using it. There are special software designed solely



QBASIC Programming Without Stress161

for database programming, such programs include but not limited to

DBASE; Microsoft ACCESS, FOXPRO, ORACLE etc.

You can although design a database manager with your random

file and Binary files using ingenuity but it may not be worth the task

when you can easily learn any serious database software.

§7.4 SUMMARY

You have been taken through the rudiments of file processing in

this chapter, we have discussed the following types of files: Sequential

files, Random files, and a little introduction to Binary files.

Also, you learnt about storage devices and access to files as well

as how to use editor to open data files.

Lastly you learnt the files statements and got an insight to

database programming.

§7.5 QUIZ

GET and PUT are similar to what and what?



QBASIC Programming Without Stress162

§7.6 PROJECT

(a) Develop a Database manager for a Record Studio to assist in

locating shelve and audio cassette. The customer specifies either

the Artist, Song or Volume etc

Hint:

Create files for the data, Use Random file and DO-WHILE

(b) Write a code to mimic the search and change of your QBASIC

IDE.



QBASIC Programming Without Stress163

Bibliography

 Rob Thayer (1998), Visual Basic 6 Unleashed, Sams Publishing,

United States of America



QBASIC Programming Without Stress164



QBASIC Programming Without Stress165

CHAPTER EIGHT

§8.1 GRAPHICS WITH QBASIC

Computer graphics has gone very far. There are hosts of software

application for graphics; they include CorelDraw; Microsoft Paint;

Macromedia Flash MX™ etc. QBASIC graphics still needs to be

discussed, despite various advances in computer graphics, for

appreciation purpose at least.

§8.1.1 Screen Modes

The output screens have numbers designated to them. The modes

determine the “kind” of output: line types, text size, and resolution to

mention some. The syntax is:

[LineNumber] SCREEN [Mode][,[ColorSwitch]][,[apage]][,[vpage]]

Where the optional variables mean:

Mode

This is an integer value or a constant that represents

Screen mode. The various valid modes are discussed

immediately following this section.

ColorSwitch

This is a numeric value ranging from 0 to 255 that

determines whether color is displayed on composite

monitors.

Note: When it is nonzero, color is disabled and only

black and white images are displayed but if

ColorSwitch is zero, images are in color. However,



QBASIC Programming Without Stress166

the meaning of the ColorSwitch argument is inverted

in screen mode 0 while the ColorSwitch is ignored

in screen mode 2.

apage

apage is a numeric expression that is the number of the

screen page that text output or graphics commands write

to.

See documentation on your QBASIC installation disk.

vpage

This is also a numeric expression that is the number of the

screen page being displayed.

More on modes

SCREEN 0: Text mode only

SCREEN 1: 320 x 200 graphics

SCREEN 2: 640 x 200 graphics

SCREEN 3: Hercules adapter required, monochrome monitor only

SCREEN 7: 320 x 200 graphics

SCREEN 8: 640 x 200 graphics

SCREEN 9: 640 x 350 graphics

SCREEN 10: 640 x 350 graphics, monochrome monitor only

Screen 11: 640 x 480 graphics

Screen 13: 320 x 200 graphics; 40 x 25 text format

I strongly recommend that you look up the documentation on your QBASIC IDE for

efficient use of the screen modes.

§8.1.2 WINDOW statement

The WINDOW statement is used to give physical boundary scale

to your screen (i.e. monitor) so that you can customize coordinates on



QBASIC Programming Without Stress167

your screen. The screen of Fig8a shows the implication of using the

statement WINDOW (-1, -1) – (1, 1)

Fig8a: Screen Positions

The statement is similar to WINDOW (-1, 1)-(1,-1) where the

points in brackets are the coordinates of the boundaries.

WINDOW (X1, Y1) – (X2, Y2)

Where your choice of the coordinates depends on what you intend to

draw.

§8.1.3 COLOR statement & Pixel

Color statement is used to specify the text and background (fore)

colours:

COLOR TextColourNumber, ForeColourNumber

Where TextColourNumber is any integer ranging from 0 to 15. The

numbers are coded e.g. 4 represent Red and 15 bright white.

ForeColourNumber is similarly coded. If the numbers are the same, you

cannot see printed text. Note that not all screen modes support the

statement. Try to find out. The table below shows the numbers and their

colors equivalent:

A(-1,1) B(1,1)

E(0,0)

D(-1,-1) C(1,-1)



QBASIC Programming Without Stress168

LST8.1a Using PSET

10 CLS: WINDOW (-1, 1) – (1, -1): DIM

Reply

15 CONST PI=3.14159

20 PRINT “SELECT A GRAPH”

30 PRINT “1 – Sine Graph”

40 PRINT “2 – Quadratic Graph”

50 PRINT “3 – Four – Leaf Clover”

60 PRINT “0 – Quit”

70 INPUT “ ”, Reply

80 SELECT CASE Reply

90 CASE 3

SideTalk

Try to change the STEPs to see

the dramatic change in output

try 0.0001, 0.1 and 0.5 or even

leaving them out i.e. STEP 1

0 Black 5 Magenta 10 Light green

1 Blue 6 Brown 11 Light Cyan

2 Green 7 White 12 Light red

3 Cyan 8 Gray 13 Light magenta

4 Red 9 Light Blue 14 Yellow

15 High-intensity white XXXXXXXX XXXXXXXX

Pixel: This is a picture element; it is the smallest unit of

resolution on your monitor. To turn-on a pixel, you can use the PSET

statement as used below:

PSET (Column, Row) [, ColorCode]

The ColorCode, as indicated by the square bracket, is optional.

You can plot graphs with the

PSET statement. The

program listing of LST8.1a

uses the PSET statement to

plot three different graphs.



QBASIC Programming Without Stress169

§8.1.4 LINE statement

100 FOR I=0 TO 2*PI STEP 0.01

110 Radius = COS (2*I)

120 X = Radius *COS (I)

130 Y = Radius * SIN (I)

140 PSET (X,Y), 15

150 NEXT

160 CASE 2

170 FOR X = -1 TO 1 STEP 0.01

180 Y = X^2+2

190 PSET (X, Y), 2

200 NEXT

210 CASE 1

220 RADIUS = 1

230 FOR I = 0 TO 2 *PI STEP 0.01

240 Y= Radius * SIN (I)

250 REM Y=RADIUS*COS (I)

260 PSET (I, Y), 4

270 NEXT

280 CASE 0

290 GOTO LastLine

300 END SELECT

310 PRINT “PRESS ANY KEY TO CONTINUE”

320 DO: LOOP UNTIL INKEY$<> “”

330 CLS : 340 GOTO 20

LastLine:

350 END



QBASIC Programming Without Stress170

LST8.1b Lines

10 CLS

20 SCREEN 2 : WINDOW (-10,10) – (10,10)

40 LINE (0,0) – (3,3) : REM Line A

50 LINE – (3,4) : REM Line B

60 LINE – STEP (1,1) : REM Line C

70 LINE STEP (1,2) – STEP(1,1) : REM Line D

80 LINE – (0,0) : REM Line E

90 PRINT “Press Key” : DO : LOOP UNTIL INKEY$<> “”

100 LINE (0,0) – (10,10),,,&HFF00: REM Dashed Line

120 END

This statement is used to draw a line on the Screen. The syntax is:

LINE [[step][(x1,y1)]-[step](x2,y2)[,[ColorCode][B[F]][Style]

Where (x1,y1) and (x2,y2) specify coordinates.

(x1,y1) : Beginning coordinate

(x2,y2): End coordinate

Step: if used enables you to specify relative screen coordinate

i.e. from a location to another with the step value given.

Color : See §8.1.3

BF: Option draws a filled box (box fill)

B: Draws a box with diagonal of the specified coordinates

(x1,y1)-(x2,y2)

The program listing of LST8.1b shows some simple use of line
statement.



QBASIC Programming Without Stress171

§ 8.1.5 CIRCLE statement

A

0 3 4

(10,10)

(-10, -10)

0
3

4
5

6

B

C

E

E

Fig8.1 Expected Output of LST8.1b
[Note that the labels are not expected-it was put to give you light]



QBASIC Programming Without Stress172

This statement is used to draw Circles, Arcs, Ellipses and Sectors.

Unlike in LINE statement where BF can be used you use PAINT to put

(fill) colour. The Circle syntax is:

CIRCLE [STEP](X, Y), Radius [, Color][,[Start][,[End][,Aspect]]]

The optional Start and End are used to draw Arc. While STEP is

used to specify a relative position if used, X, Y specifies the center of the

circle.

Aspect, also known as aspect ratio, is the ratio of the Y-Radius to

the X-Radius. The default value for aspect is the value required to draw

a round circle in the Screen mode (§8.1.1). You calculate aspect ratio

using the relation:

4*(YPixels/XPixels)/3

Screen resolution is defined by XPixel × YPixel for example the

resolution of Screen 1 is 320 × 200, therefore the aspect ratio is =

4*(200/320) /3 = 5/6

If aspect ratio is less than 1, the radius is X-Radius, it is Y-Radius

if aspect ratio is greater than 1.

You can write programs and put Circle statement in a loop etc.

§ 8.2 SIMPLE ANIMATION

Animation is the technique of making people or animals in

pictures appear to move. It involves giving “observers” the impression

that an image is moving or performing some actions. This technique is

employed in cartoons. Some animated pictures come with windows. I

once animated pictures with Coffee Animator™ software, where I used



QBASIC Programming Without Stress173

seven different images to give an impression that an electric motor is

“working”.

With QBASIC, like in many programming languages, you can

create animations depending on your level of intuitiveness. To really

appreciate the simple animations of LST8.1c you have to run the code in

QBASIC environment.

LST8.1c SIMPLE ANIMATION CODE

DIM Tennis (90)

DIM VirtualPad (90):’These arrays hold enough memory

DIM I, AUTHUR$

AUTHUR$ = "ACUBESOFT OF NIGERIA" + SPACE$(30)

T = 10 :’ 10 Seconds

DO

T = T - 1

COLOR INT(1 + RND * 14) :’ Random colours

LOCATE 13, 35: PRINT T: REM Display count down

SLEEP 1

LOOP UNTIL T = 0

SCREEN 2

CLS

CIRCLE (6, 6), 5 'Draw and paint Tennis.

PAINT (6, 6), 1

GET (0, 0)-(14, 14), Tennis

CLS



QBASIC Programming Without Stress174

LINE (1, 1)-(10, 10), , BF ‘ Box Fill

GET (0, 0)-(14, 14), VirtualPad

DIM Horiz, Vert, u

Horiz = 10: Vert = 10

H0 = .91: V0 = .91

LINE (0, 0)-(550, 160), , B

LINE (10, 10)-(500, 150), , B

LOCATE 22: PRINT "NAUGHTY CODE!"

DO

Horiz = Horiz + H0

Vert = Vert + V0

IF INKEY$ <> "" THEN END ' Test for key press.

'Change direction if Tennis hits left or right edge.

IF (Horiz < 10.1 OR Horiz > 480) THEN

H0 = -H0

PUT (Horiz, Vert), VirtualPad, PRESET

LOCATE 20, 5: PRINT "Caught"; TIME$



QBASIC Programming Without Stress175

§8.3 Summary

With QBASIC, you can generate shapes with the graphics

statements as well as perform some simple graphical animations

depending on your skills and ingenuity although there is a limit to what

you can do with graphics in QBASIC.

SLEEP 1

END IF

LOCATE 20, 5: PRINT " "; TIME$

IF I = LEN(AUTHUR$) THEN

LOCATE 22, 20: PRINT " "

I = 1

ELSE

LOCATE 22, 20: PRINT MID$(AUTHUR$, 1, I)

I = I + 1

END IF

IF (Vert < 10 OR Vert > 140) THEN

V0 = -V0

END IF

FOR u = 1 TO 3000: NEXT

PUT (Horiz, Vert), Tennis, PSET

LOOP

END



QBASIC Programming Without Stress176

§8.4 Project

Design the draft board shown and allow a user to move seed

using the arrow keys.

Hint: Use two FOR-NEXT loops; LINE (BF) then adapt the code of LST8.1c

i.e. GET and PUT the seed

Bibliography

 Microsoft QuickBASIC online Help.



QBASIC Programming Without Stress177



QBASIC Programming Without Stress178

CHAPTER NINE

§9.1 MISCELLANEOUS TOPICS

You have been through a great deal of programming concepts

with QBASIC, however, you have not arrived yet. QBASIC has more

powerful things it can perform. You have to see more advanced

textbooks for more. I can guarantee you that having gone through and

understood this book, you can now be sure that you can proceed to any

programming text with little or no special assistance and get more (even

on other languages like C++, FORTRAN77 and so on)

This ending chapter will help you see some programs which will

assist you somehow.

§9.1.1 TIMER FUNCTION

To write a code that will operate on time basis rather than user

input, the Timer Function may come helpful. See LST9.1a for an

example.



QBASIC Programming Without Stress179

LST9.1a Timer

10 CLS: C=0:

LOCATE 18

PRINT “STOP WATCH”

PRINT “***********************”

PRINT “* *”

PRINT “* *”

PRINT “************************”

70 ON TIMER (1) GOSUB TPRINTER

REM Call Timer Subroutine

LOCATE 50: PRINT “R – Refresh”

LOCATE 51: PRINT “C – Continue”

LOCATE 52: PRINT “S – Stop”

LOCATE 54: PRINT “P – Pause”

DIM KEY1$

DO: KEY1$ = INKEY$

SELECT CASE UCASE$(KEY1$)

CASE “P”

TIMER STOP

CASE “C”

TIMER ON

CASE “S”

TIMER OFF

CASE “R”

C=0

END SELECT

END

TPRINTER:

LOCATE 20

SELECT CASE C

CASE 0 TO 60

PRINT C;

PRINT “SECONDS”

CASE ELSE

C=0

END SELECT

C=C+1

RETURN



QBASIC Programming Without Stress180

You should find it easy to modify LST9.1a to print minutes and hours

elapsed.

§9.1.2 Wildcard Searching

If you have searched for files on Windows or DOS prompt you

will be familiar with wildcards. They are also found in most database

applications where records can be found.

A typical DOS command to search all files with extension .bas

can be gotten as follows:

C:\DIR A*.bas /p/s  will return files like the following:

ADE.BAS

ALABI.BAS

ALGOLS.BAS

APPENDIX.BAS etc

The wildcard is “*”

C:\ DIR *.D*/S /P  will return all files with the extension

starting with D. the following will be returned (say):

C:\WINDOWS\mypictures\file2.dat

C:\WINDOWS\My Documents\Registry.doc etc.

The program listing of LST9.1b shows a simple programming for

wildcard searching, assuming there is file C:\MISC\friends.txt containing

the names of your friends – say up to500 first names in a Notepad.

The program helps you search for names matching your search

criteria using wildcards.



QBASIC Programming Without Stress181

LST9.1b Wildcard Searching

DECLARE SUB DoAsterikSearch (Query AS STRING)

DECLARE SUB DoParticularSearch (Query AS STRING)

DECLARE SUB DoQuestionSearch (Query AS STRING)

DECLARE SUB Scroll (Text AS STRING)

DECLARE FUNCTION Parse$ (Query AS STRING, Delimiter AS STRING)

DECLARE FUNCTION DoSearch! (Query AS STRING)

DECLARE SUB Welcome ()

DECLARE SUB Help ()

ON ERROR GOTO LastLine

'+++++++++++++++++++++++++++++++++++++++++++

CONST ProgramName = "WXp Search -04"

DIM SHARED Hit

DIM Query AS STRING

CONST Asterik = "*" : CONST Question = "?" : CONST None = "None"

'++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

TYPE Delimiter

Position AS INTEGER

Valid AS INTEGER

END TYPE

DIM SHARED D AS Delimiter

'+++++++++++++++++++++++++++++++++++++++++



QBASIC Programming Without Stress182

CONST True = -1

CONST False = 0: Hit = &H12

'+++++++++++++++++++++++++++++++++++++++++++++

Welcome

DIM FunctKey$

FunctKey$ = "|"

KEY 1, FunctKey$ + CHR$(13)

'++++++++++++++++++++++++++++++++++++++++++++++

GetSearch:

INPUT Query

IF Query = FunctKey$ THEN

Help

GOTO GetSearch

ELSEIF UCASE$(Query) = "/Q" THEN GOTO 100

ELSEIF Query = "" THEN GOTO EnterPressed

ELSE

IF DoSearch(Query) = True THEN Hit = True ELSE Hit = False

Welcome

GOTO GetSearch

END IF

CLOSE 1

100 PRINT : PRINT : PRINT

Scroll ProgramName + " TERMINATED...THANK YOU "

COLOR 14

Scroll " ACUBESOFT OF NIGERIA " + CHR$(13) + CHR$(9) + DATE$

COLOR 0

END



QBASIC Programming Without Stress183

LastLine: PRINT : PRINT : PRINT : PRINT

COLOR 4: Scroll ProgramName + " Execution Failure!": COLOR 15

RESUME 100

EnterPressed:

Welcome

Scroll "PRESSING ENTER, WITHOUT QUERY WILL NOT RETURN MEANINGFUL RESULTS "

GOTO GetSearch

SUB DoAsterikSearch (Query AS STRING)

DIM LeftPart AS STRING, RightPart AS STRING

IF Query = Asterik THEN

Scroll "Are you sure you want to display all Records ? Y/N"

IF LCASE$(INPUT$(1)) <> "y" THEN 7000

END IF

LeftPart = MID$(Query, 1, D.Position - 1)

RightPart = MID$(Query, D.Position + 1, LEN(Query))

DIM FileContent AS STRING

DIM HitsCount

HitsCount = 0

PRINT : PRINT

DIM L AS LONG

L = 21

WHILE NOT EOF(1)

INPUT #1, FileContent

REM The following italicized lines should be a single Line

IF UCASE$(MID$(FileContent, 1, LEN(LeftPart))) =

UCASE$(LeftPart) AND UCASE$(RIGHT$(FileContent,

LEN(RightPart))) = UCASE$(RightPart) THEN

HitsCount = HitsCount + 1



QBASIC Programming Without Stress184

IF HitsCount = L THEN :’ Display Results in 20 Per Page

L = HitsCount + 20

COLOR 6

Scroll " Press Spacebar to Continue"

COLOR 15

DO: LOOP UNTIL INKEY$ <> ""

END IF

PRINT USING "#### &"; HitsCount; FileContent

REM The & (Ampersand) format means Print Entire string

END IF

WEND

IF HitsCount > 0 THEN

COLOR 13

Scroll " We found" + STR$(HitsCount) + " matching Record(s)"

COLOR 15

Hit = True

ELSE

PRINT : PRINT

COLOR 4

Scroll " We found no Matching record try again"

COLOR 15

Hit = False

END IF

Scroll "Press any key"

DO: LOOP UNTIL INKEY$ <> ""

7000 CLOSE 1

END SUB



QBASIC Programming Without Stress185

SUB DoParticularSearch (Query AS STRING)

DIM FileContent AS STRING: DIM HitsCount

HitsCount = 0

PRINT : PRINT

WHILE NOT EOF(1)

INPUT #1, FileContent

IF UCASE$(FileContent) = UCASE$(Query) THEN

HitsCount = HitsCount + 1

PRINT USING "#### &"; HitsCount; FileContent

REM The & (Ampersand) format means Print Entire string

END IF

WEND

IF HitsCount > 0 THEN

COLOR 13

Scroll " We found" + STR$(HitsCount) + " matching Record(s)"

COLOR 15

Hit = True

ELSE

PRINT : PRINT

COLOR 4

Scroll " We found no Matching record try again"

COLOR 15

Hit = False

END IF

Scroll "Press any key"

DO: LOOP UNTIL INKEY$ <> ""

CLOSE 1

END SUB



QBASIC Programming Without Stress186

FOR i = 1 TO LEN(Query)

SELECT CASE MID$(Query, i, 1)

CASE Delimiter

P = Delimiter

CASE ELSE

P = None

END SELECT

IF P = Asterik THEN

D.Position = i

EXIT FOR

END IF

IF P = Question THEN

D.Position = i

EXIT FOR

END IF

D.Position = -1

NEXT

Parse = P

END FUNCTION

SUB Scroll (Text AS STRING)

DIM L, i, Delay: L = LEN(Text)

FOR i = 1 TO L

PRINT MID$(Text, i, 1);

FOR Delay = 1 TO 10000: NEXT

NEXT

PRINT

END SUB



QBASIC Programming Without Stress187

§ 9.1.3 Miscellaneous Programs

The following sets of codes are intended by the author to give

some insights.

SUB Welcome

CLS

COLOR 15

PRINT SPACE$(30); ProgramName

PRINT SPACE$(20); "+++++++++++++++++++++++++++++++++"

PRINT SPACE$(20); "+++++ ENTER YOUR SEARCH ... +++++"

PRINT SPACE$(20); " PRESS ";

COLOR 3: PRINT "F1"; : COLOR 15:

PRINT " TO SHOW " + ProgramName + " HELP "

PRINT SPACE$(30); "Enter "; : COLOR 12: PRINT "/Q";

COLOR 15: PRINT " To Quit"

COLOR 12

IF Hit = False THEN

Scroll ProgramName + " DID NOT HIT ANY TARGET! ENTER ANOTHER"

END IF

IF Hit = True THEN

PRINT SPACE$(40)

END IF

COLOR 15

END SUB



QBASIC Programming Without Stress188

LST9.1c PROGRAM FIBONACCI

DECLARE FUNCTION IsPrime! (X!)

'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

'XXXXXXXX ACUBESOFT OF NIGERIA XXXXXXXXXXXXXXX

'XXXXXXXXXXXXXXXXXXXXXXXXXXX27 - 10 - 2004 XX

CLS

DIM F1, F2, X, I, J, Q1

CONST True = -1

CONST False = 0

DIM Status AS STRING

F1 = 1

F2 = 1

N = 20

Status = " is a Prime number"

COLOR 14

PRINT " FIBONACCI SERIES & PRIME NUMBERS"

COLOR 3

FOR I = 1 TO 35: PRINT CHR$(21); : NEXT: PRINT

COLOR 15

PRINT USING "######## &"; F1; Status

PRINT USING "######## &"; F2; Status



QBASIC Programming Without Stress189

FOR J = 3 TO N + 1

X = F1 + F2

REM A NUMBER IS PRIME

' IF :

IF IsPrime(X) THEN ' See the nomenclature: Friendly ?

Status = " is a Prime number"

ELSE

Status = " is not a Prime number"

END IF

F1 = F2

F2 = X

PRINT USING "######## &"; X; Status

NEXT J

END

FUNCTION IsPrime (X)

FOR I = 2 TO INT(SQR(X))

Q = X / I

Q1 = INT(Q)

IF Q = Q1 THEN 200

NEXT

Prime = True

GOTO 1000: EXIT FUNCTION

200 Prime = False

GOTO 1000: EXIT FUNCTION

1000: IsPrime = Prime

END FUNCTION



QBASIC Programming Without Stress190

LST9.1d SIMPLE RECURSIVE ROUTINE

DECLARE FUNCTION FACT& (Num!)

'-----------------------------------------------

'------ACUBESOFT OF NIGERIA----

'----------------(C) 2004-------------------

10 CLS

PRINT “FACTORIAL CALCULATOR"

200 ON ERROR GOTO 1000

INPUT N

PRINT FACT(N)

PRINT "Another Factorial Y/N ?"

IF UCASE$(INPUT$(1)) = "Y" THEN 200

PRINT "Thank you good bye"

END

1000

PRINT "This code could note handle this value"

RESUME 10

FUNCTION FACT& (Num) STATIC

IF Num <= 1 THEN

F = 1

ELSE

REM Recursion – Calling itself in it self!

F = Num * FACT(Num - 1)

END IF

FACT = F

END FUNCTION



QBASIC Programming Without Stress191

LST9.1e SPECIAL NUMBERS

' - - - - - - - - - - - - - --ACUBESOFT OF NIGERIA - - - - - - - - -

' - - - - - - - - - - - - - - - - - -(C) 2ØØ4 - - - - - - - - - - - - - - - - - - -

CLS

DIM n, e, x, y, z, r

FOR n = 1 TO 5Ø

FOR e = Ø TO 9

FOR x = Ø TO 9

FOR y = Ø TO 9

FOR z = Ø TO 9

FOR r = Ø TO 9

IF 1ØØØØ * e + 1ØØØ * x + 1ØØ * y + 1Ø * z + r > 1 THEN

IF 1ØØØØ * e + 1ØØØ * x + 1ØØ * y + 1Ø * z + r = e ^ n

+ x ^ n + y ^ n + z ^ n + r ^ n THEN

PRINT (1ØØØØ * e + 1ØØØ * x + 1ØØ * y + 1Ø * z + r);

"=> "; e; "^"; n; " + "; x; "^"; n; " + "; y; "^"; n; " + "; z; "^"; n; " +

"; r; "^"; n

END IF

END IF

NEXT: NEXT: NEXT: NEXT: NEXT: NEXT

END

‘Generated set output within 0 – 99999

8208 =84+24+ 04 + 84

4150 = 45 +15+55+05

4151 = 45 +15+55+15

54748 = 55 + 45+75+45 + 85

92727 = 95 + 25 + 75 + 25 + 75

93084 = 95 + 35 + 05 + 85 + 45



QBASIC Programming Without Stress192

LST9.1f Binary Numbers

CLS

DIM Value AS INTEGER

INPUT “Enter an integer”; Value

PRINT Code$(Value)

END

FUNCTION Code$ (Value)

REM Convert Integer Value to Binary Number

DIM Token AS STRING, c$

DIM R

11 R = Value MOD 2

Value = Value \ 2

‘Integer Division e.g. 3\2 = 1:: 3/2 = 1.5::CINT (3/2) =2::INT (3/2) =1

c$ = c$ + STR$(R)

IF Value <= 1 THEN 22 ELSE 11

22 c$ = c$ + STR$(Value)

FOR j = LEN(c$) TO 1 STEP -1

'The Ltrim$ and Rtrim$ are to ensure close packing by trimming

Token = Token + LTRIM$(RTRIM$(MID$(c$, j, 1)))

NEXT

IF VAL(Token) = 1 THEN Token = "1"

Code$ = Token

END FUNCTION



QBASIC Programming Without Stress193

LST9.1g Time Interval

CLS

REM This function returns the number of

‘Seconds Difference between two times

PRINT “Time 1 = 13:23:10”

PRINT “Time 2 = 21:13:05”

PRINT “Time difference =”; Seconds (“21:13:05”) - Seconds (“13:23:10”)

END

FUNCTION Seconds (T$)

REM This Function assumes Time of format 24:00:00

DIM Sec, Min, Hr

Sec = VAL(MID$(T$, 7, 8))

Min = VAL(MID$(T$, 4, 5))

Hr = VAL(MID$(T$, 1, 2))

Seconds = Sec + Min * 60 + Hr * 60 * 60

END FUNCTION



QBASIC Programming Without Stress194LST9.1h Normal Distribution Curves

DECLARE FUNCTION NormalDist! (x!, Sigma!, Miu!)

DECLARE SUB PutAxes ()

DIM Clr, Mean

10 CLS: Clr = 3

CONST PI = 3.141592653#

SCREEN 7

WINDOW (-5, -.5)-(5, 1.5)

PRINT "Enter Parameters: Mean=0 is Symmetric"

INPUT "Mean ="; Mean

PutAxes

FOR Sigma = .25 TO 1 STEP .25

LOCATE 12: PRINT USING "Sigma =#.##"; Sigma

Clr = Clr + 1

FOR x = -2 TO 2 STEP .001

PSET (x, NormalDist(x, Sigma, Mean)), Clr

NEXT

SLEEP 1

NEXT

LOCATE 21: PRINT "Normal Distribution “;

PRINT “Curves"

PRINT "Press a to do another"

LOCATE 12: PRINT " "

IF LCASE$(INPUT$(1)) = "a" THEN 10

REM Modify the Axes to put Labels

END

FUNCTION NormalDist (x, Sigma, Miu)

DIM Den, Part1

IF Sigma>0 THEN

Den=(Sigma * SQR(2 * PI))

Part1=((x - Miu) / Sigma) ^ 2

NormalDist = EXP(-.5 *Part1) / Den

END IF

END FUNCTION

SUB PutAxes

LINE (-5, 0)-(5, 0) 'X- Axis

LINE (0, 5)-(0, 0), 3 'Y- Axis

END SUB



QBASIC Programming Without Stress195

§ 9.1.4 Printing Your Code

You may want to print your code on a printer, which may not

necessarily be a line printer; it is my way to print my codes using

Windows text editors like MS Word, WordPad and the like. To

accomplish this you save the QBASIC program as <Text- Readable by

other programs> in the save as dialog box of your QBASIC IDE as

shown in the figure below (Fig 9.1)

Fig 9.1 Save As Dialog Box

Saving the program (Source Code) file in this format allows you

to be able to read the content of the file with text editors. If you save

your code as E:\GSeidel.bas you will have to use the open dialog of the

editor to locate or just type the path. If open is chosen from Word, the

default extension is *.doc not *.bas as you used to have it in QBASIC

IDE, so use (All Files) – *.* or specifically use *.bas in the file Name

request of the Open Dialog. You can then edit, print or mail your code to

your lecturer or do otherwise. See Fig9.1b – Open Dialog



QBASIC Programming Without Stress196

Fig9.1b Open Dialog Box

§ 9.1.5 Printing Output

Printing output looks like I am repeating a section, No! You, at

times want to have a paper copy of your code and may not have a line

printer to use the LPRINT command – see index. I will suggest that you

use either of the following to get your output to a text Editor:

(i) Use PRINT # or WRITE # discussed in Chapter Seven, then

read the content using the discussions of § 9.1.4 or

(ii) (ii) You Run your code then press the button Print Screen

SysRq on your keyboard. So doing copies the content of the

Window to the Clipboard. You then use paste methods of

Windows: Ctrl + V or Shift + Insert depending on your



QBASIC Programming Without Stress197

windows setting. See your operating system manual for more

on Printing or Copying your Window.

§9.2 Miscellaneous Test

Carry out a research on how file compression is done. Try to

code a compression program to compress any of the following file

formats (*.bmp, *.jpg, and *.txt). You can get information on the web by

searching for the following words (Lemple-Ziv-Welch-LZW, Huffman

Compression, Run-Length Encoding – RLE, Code Table Optimization)

using any good search site, but I recommend http\\www.google.com ,

your school library or a state Library might be of invaluable help.

Even if you cannot code them, in a case where you are not very

optimistic, going through the Algorithms would let you appreciate

WINZIP™, Stacker and the like used to compress files.



QBASIC Programming Without Stress198

Bibliography

 Erwin Kreyzig (2001), Advanced Engineering Mathematics,

John Wiley & Sons (Asia) – p1085

 Microsoft QuickBASIC™ online help

 Rob Thayer(1998),Visual Basic 6 Unleashed, Sams Publishing



QBASIC Programming Without Stress199


