Programming
Without Stress

A book introducing computer
programming for students in the
numerate disciplines and freelancers

by
Akinola A. Adeniyi

2 QBASIC Programming Without Stress

The free online version

OZu

4 QBASIC Programming Without Stress
CHAPTER ONE

INTRODUCTION

That Computer is changing the world is no longer news. What comes
to the curious mind is “how do | take part in the change?’ One can
choose to be a computer user or maker or both. By computer user | mean
a person that makes use of facilities provided by the computer maker
such as software or hardware. The computer maker in this context is the
person who makes the hardware or the software used on a computer.

This book focuses on how to develop good software. A piece of
software is a set of instructions for a computer to execute. Just as human
beings understand different languages so does a computer. On the larger
scale a computer understands “Low Level Language” and “High Level
Language’, some books include “ Intermediate level”.

A computer understanding of a “language’” means that it can take
instructions based on the “language” used. The “low level language” is
the machine code (Assembly language” which is mostly machine-
specific. The high level language unlike the low level is close to human
language like English; Arabic or Chinese. The high level language is not
strictly machine-specific. Some high level languages interact directly
with the microprocessor so they are justifiably termed Intermediate level
language as earlier mentioned. JAVA, COBOL FORTRAN and BASIC
are some examples of the high level languages where C and C++ are
examples of intermediate level. Assembly language is a low level

language.

5 QBASIC Programming Without Stress
At one time or the other the reader must have seen a computer or at

least a digital wrist watch. The activities of a computer are guided by
programs. The aim of thistext isto give the reader awide practical scope
in programming with QBasic. However, it should be noted that QBasic is
not al in al. Asthe name tries to portray (BASIC: An acronym standing
for Beginners All-purpose Symbolic Instruction Code). QBasic is the
Microsoft Corporation Version of BASIC, where QBASIC stands for
Quick BASIC.

This book is written for learners from any field (Science,
Engineering, Accounting and so on). The projects and the working
examples take a form that applies to these fields. The tips (Side Talk) are
given based on the author’s experience, over six years in teaching and

programming BASIC.

§81.1 STARTING UP

A great step you have taken SideTalk
is “you're having this book”. You You may skip to Chapter Two if you have
been programming before.

can always start to learn computer
from any point so far you have interest. Starting programming could be
taken from any language depending on your level of understanding but a
very good starting point is BASIC. After understanding a programming
language it is very easy to learn other languages. Start it up now and

there shall be no regrets.

6 QBASIC Programming Without Stress
§1.1.1 What you can do with programming

With programming you can achieve various mundane tasks but
compulsory tasks with ease. In the banking industry, say, hundreds of
thousands of customers have to be attended to all having different
problems. With well-developed software, it would only take a couple of
minutes to attend to a meaningful number of customers relative to the
good old days before computers. Not only here we find programming
applicable in Census, Biometrics, Statistical Analysis, Forecasting et
cetera. Basically, everything done with computer is about programming.

81.1.2 Program Users and Program Developers

These two categories of people are computer literates. The
program users depend on the intrinsic expertise of the program
developers. As a program developer you are indeed a program user for
you cannot develop software without using it.

A program developer is otherwise known as Programmer. There
are various categories of programmers, the high level language
programmers write High level languages while Low level language
programmers write low level language although a person can do the two.
It ismore “difficult” writing low level than high level.

Program developing in most cases involve a group of program
users and at times many programmers handling different subroutines
depending on the complexity of the software to be devel oped.

After religioudly following the book you can be sure of joining
the league of excellent programmers. Y ou are being prepared for a sound
ground in programming with the text.

7 QBASIC Programming Without Stress

81.1.3 Application Packages

Program users depend on software called application packages.
Application packages are computer programs carefully developed to suit
a specific task. A good example of an application package is AutoCAD
2004™ athough not developed with QBasic. You can develop
application packages for yourself or an establishment using BASIC. |
have done it before.

In the package form, the code is no longer ordinarily editable.
The code would have been converted to executable forms (.exe) format.
Trying to edit the .exe format will corrupt the file usualy in ASCII
format.
81.1.4 Should | Proceed?

At this point you should know if you want to be a developer or a
user. Programming is my hobby, it is fun to program. It may be
challenging in the very beginning but as you move on and practice with a
computer you will appreciate it better.

Remember, no knowledge is waste. It may seem not very relevant
now but you never can tell. Do not think programming is about stories
and lots of talks as you have been reading from the introduction, this is

just to whet your appetite.

81.1.5 Versionsof BASIC

BASIC, Beginners All-purpose Symbolic Instruction Code has
developed over the years. It has various versions but al the versions are
closely related. Some differ by numbering while others by some syntax

8 QBASIC Programming Without Stress
differences. This book is not going to dea with the differences or

metamorphosis of BASIC. As it is worth mentioning for academic
purposes, we have the following versions to mention some: GWBASIC,
PC-BASIC, STRUCTURED BASIC and QBASIC.

812 QUIZ
Where do you type the BASIC code you develop for computer to
execute?

(Attempt: IDE: Integrated Devel opment Environment)

81.3 PROJECT

Install QBASIC on your system on the Directory C:\QB45\ or
D:\QB45\ or F\QB45\ or your most convenient drive (not on a floppy
disk). Ensure the help files are also installed.

Run the file from the command prompt, say, C:\QB45\QB.exe
ENTER study the default environment.

Create a folder named MISC on your hard disk at the locations
C\MISC\ (or the appropriately chosen drive above-this folder
(Directory) shall be used in the book.

/\/

<}

CHAPTﬁ% =20

10 QBASIC Programming Without Stress
CHAPTER TWO

8§21 DEVELOPING A PROGRAM
This chapter will take you through the basic of what it takes to
develop a (BASIC) program. The steps are similar to what it takes in

devel oping most other .programs.

§2.1.1 Algorithm

This is broken down and summarized steps to execute a plan. It
“details’ the “hows’ of execution. A computer does not however
understand Algorithm, but it is one of the first steps in developing a
program that will not “grow old” before death. Some programmers have
the habit of just starting the code without the preliminaries and find out
later that the code is not doing what it is expected to do.

The algorithm below shows the steps to make “ Eba’

i. Boil water

ii. Quickly add “gari”
iii. Stir to blend

iv. Ready for eating
v. Stop/Finish

Fig 2.1.1 Algorithm for “eba” making

The chronological order above is quite easy to follow but may be
misleading. The algorithm does not specify the quantity of water, how to
recognize the boiling water, amount of “gari” what to use to stir, what
level of blend and the temperature to be considered as cool. The
algorithm may be further broken down.

11 QBASIC Programming Without Stress
Depending on the style you wish to be adopting, your algorithm

may be simple or complex. For academic purpose it should be easy to
follow by others for you cannot tell where your algorithm may be put to
special use.

§2.1.1 Flowchart

A flowchat is a schematic SideTalk
Computer does not understand

representation of algorithm or the program || flowchart. It is not a language!

flow using some set of standard symbols. The

various basic symbols used are shown in Fig 2.1.2a.

2 QBASIC Prog SideTalk

A flowchart without
direction is as useless
as writing with black pen

Start of Program on a black book!

Program flow direction

Output/Input Operation

Assignments/Statements

Connector

Decision box

O
End program

Fig 2.1.2aBasic Symbols used in Flowcharting

The flowchart of fig 2.1.2b shows a simple flowchart for implementing
the algorithm of Fig 2.1.1

3 QBASIC Programming Without Stress
Process starts

An input

Supply 50CI water

Ll

Apply Heat An input

Is water boiling?

A decision
Add 48Cl Gari slowly
An input
4 >y
Stir A command
Is the blending Ok? A decision
4 >y
Remnve heat An output
Is the lump cool enough?
A decision
| Fat with sniin/stew | A command

» End of process

Fig 2.1.2 Flowchart for making 50Cl “eba”

14 QBASIC Programming Without Stress
§2.1.3 Pseudocode

A pseudocode is a tool used by programmers to represent a
flowchart or it could be seen as an Algorithm made
to look like real codes. It is human-language-like. If SideTalk
you understand English, you write your pseudocode || A computer does not

understand pseudocode
with English Language. A pseudocode is generally

easy to convert to any programming language. The listing of LST2.1.3
shows the pseudocode for the implementation of the “eba’ making.

LST 2.1.3 Pseudocode for making “eba”

STEP 0: START THE PROCESS
STEP 1: SUPPLY 50CI water
STEP 2: L1:INPUT HEAT

L2: REPEAT L1 UNTIL WATER BOILS
STEP 3: INPUT GARI TO THE BOILING WATER
STEP 4: L3: STIR THE LUMP

L4: IF THE LUMP IS BLENDED ENOUGH DO PROCEED TO L5 ELSE K3
STEP 5: L5: PLACE LUMP CONTAINER IN COLD WATER

L6: TAKE THE LUMP TEMPERATURE T

L7:IF T<= SET TEMPERATURE GO TO L8 ELSE L6

L8: LUMP IS READY
STEP 6: STOP/FINISH

15 QBASIC Programming Without Stress
§2.1.4 Quadratic Equation Example

A quadratic equation is an equation of the form aX?+ bX +c = 0,
where a#0 and a, b, ¢ are constants. A quadratic equation is to be solved
for X. many application problems in Mathematics, Engineering,
Economics lead to quadratic equation. Developing a program to
implement quadratic equation is worthwhile.

Of the many methods of solving a quadratic equation, we choose
the most viable to program. The quadratic formula method solves all
b++/b? - 4ac

2a
term D = b? — 4ac is called the DISCRIMINANT. The discriminant
determines the type of solution obtainable from an equation

forms of quadratic equation using the formula: X =— The

| shall develop the Algorithm, flowchart and a pseudocode to

implement quadratic equation solving.

OBTAIN THE COEFFICIENT & b, AND c
COMPUTE DISCRIMINANT

USE QUADRATIC FORMULA TO SOLVE FOR X
OUTPUT RESULTS

. FINISH

ig 2.1.4a Algorithm for Quadratic Equation

Tk~ wNE

QBASIC Programming Without Stress

7

a=0 X]:;—? D:'
> X2=x1 I =32
a#0 — —-b
Re=—

<> v
D=0 D0 @ X1=Re+]Im

X2=Re—jIm
1o (=b++/D)
2a
Xz_(_b__‘/ﬁ)

_ v
2a Output X1,
X2

Fig 2.1.4b Flowchart for Quadratic Equation

17 QBASIC Programming Without Stress

LST2.1.4 Pseudocodefor Quadratic Equation
STEP 0: START
STEP 1: {* ACQUISITION OF DATA*}
L1: INPUT a, b, ¢
L2: {*VALIDATION*}
IF a=O DO REPEAT L1
STEP 2: {*DISCRIMINANT*}
L3: D= b2 -4-a+¢c
STEP 3: {*EQUATION SOLUTION TYPES*}
L4: IF D=0 THEN GOTO L9 {*EQUAL ROOTS*}
L5: IF D<O THEN GOTO L11 {*IMAGINARY
ROOTS*}
L6: IF D>0 THEN GOTO L7 {*REAL ROOTS*}
STEP 4: {*SOLUTIONS*}
—b++'D
L7 x1=0FVD)
a
-b—-~D
L8: X1= Q
2a
L8.1: GOTO L16 {*OUTPUT*}
Le: X1=32
L10: X2=X1
L10.1: GOTO L17
L11: D=-D {*"MAKE D POSITIVE*}
D
L12:Im = —
2a
-b
L13:Re =—
2a
L14: X1=Re + j Im
L15: X1=Re - j Im
STEP 5: {*OUTPUT*}
L16: PRINT OUT X1,X2, EQUATION_TYPE
STEP 6: {* END PROCESS*}
L17: STOP

18 QBASIC Programming Without Stress
§2.1.5 BASIC CODE

This is the actual language this book is preparing you for. This
chapter is not enough to give afull mastery
of the code. A sample code is written in

SideTalk
BASIC to pefform simple addition is This book adopts the style
. o using Bold and Uppercase for
shown in thelisting of LST2.1.5. Keywords

A keyword is the “unit
word” in the programming
language and is not used as a
variable!

10 REM Simple Addition Program
20 CLS

30 DIM X,Y,ZASINTEGER
40 INPUT X, Y

50 LETZ=X+Y

60 PRINT*“X+Y=,;Z

70 END

19 QBASIC Programming Without Stress
§2.2 SUMMARY

Developing a good program involves using any or al of the tools
vis-avis Algorithm, Flowchart and Pseudocode. Using any of these tools
not only helps you to write good code but gives others reading your code
better meaning. It is easier to understand your solution from these tools
than going through your code!

8§23 QUIZ
What is the difference between a connector and Start/Stop
symbols of aflowchart?

(Connector is smaller)

824 PROJECT

Develop a flowchart to attend and diagnose a patient for Malaria.
The flowchart should prescribe drug, sleep or otherwise. Y our flowchart
should be standard.

/%/

OTCLFUY FTyuW

21 QBASIC Programming Without Stress
CHAPTER THREE

83.1 VARIABLESAND ASSIGNMENTS

In analytical sciences and other fields variables are used to define
real terms, for example |=PRT/10@ used in simple interest computation
has the variables P, R, T and |. in biological science, the rate of growth
of bacteria follows the equation N=N¢€" where N, No, A and t are

variables. In fluid mechanics, the Laplacian equation has variables x, y, z

. . 0°x 0%y 0%z
and t asin the steady flow equation + + =0
y ™ ot? ot? ol

Though variables appear in different fields the value they can

“hold” differ. For example | in the first exampleisin %, t in the second
example is a time and x in the third is in metres. In computer
programming it is necessary that a code defines the nature of data a
variable can hold. By default, QBASIC alows a variable to be used
without prior declaration in non-string usage.

To the QBASIC programmer, variables can take any of the form
Integer, Long, Single, Double or Sring. Deciding what type a variable
should take depends on experience. The table below gives a guide on the

datarange for the variables.

22 QBASIC Programming Without Stress
TABLE 3.1 VARIABLES

VARIABLES |[IDENTIFIER VALUE RANGE
—
-32768 TO +32767
INTEGER %

(16 bit Signed Integer)
-2147483648 TO +2147483647

LONG &
(32 bit Signed Integer)

7 digits accuracy- Single
SINGLE ! 9_ _y ,g

precision floating point - ++

16 digits accuracy — Double
DOUBLE # o _ _

precision floating point - ++

Alphanumeric — Theoretically 2

billion characters. If followed by
STRING $

*nwherenisan integer, itisa
fixed length byte - see TYPEs

++(Limited accuracy at extremes for values are approximations)

Floating point variables are the exponential valued terms. 3X 1™
isafloating point value. The value is the same as 3el5 or 3E15

§3.1.2 DECLARATION OF VARIABLES

As a good programming style, good enough to develop on other
programming languages, it is wish enough to make declaration of
variable names as a type. In Africa, people are named by events, wishes
or otherwise. Some programmers use this method when naming
variables. The keywords DIM, REDIM, or DIM SHARED are used.
The abridged program listing LST3.1.2 shows declaration of variables.

LST3.1.2 Declaration of Variables [Abridged]

5@ DIM X AS INTEGER

60 DIM Age AS STRING
7@ REDIM MatrixA(59,59)
80 DIM Ratio AS SINGLE

9@ DIM SHARED myUsableMat (15, 15) AS STRING

83.1.3 Assignment in BASIC

To make assignment in
programming is to assign value to
variable. The BASIC assignment is
similar to the equality of avariable to
a vaue or
Mathematics. Unlike in Mathematics,

expression in

the expression or the value cannot be

on any side of choice but on the right.

It is easy to point out that
X=X+5 does not make any sense in
Mathematics asit means X — X =5 or
@=5!" In
X=X+5 means assign to a variable X
the last value of X plus 5. If in the

BASIC programming

lines of Code preceding X=X+5, the

SideTalk
It is a preferred style to name variable like
MatA(); Tel; DOB; NameCandidate rather
than using, A; T; D; N. Note carefully that
space is not allowed within a variable and
keywords are not allowed to be used as
variables.

SideTalk 2
QBASIC allows either of the following forms:
1@ DIM X AS INTEGER * or DIM X%
20 DIM Age AS STRING ‘ or DIM Age$

SideTalk
By default a non-string variable has a value
@ while a string variable has empty value
SideTalk 2

X=2+5Y

2 + by=X are good expressions/equation in
Mathematics. The first is permitted in
QBASIC but not the second

24 QBASIC Programming Without Stress
value of X was, say, X=1¢, the assignment statement X=X+5 means

X=15. If the same lineis executed again, the value of X becomes 2@.

The abridge program listing of LST3.1.3 shows simple assignment and
output on the right.

LST3.1.3
: OUTPUT
5@ LET X=6
60 LET X=X+10
7@ PRINT X 6
8@ PRINT X+10 16
9@ LET X=X+10
100 PRINT X 26
.The statement in line 82 will not increase X by 1@ but only prints out the value of
X+10

25 QBASIC Programming Without Stress
83.1.4 Operation on variables

There are basic operations possible on variables as it is obtained
in Mathematics. The basic operatorsused in BASIC are:

BASIC OPERATORS

For multiplication
+ For Addition/Increment/String concatenation

= For subtraction/decrement
| Fordivision
For integer division

SideTalk

. . . The misuse of / and \ will not flag
§3.1.4.1 String Manipulation error but will cause a semantic error.
. . . The code 19 Y=5/2
Strings are alphanumeric. This 20 X=5\2 will give different

implies that they can contain special values 2.5 and 2 respectively.

characters including the special ASCII
characters. Variables for values like
telephone numbers, social security number (as used in the US), names of
people or Objects and so forth are to use string variables. The code listing

of LST3.1.4a shows asingle handling of string variables.

26 QBASIC Programming Without Stress
LST3.1.4a Sample String handling
12 DIM Age AS STRING
20 DIM Sex AS STRING
30 DIM Names, Tel AS STRING
40 CLS
5@ PRINT “You are welcome”, “ Respond to the following :”
60 PRINT: PRINT
7@ INPUT “Type your name:”; Names
8J INPUT “Type your sex:”; Sex
99 INPUT “Type your age:”; Age
1GBINPUT “Type your Telephone Number:” Tel

11 CLS .
SideTalk
120 INPUT “PRESS ENTER”, REP$ Repeating the listing LST3.1.4 without

. . the lines 1@, 2@ an d 3@ will cause a
13@ PRINT: PRINT: PRINT runtime error for lines 7@, 8@ an d9d as

140 PRINT “THE ID JUST ENTERED >:" the variable Names, Sex and Age will be
15@ PRINT Names: Sex: Age: Tel a§sumed to be non-strmg. Adding the $

sign at the end of the variables can
160 END prevent the error as in line 12@.

Strings are extensively used in programming, it therefore require
the knowledge of how to be manipulated. QBASIC has some built-in
functions to manipulate strings.

| will maintain that practicing on a computer is the best way to
put all these theory into practice. The example following gives a good

understanding of string manipulation.

27 QBASIC Programming Without Stress

LST3.1.4b String Manipulation
52@ A$=“What is the length of this word ?”

530 Lt= LEN(A$)
54 PRINT “The length is ="Lt
550 B$="QBASIC Programming...”

560 C$ =UCASE$(B%)
SideTalk
572 PRINT C$ The output of the functions in listing LST3.1.4b should be
580 D$=LEFT$(BS$, 6) carefully studied. The output screen below shows the result
of the abridged code:
590 E$=RIGHT$(A$,6) Hint: spaces are included in the counting of strings for they

60D F$=MID$(C$,8,7) are also strings. (See 3.1.4.1)
610 G$= MID$(C$,1,6)

620 H$=LCASE$(G$)

630 PRINT “The manipulated strings output >"
640 PRINT C$

650 PRINT D$

660 PRINT E$

672 PRINT F$: PRINT G$: PRINT H$

28 QBASIC Programming Without Stress
OUTPUT SCREEN

The length is 33

@BASI C PROGRAMM NG...

The mani pul ated strings output >
@BASI C PROGRAMM NG... C$
@BASI C D$

wor d? E$
PROGRAM F$
@BASI C Gh
gbasi c H$

Press any key to continue LEN(" Aderiyi”) .

UCASES$(* Adeniyi”) ADENIY]
LCASES$(“ Adeniyi”) adeniyi
RIGHTS$(* Adeniyi”, 3) iyi
LEFT$(“ Adeniyi”,3) Ade
MIDS$(“ Adeniyi”,2,5) deniy

Use the syntax format below for the string functions:

LEN (string or String Variable) Read Only
UCASES(string or Sring Variable) Convertsto upper case
LCASES$(string or Sring Variable) Converts to lower case
RIGHTS$(string, length of string from right) Read only
LEFTS$(string, length of the string from | eft) Read only
MID$(string, start position, length of variable) Read only

29 QBASIC Programming Without Stress
83.1.4.2 Concatenation of strings

Thisisthe “merging” of two or more strings parts to form asingle
string with the use of the “+” operator. Strings can be concatenated after
manipulation or concatenated and manipulated. For example we may
want thefirst letter of a name to be uppercase (capital letter) and the rest
be in lower case. The listing of LST3.1.4c illustrates simple
concatenation of strings.

SideTalk
1@@D Part1$= “University” The' only operator that works in st.ring
o manipulation, of the operators described
1010 Part2$ = “of above, is the concatenation operator “+”

1820 Part3$ = “llorin”
1930 Part$ =Part1$ + Part2$ + Part3$

1340 PRINT Part$, UCASES$(Part$)

1250 Fullname$ = “ADENIY!1”

1263 FirstLetter$ =LEFT$(Fullname$, 1)

1373 Remain$ = MID$(Fullname$, 1, 6)

128 Formatted$ = UCASES$(Firstletter$) + LCASE$(Remain$)
1299 PRINT Formatted$, Fullname$

OUTPUT SCREEN
Uni versity of Ilorin
UNI VERSI TY OF I LORIN
Adeni yi ADENI YI

Press any key to continue

30 QBASIC Programming Without Stress
83.2 OUTPUT STATEMENT

The method used to get out the result of calculations or strings
and other variables either to the monitor or hard copies on paper or to
memory devices are by output statements. Although you have coming
across some output statements, this section is dedicated to output

Statements.

83.2.1 Print and Print Using

PRINT is a keyword in QBASIC for outputting to the monitor
(Screen). It is very easy to use but may require some formatting for a
“beautiful” output. PRINT 2 will print 2 to the screen, the same is to
PRINT “2" but the 2 here is a string. This will make more sense by
comparing the output of PRINT “2*2” and PRINT 2*2. While the

output of the former is 2* 2 the latter gives 4. SideTalk

Printing with i ibl f To print a string, you put
g gaps is possible by use o quotation marks but a

comma and semi-colon. The former gives awider || string variable does not
need a quote e.g “A $” is

gap than the latter. The codes PRINT 1,2,3,4 and || notit.

PRINT 1;2;3,4 look similar but the outputs are
respectively:
1 2 3 4andl123 4 (noticethe printing zones)
PRINT USING is also a keyword in QBASIC like PRINT but
has special formatting characteristic which will require special skill to do
with PRINT. The syntax isSPRINT USING “format string” , [variables].
Thelisting of LST3.1.2 givesasimpleuse of PRINT & PRINT USING.

31 QBASIC Programming Without Stress

LST3.2.1 Print and Print Using
10 CLS

2@ INPUT “Enter the number of males”;Nm

39 INPUT “Enter the number of females”;Nfm

47 PRINT USING “The class has ###.# % of males”1@@*Nm/(Nm+Nmf)
5@ PRINT “The percent of females =";13@*Nmf/(Nm+Nmf); %"

You can get output like:

The class has 23.75 of males
The percent of females =76.3333333333333333%

Observe the formatting of the first one.
You should try run the following code:

10 CLS

20 DIM FirstName$, LastName$

30 FirstName$ = "Akinwale"

40 LastName$ = "Ajasin"

50 PRINT USING "!"; FirstName$; LastName$

60 'Line 50 prints the 1st letters of the two string expressions i.e. AA

70 PRINTUSING " \"; FirstName$; LastName$

75 'Eight spaces between backslashes,

80 'prints Ten characters from FirstName$ i.e. Akinwale

90 PRINT USING "\ \"; FirstName$; LastName$; "II"

95 'Three spaces, prints Akinwale and a blank. Note the overlap

110 PRINT USING "! *; FirstName$; 'First character from FirstName$ and
120 PRINT USING "&"; LastName$ ‘all of LastName$ on one line i.e. A Ajasin
130 " Note there is a space after !

140 END

L) SideTalk
§3.2.2 Printing to file/LPRINT The # sign is used to represent figures
A . (numeric). If your program is that of giving
S your programming values and the unit it is good to use PRINT

sills increase, you may need to USING. For temperature program we can
' employ the style below:

handle files or “big” data as well PRINT USING ‘Temperature=##2F"; Temp
For Pressure:

as pr| nti ng out results on paper PRINT USING “Pressure=t#e##N/m?”; Pres
For Law or Constitution quoting:

from line pri nters. QBASIC is PRINT USING “Section ##, Sub-Section ## ”; St,
Sbst

equipped with this facility.

32 QBASIC Programming Without Stress

Printing to file requires that you open file for the type of access
you require first then use the PRINT #fileNum[,...] then CLOSE the
OPEN file channel. The listings of LST3.2.2 show a simple use of
printing to file. See Chapter Seven for more files.

LST3.2.2a Printing to file

10 REM Open the file for output mode for result only
23 OPEN “C:\MISC\test.dat” FOR OUTPUT AS #1
3@ PRINT “The other Prints are output to file not to the screen as this.”

49 PRINT #1,“This is the beginning of the file”

5@ PRINT #1“A new line on the File”

6J PRINT #1, 500-200*10) SideTalk
To view the output of the Simple code listing
LST3.2.2.a, you can use the explorer, notepad
70 CLOSE #1

or follow the following steps:
File | Dos Shell > On the DOS prompt enter Cd\,
enter Cd Misc, next enter Edit Test.dat to view
80..... the result. Use File | Exit to close the window
then enter Exit on the Dos prompt to return to
QBASIC environment or as appropriate.

LPRINT: You can send output to paper using the LPRINT
keyword. The output will be similar to what you see on your screen using
the PRINT keyword. To run the code with LPRINT statement, you must
ensure you have a line printer and paper. It should be noted that paper

margin etc can be set from QBASIC. To see more on this press F1 on the
typed word L PRINT.

33 QBASIC Programming Without Stress
Run the code in LST3.2.2b if you have a printer connected and

powered. It will run perhaps only with aline printer.

‘ SideTalk
REM is a keyword meaning

20LPRINT “_ _ _ _____________ Remark. QBASIC ignores
3@ LPRINT: LPRINT: LPRINT everything following REM on the

same line
4@ AS=" | am learning fast”
50 Money =400
6@ LPRINT USING “Please pay =N= ###.## K because”, Money;
7@ LPRINT AS
80 END

LST3.2.2b Using LPRINT
1@ LPRINT “This is from QBASIC”

83.2.3 WRITE #

WRITE # and PRINT # are similarly used but the output may
vary in some cases. WRITE # does not put superfluous spaces as does
PRINT #. It is better to use PRINT # with LINE INPUT #and WRITE
with INPUT #. Run the code listing LST3.2.3a and LST3.2.3.b. Open
the two output files and make comparison as regards the output formats

and the memory sizes.

34 QBASIC Programming Without Stress

LST3.2.3a WRITE #

19 CLS

20 REM A program written for comparison sake

30 REM

4@ OPEN “C:\MISC\DUMMY1.TXT” FOR OUTPUT AS #1
5@ WRITE #1, “This is the WRITE program Output”
60 WRITE #1, 1, 2, 3,4,5,6

70 WRITE #1, “A”, “B", “C”, “D”

89 DIM Counter%

99 FOR Counter%l =1 TO 5@: REM A looped Printing
100 WRITE #1, Counter%;

113 NEXT

120 PRINT “Done”

137 CLOSE 1: REM Close the opened file

149 END

35 QBASIC Programming Without Stress

LST3.2.3b PRINT #
19 CLS

2 REM A program written for comparison sake

30 REM

47 OPEN “C:\MISC\DUMMY2.TXT” FOR OUTPUT AS #1
5@ PRINT #1, “This is the PRINT # program Output”

60 PRINT #1, 1, 2,3,4,5, 6

70 PRINT #1, “A”, “B”, “C", “D”

89 DIM Counter%

99 FOR Counter%1 =1 TO 5@: REM A looped Printing
103 PRINT #1, Counter%;

110 NEXT

120 PRINT “Done”

130 CLOSE 1: REM Close the opened file i.e. Dummy2.txt
149 END

83.3 INPUT STATEMENT

There are various sources of input to a computer system. Input
can be from keyboard, file, mouse, ports, joystick and so forth of concern
here are the keyboards and files.
83.3.1 Input/Input #

INPUT: Used to get data from the keyboard. The data is accepted
after pressing the return (Enter) key. The INPUT$(val), where val is a
number specifying the number of keys pressed, does not require the
return key to accept value. Another family of theinput isthe INKEY $. It
is any key pressed or not pressed. If a key is not pressed the value of
INKEYS$is“".

36 QBASIC Programming Without Stress
INPUT#: This is used to “read” data from an input file or a

random access file. Before INPUT# could be used, the data format must

be known to avoid
LST3.3.1aUsing Input
10 CLS

20 INPUT X

integer. The program 3@ INPUT “Enter the value of Y”; Y
listing of LST3.3.1 40 INPUT A, B, C
Showsasimp|e use S50LETD=X+A+B+C+Y

error, such trying to
reed a string like

INPUT 62 PRINT “"The sum of all values entered ="; D
|05 FNID

of the

statements.

The response of line 4@ is not as friendly as line 3@. Line 49
gives a question mark but line 3@ requests by printing the quoted string
“Enter the Value of Y”. The values to be input are specified after the
guotation. The punctuation after the quotation determines whether there
will be a question mark or not. The statements:
INPUT “Do you like Rice”; Ans$ and INPUT “Do you like Rice?”, Ans$ will
be the same. While the first puts a question mark as result of the
semicolon, the second does not include a question mark because of the
comma but the question mark shown is the question mark in the
guotation. Use comma or semi-colon depending on if you are asking
guestion or requesting.

The listing of 3.3.1b shows a simple program using INPUT$ and
INKEY$ functions. You will come across some codes which you will
soon get to learn about.

37 QBASIC Programming Without Stress

LST3.3.1b Using INKEY $ and Input$
18 CLS
20 PRINT “WELCOME TO AN INTERACTIVE",
33 PRINT “SESSION”" I
40 PRINT: PRINT SideTalk

5@ PRINT “Press C to Continue” Putting a Semicolon to the end of a

7@ DIM Reply AS STRING PRINT Statement will cause the next
8@ Reply=INPUT$(1) Print Statement to Print immediately

99 IF Reply=“X" THEN 149 following it rather than go to the next
103 IF Reply= “C” THEN line. See lines 20 and 30
119 PRINT “Press Any Key to Continue” A colon implies a new line see line

127 DO : LOOP UNTIL INKEYS <> 120. It is useful when you mistakenly
13@ END IF skipped the line and you don’t want to

140 CLS: PRINT “Done” erase. It should be noted that a colon
15@ END after a REM Statement will not be
EXECUTED and that the first command

is executed first.

38 QBASIC Programming Without Stress
Of the INPUT# family is the LINE INPUT#, it is used to “read”

from a Sequential file (see Chapter Seven). It takes the whole content of
alinein the file. The program listing of LST3.3.1b creates afile and uses
both INPUT # and LINE INPUT # to get records from the Created file.

LST3.3.1c Using INPUT # and LINE INPUT#

18 CLS

2@ DIM ClientID, NumCalls AS INTEGER

33 DIM Tel$, NameC$: DIM m%, 1%

4@ OPEN “C:\MISC\LINP.txt” FOR OUTPUT AS #1
5@ REM Line 42 Opens a file to be written to

60 ‘This is same as REM i.e the Apostrophe

70 CLS

80 PRINT “A SIMPLE TELEPHONE BOOK”

9@ INPUT Enter the number of Clients”; Num%
102 FOR 1% =1 TO Num%

11 INPUT “Client Name”, NameC$

12 INPUT “Client Telephone Number”; Tel$

132 INPUT “Number of Calls made”; NumCalls
140 ClientiD=1223d= 1%

150 PRINT #1, ClientID; NameC$; Tel$; NumCalss
160 PRINT

1703 NEXT

180 CLOSE 1: DIM Rec

199 CLS: OPEN C:\MISC\LINP.txt” FOR INPUT AS #2

39 QBASIC Programming Without Stress

203 PRINT “THE Telephone Book Content”

210 PRINT “ID”, “NAME”, “TEL-NUM”, “CALLS": PRINT
220 FOR 1%=1 TO Num%

237 LINE INPUT #1, Rec$

240 PRINT Rec$

250 NEXT

260 REM The code of 22@-25@ is similar

27@ *to the listing below:

280 CLOSE 2

290 OPEN “C:\MISC\LINP.txt" FOR INPUT AS # 1
30 REM Note that once you CLOSE the file you can
314d ‘use the same number notice that lines 299 and 49 are the
315 ‘ same

320 PRINT

339 FOR 1%=1 TO Num%

340 INPUT #1, ClientlD, NameC$, Tel$, NumCalls
35 PRINT ClientID, NameC$, Tel$, NumCalls

360 NEXT

370 REM Line 349 requires that you know the format of the file
340 CLOSE 1

397 PRINT “Done”

40 END

83.3.2 Read and Data

If have you have small size data for analysis or manipulation,
instead of always supplying the data at run-time (every time you run the
program) you can use READ and DATA pair. It is to be noted that

40 QBASIC Programming Without Stress
READ and DATA are complimentary; you cannot read without data

otherwise you encounter a runtime error.
The format by which you wish to read your data is the way you
store it. The program listings of LST3.3.2a give a simple use of the

“tool”.

LST3.3.2aUsing Read and Data |

19 CLS
20 DATAS, 19, 12, 14
30 DATAG6,7,9,9
403 READ A,B,C, D
53 PRINTA,B,C,D
60 READ A, B,C, D
73 PRINTA,B,C,D
80 END

SideTalk
You place DATA anywhere in the
Program (Read will search for its
colleague) except in Loops or
subroutines depending on the

neatness you desire for your code.

This program prints out the whole Data. Note that line 42 and 62
are the same but they do different things. The first READ reads four data

in the DATA statement. It is not compulsory that you spilt the data as
done in 20 and 3@. The entire data can be on asingle line or split into as
many data lines as desired. They may not necessarily be following i.e.
one of the data line may be placed in line 75 while the other in 2Q.
QBASIC does see the data as data not as separate data.

41 QBASIC Programming Without Stress

LST3.3.2b Using Read & Datall

19 CLS

20 DATA “Nigeria”, “Ghana”, “Uganda”, “Niger”

30 DATA “Cameroon™, “S/Africa”, “Congo”

4 DATA 1960, 1956, 1955, 1960, 1963, 1999, 20071
5@ DATA “COUNTRIES”

69 DIM 1%: DIM Country$: DIM Yr

70 FOR 1%=1TO 7

80 READ County$

9g PRINT UCASES$(Country$), “Number =",1%

1230 NEXT

113 FOR [%=1TO 7

120 READ Yr

137 PRINT USING “Country Number # was visited in ####", 1%, Yr
140 NEXT

150 END

42 QBASIC Programming Without Stress
If the data were stored as shown below, it would have been easier

to manipulate. Care should however be taken so as not to read a string
data with an integer variable. The program listing of LST3.3.2c is a better
modification of LST3.3.2b. the positioning of the data is not the case but
the format used.

LST3.3.2c Using Read & Datalll

19 CLS

2@ PRINT “Countries Visited and Year of Visit”
3J DIM 1%, Country$, Yr%

A3 FOR 1%=1TO 7

5@ READ Country$, Yr%

60 PRINT County$; “VISITED:”, Yr%

70 NEXT

80 DATA “NIGERIA”, 1950, “GHANA", 1952
97 DATA “CAMEROON?", 1953

107 DATA “TOGO", 1969, “NIGERIA”", 1970
120 DATA “USA”", 20d4, “CANADA”, 20D4
130 END

Data can be in excess of the read encountered but the number of
READ encountered (or Read Request) should not be more than available
Data. An error flag is displayed “OUT OF DATA” if such is alowed to

happen.
Running the code below will flag such error:

43 QBASIC Programming Without Stress

! SO DATAA4, 8, 13, 42
} 60 FOR 1%=1TO 6

} 70 READ Num%
! 87 PRINT Num%
Y 90 NEXT

The error is flagged when 1% =5 (5" time of entering the loop). In

some situations, the same set of data may be required elsewhere after
been read using READ statement, there is a keyword used to refresh
DATA reading “Pointer”. RESTORE is a keyword that is used to start
reading DATA from the first data statement. The listings of LST3.3.2d
show the use of RESTORE statement.

44 QBASIC Programming Without Stress

LST3.3.2d Using RESTORE

18 CLS

20 DATA @.5, 3.3, 3.9

30 DIM A

4 DIM B, C, D AS SINGLE

50 READ A, B, C

60 D=4*A-B+C

70 PRINT “First Time D="; D

80 RESTORE

99 REM Line 89 Starts another Read from Data value &.5
10 READ D, B, C

120 A=D"2+B"2+C"2

130 A=4*A

149 PRINT “Second Time A="*; A

15 REM Removing line 8 causes OUT OF DATA
160 REM Error flag.

170 END

45 QBASIC Programming Without Stress
834 SUMMARY

Memory is alocated for the type of variable declared. This
chapter discussed the following variable types INTEGER, SINGLE,
DOUBLE and STRING with emphasis on QBASIC String Manipulation
Functions and Concatenation of strings to suit a desired purpose.

Assignment in mathematicsis not asin QBASIC.

Computer takes input from keyboard, files and other sources.
Data is taken in using the keywords INPUT, LINE INPUT and READ,
others are INPUT$ and the INKEY $. Output can be on the monitor, hard
paper or memory devices using PRINT, PRINT # and WRITE#.

835 QUIZ
What is wrong with the following listings?

1 my Value=19

2@ Print = 60

33 PRINT #1, “Out of Data”
40 DIM A$ AS STRING

50 A$="QUIZ"

60 A$=A%$* “3RD QUIZ"

70 DATA=3,5,6, 7

80 READ A, B, C, D

9@ END

Attempt:
1@ Space not allowed,
use: myValue
2@ Keyword should not be used as
a variable
3@ File should not be opened
before bringing to file
4@ DIM A$ OR DIM AS STRING
5@ Correct
6@ * is not allowed to manipulate
Strings but +
7@ = not required
84 Correct
9@ Correct
----- * Program has no meaning

46

QBASIC Programming Without Stress

47 QBASIC Programming Without Stress

83.6 PROJECT

Develop a program starting as described in Chapter 2, to manage
the records of asmall shop. The program should be able to print available
stock or record new stock and prices. You have to take into account,

accounting practice, though the simple case: i.e. How to treat a cash book
etc.

48 QBASIC Programming Without Stress
Bibliography

» Microsoft QuickBASIC online help
» Gary Cornéll (1997) Visua Basic 5 from the Ground Up,
McGraw — Hill, Berkeley, California

\Y /

1} =
<o kUE
.0
o

50 QBASIC Programming Without Stress
CHAPTER FOUR

84.1 CONTROLLING THE FLOW

Thisisthe heartbeat of programming. A good programmer must
be keen to controlling the flow of the program. The way instructions
go/flow in a code determines the output of a program, therefore, call to
mind the acronym Garbage-1n-Garbage-Out-GIGO. This chapter shall
discuss the basic ways to control the actions of the computer using
QBASIC.

Chapter two discussed the skeletal control of program using
flowcharts. It isaimed in this chapter to learn converting ‘those flows' to
software (QBASIC Codes).

84.1.1 LOOPING

Looping in this context means doing a particular operation
repeatedly for a‘period’ controlled by a set condition such as number of
passes through the loop or otherwise asis discussed below. QBASIC has
some looping ‘blocks' for achieving looping:

FOR-[EXIT FOR]-NEXT loop

DO-[EXIT DOJ]-LOOP loop

LOOP -UNTIL loop

WHILE-WEND loop

Depending on the situation and/or your ‘love’ for the type they

can be variously manipulated.

51 QBASIC Programming Without Stress
84.1.1.1 FOR-NEXT loop

Thisisthe ssimplest and ‘mostly used’ looping block. The syntax
is:
FOR Counter = Initial Value to Upperlimit [STEP Increment]

Line(s) of code(s)

[EXIT FOR]

NEXT [counter]

Expressions in the square bracket may be left out depending on
the situation.

If counting is desired in the steps not 1 then the increment step is
to be included. It should be noted that the increment can be negative and
decimals. Thelisting LST4.1.1a shows a simple use of FOR-NEXT

loops.

LST4.1.1a Using FOR-NEXT

10 CLS

20 DIM i%, j

3@ FOR i%=0 TO 19

49 PRINT i%

5@ NEXT i%

6@ PRINT

7@ FOR i%=10@ TO 25 STEP -5
80 PRINT i%

9@ NEXT

100 FOR j=0.20@ TO @.2@06 STEP @.001
11@ PRINT j

120 NEXT

130 END

52 QBASIC Programming Without Stress
NESTED FOR:

There can be two or more FOR-NEXT statements within one FOR-
NEXT. However, the Nesting of the FORs should start from the
‘innermost’ loop. The structureisas showninFig4.1.1

» FORA=...TO » FORA=...TO

—— » FORB=...TO.. —— » FORB=...TO..

FORC=...TO.. —p» FORC=...TO..

—» NEXTC » NEXTA

L, NEXTB » NEXTB
» NEXTA L, NEXTC

Fig 4.1.1 FOR-NEXT structure (Nested FOR)
In some situations alooping may be required to be stopped to

continue with the program, the

LST4.1.1b Using EXIT FOR

10 CLS optional EXIT FOR statement

20 DIM 1%, J% i i
3@ FOR 1%=5@0 TO @ STEP -10 comes in after checking a

40 FOR J%=1TO7 condition as the listing of
50 IF 2*J%-1% <1@ THEN EXIT FOR

6@ NEXT J% LST4.1.1b shows.

70 IF 1%\1@ =4 THEN EXIT FOR

80 NEXT 1%

99 END

Thelisting LST4.1.1b

does not have any output but it only aims at showing a sample placement

53 QBASIC Programming Without Stress
of the EXIT FOR. The program will stop when 1%=4@ by the integer

division of line 7&. The EXIT FOR of line 5 is for the 3% loop while
that of line 7@ isfor loop 1%. it should be noted that the EXIT of a For-
Loop isinside the loop.

Care should be taken when using ‘ Counters' in aloop. To
understand how non-integer counters may be unpredictable, you may run
the lines of code below and take note of the increment towards the end
part of the output. This point should be carefully taken to avoid some

bugs in your programs. It is most advisable not use integers.

LST4.1.1c Non-Integer counters
10 CLS
2@ DIM foo AS SINGLE

30 FOR foo=@ TO @.1 STEP @.0000?1
49 PRINT USING “#.#########”;foo
5@ NEXT: END

o4 QBASIC Programming Without Stress
84.1.1.2 DO-LOOP

Another looping block is the Do-Loop. The Syntax is:

DO [Condition]
[Satement(s)]

[EXIT DQ]
LOOP

The optional condition isalogical comparison or avalues
magnitude check. If the condition is omitted and there is no condition to
run the EXIT DO or go out of the Loop e.g. with GOTO
[ineOutOfTheL.oop, the loop is an endless loop (The program will never
stop! - If the Program is not yet compiled to an executable file Ctrl +
Break is used to abruptly terminate the Program).

Note that the condition is firstly checked before control ever goes
into the loop unlike the DO-LOOP-UNTIL block (see next section). The
program listing of LST4.1.1d shows a simple use of the Do-Loop.

LST4.1.1d Using the Do-Loop

10 CLS

20 DIM 1% : 1%=0

3@ DO WHILE 1%<=10
40 1%=1% + 1

50 PRINT 1%

6@ LOOP

55 QBASIC Programming Without Stress
Compare the output of LST4.1.1d with changing the Line 3@ to

30 DOWHILE | %< 10
Care should be taken in positioning increments in Do-Loops. The
output of the code will changeif the lines 44 and 5@ are interchanged.
Asdonein FOR-NEXT loops, Do-Loops can be nested too. This
isdescribed in LST4.1.1e

SideTak
LST4.1.1e Nested Do-Loop The LET keyword is
10 CLS optional

2@ REM Nested Do-Loop
3@ DIM i%, j%, Quit$

49 REM Initialising the Variables Try to limit the

5@ LET i%=0 number of nesting
6@ LET j% =@ : LET Quit$ = “F” not to run out of
7@ DO WHILE (i% < 2@) AND NOT (Quit$= “T”) stack memory!

80 DO WHILE j% < 4@

90 PRINT USING “i=##t > j=##"; i%,%

100 1%=j%+2

120 LOOP

13@ PRINT “QUIT T/F?”

140 QuitS=INPUT$(1): Quit$=UCASES(Quit$)
150 i%=i%+5

16@ LOOP

17@ END

This arbitrary code listing would do similarly if line 70 is
changed to:
70 DO WHILE i%<2@ AND Quit$="“F", but if the user types a letter
other than “F” the program, will stop unlike the original code. The
optional [EXIT DOJ] can be used to abruptly ‘move’ out of a Do-Loop by
setting a condition within the loop such as
IF Day$="“Sun” THEN EXIT DO

56 QBASIC Programming Without Stress

84.1.1.3 LOOPUNTIL
The other form of the Do-Loop where the condition is checked

after execution of the loop is asin the Syntax below:
DO

Statement(s)
[EXIT DOJ
LOOP UNTIL (condition(s))
The program listing of LST4.1.1f shows a simple use of the LOOP-
UNTIL form of DO.

LST4.1.1f Using Loop Until

1@ CLS

20 DIM i, Sum, j AS INTEGER

30 i=10@: Sum= 0

4@ DO

50 PRINT “Sum of all Squares from @ to “; i;
69 FORi=@ TO i

79 Sum=Sum + j"2

80 NEXT

99 PRINT “ =";Sum

100 Sum=@

110 REM This initialization is to clear last Sum
120 PRINT

130 i=i-10

14@ LOOP UNTIL i=@

15@ PRINT “DONE”

160 END

o7 QBASIC Programming Without Stress
84.1.1.4 WHILE-WEND

While-Wend is another looping block, it has a similar structure
with the first Do-Loop structure discussed. This structureisused in file
processing (just a matter of preference). The syntax is as shown below:

WHILE condition(s)
...Statement(s)
WEND
Thelisting of LST4.1.1g shows a simple file processing with While-

Wend structure.

LST4.1.1g Using While-Wend

1@ CLS: DIM Rec$

2@ OPEN “C:\MISC\LINP.txt” FOR INPUT AS #1

3@ REM This program assumed you have executed the program
40 REM listing of LST3.3.1b once

5@ REM Program to Output the content of the file

6@ WHILE NOT EOF (1)

70 LINE INPUT Rec$

8@ PRINT Rec$

9@ WEND

10@ PRINT “EXECUTED”

110 END

The advantage of using the WHILE over the DO isthat the
number of recordsis not required before the entire record can be
accessed. The keyword EOF means ‘End of File' and thevalue 1

signifies the file number, so the function EOF() returns true when the

58 QBASIC Programming Without Stress
Cursor reaches the Last line in the open file. Lines 22@3-25@ of

LST3.3.1b can be replace with 6-90 of LST4.1.1g

84.1.2 CONDITIONAL STATEMENTS
Although conditiona statements have been used in most of the
codes, it is now timeto formally discuss conditional statements. There

are three of such to be discussed here.

84.1.2.1 |F-THEN-[EL SE]
Thisisastraight line conditiona ‘structuring’ statement of the
format:
IF LogicalCondition THEN lineNumber/Command ELSE Linenumber/Command
The code below LST4.12a shows a simple use of this format:

LST4.12a Using IF-THEN |

1@ CLS: DIM Rep$, Days

20 INPUT “Enter A or B”; Rep$

3@ IF Rep$= “A” THEN PRINT “Typed A” ELSE PRINT “Typed B”
4@ INPUT “How many days are in January 20@1”; Days

5@ IF Days=31 THEN 8@ ELSE 69

6@ PRINT “You missed the answer!”

70 GOTO 9@

8@ PRINT “Correct!”

99 END

The ELSE 69 of LST4.1.2amay beignored. If Daysisnot 31 the
Program will not go to line 8@ but the next line which is still 6.

59 QBASIC Programming Without Stress
The limitation of the ‘one- line' IF-THEN statement is that only one

command is executablei.e. the statement after the THEN keyword is
only one. The next section caters for this ‘problem’ or incapability.
8§4.1.2.2 BLOCK-IF
The Block-If statement syntax is:

IF Logical Condition THEN

Satement(s) executed if condition istrue
[ELSE]
Satement(s) executed if condition is not true

END IF

The statements could be other block-Ifs. The ELSE is optional but
there must be the END IF to signify the end of the block-1f. Any attempt
to run the cod without the End-If causes an un-trappable error-Block IF
without END IF. Notice carefully that unlike the one line IF THEN
earlier discussed; the THEN after the logical condition does not have
either any line number or statement directly following it on aline. Any
attempt to put such in the front of THEN stopsit from being a Block-1F
structure, therefore running the code would cause an error- END IF
without block IF. Also placing the Block in aFOR-NEXT loop or a
similar loop should be carefully done. Y ou must complete the block IF
before ending the loop, otherwise an error of the types described aboveis
flagged and may be confusing to the new programmer.

The program listing of LST4.1.2b shows asimple use of Block IF

statement.

60 QBASIC Programming Without Stress

LST4.1.2b Using Block-IF

1@ CLS: DIM Age

2@ INPUT “Enter the Age of the Pupil”; Age

30 IF Age<12 THEN

40 IF Age>7 THEN

50 PRINT “This pupil to watch the movie”

69 ELSE

79 PRINT “Movie not recommended for this pupil”

80 END IF

99 ELSE

100 IF Age<18 THEN

110 PRINT “Grade 2 Film Recommended”

120 ELSE

130 PRINT “Mature, Any Grade Recommended”
140 END IF

15@ END IF

16@ END

The End-1F of 80 closes the IF of 4@ while that of 144 closes IF
of 1@. The IF of 3@ closed at 150. Note the order of the closing and
my style of indenting.

84.1.2.3 SELECT-CASE
Thisis another conditional statement structure which, | see as
‘neater’ than block-IF, can be used for as series of conditions follows the
syntax below. It can aso have embedded within it other select case
structure(s) as the statement(s):
SELECT CASE variable

. SideTalk
CASE Conditionl For All the select Case
Satements structures there must be

corresponding END SELECT

CASE Conditionl|

61 QBASIC Programming Without Stress
Satements

CASE Conditionlll
Satements
CASE ConditionN
Satements
[CASE ELSE]
Satements
END SELECT
The statements are executed if the conditions are true most of the
times the case condition are chosen that only one of the condition would
be true otherwise a bug may crawl into your code. Notice the optional
[CASE ELSE] segment, it is for execution only when none of the
conditions is evaluated as true. The program listing of LST4.1.2c shows a

simple use of the Select Case Structure.

‘ SideTalk
LST4.1.2c Using Select Case Whatever is quoted in the
10 CLS front of PRINT is a String.

20 DIM Age’ Do not confuse the new
3@ INPUT “Enter Age of Candidate”; Age% . e
line delimiter “:” with the

40 SELECT CASE Age%
50 CASE IS <=12 colon used here
69 PRINT “Candidate: Infant”

70 CASE13TO 19

89 PRINT “Candidate: Teenager”

99 CASE 26 TO 79

100 PRINT “Candidate: Adult”

110 CASE 8@ TO 89

120 PRINT “Candidate: Octogenarian”
130 CASE ELSE

149 PRINT “Candidate: Over Aged”
15@ END SELECT

16@ END

62 QBASIC Programming Without Stress

LST4.1.2d “Embedded” Select Case

10 CLS

2@ REM Program for Salary Scale of a Small Coy

3@ DIM StaffIDS, StaffCat$

40 DIM StaffOldSal, StaffNewSal AS SINGLE

5@ PRINT “New Adjustment to Old Salaries of Staff”

6@ INPUT “Staff Category (Senior/ Junior)”; StaffCat$

8@ INPUT “Last Salary =N=", StaffOldSal

9@ REM S or J could be typed to represent the Staff

10D REM category for convenience.

11@ StaffCatS= MIDS (StaffCAtS,1,1) : REM i.e. First Letter
120 StaffCatS=UCASES$(StaffCat$) : REM Capitalize the letter
13@ SELECT CASE StaffCat$

149 CASE “J”: REM Junior Staff

150 SELECT CASE StaffOldSal

160 CASE IS < 500@.#

170 StaffNewSal=1.25*StaffOldSal

180 REM 25% Increase

199 CASE ELSE

200 StaffNewSAl=1.15*StaffOldSal

210 REM 15% Increase

220 END SELECT

230 CASE “S” : REM Senior Staff

240 SELECT CASE StaffOldSal

250 CASE IS < 50000 .#

260 StaffNewSal=1.13*StaffOldSal+ 1009290.0
270 REM 13% Increase and 1@,83@@ bonus
280 CASE ELSE

290 StaffNewSAl=1.08*StaffOldSal+4000@ .0
300 REM 8% Increase and 4@, @@@ bonus
319 END SELECT

320 CASE ELSE: REM Wrong Category entry for staff
330 PRINT “Wrong Category entry for staff”

335 PRINT “PRESS ANY KEY”

340 DO: LOOP UNTIL INKEYS <> “”

350 CLS

360 GOTO 59

370 END SELECT

380 PRINT “New Salary =N="; StaffNewSal

390 END

63 QBASIC Programming Without Stress

The indentation of the Case(s) helps to watch for the positioning
of the End —Select. This becomes helpful especially when the Select Case
is embedded within Select-Case. LST4.1.2d shows a simple “ embedded”

select case structure.

84.1.3ITERATION

The solving of some real mathematical equations can only be
achieved by iteration. Iteration is a repetitive substitution of valuesinto
an equation from values gotten from the equation starting with an initial
guess. There are various schemes used to iterate, these include but not
limited to: Newton-Raphson iterative scheme, direct subject of the
formula and so on plus the Gauss-Seidel iterative scheme (see chapter 6).

Although thisis not a mathematical text, | shall take pain to

explain briefly iterative schemes and write codesin QBASIC.

84.1.3.1 NEWTON-RAPHSON
Given afunction f (x) =0 to solve for x, the Newton Raphson

iterative scheme requires that you find the first derivative of f(x) (i.e.

f (x) or%). The solution of f(x) =0 is given by
X

Where Xq is the most recent value obtained or the initial guess

value, and xy is the value evaluated from equation 4.1 the value xg is

64 QBASIC Programming Without Stress
assigned xy and re-substituted in the equation 4.1 until the difference

between xy and Xo, before substitution, goesto a set condition.

If after alarge number of iteration the differenceis rather growing
out of bounds the system of equation is said to be diverging, if it is not
diverging and the value of xy is aways getting closeto x, after
subsequent iteration, the system is said to be converging. To have amore
elaborate background on Newton-Raphson consult book(s) on Calculus
and Analytical Geometry. Fig 4.1.3 shows the Algorithm for Newton-

Raphson scheme.

. Define the function f(x)=0

. Take the first derivative fprime(x)=0

. Define convergence criteria (epsilon) eps=Value

. Set a counter=0 and the Max iteration number ItMax
. Set a guess value for the Solution(root) x¢ = Init

f(X0)
Jfprime(X0)
(XN -X0)

. Evaluate xy from the equation XN = X0-

7. Compute convergence, say, conv = *100%

8. Assign X0=XN
9. Increment counter (Counter =Counter +1)
10. Compare the conv and eps (True or False)
11.1f step 10 is false, compare counter
and ItMax (Counter > ItMax= True/False)
12. If step 11 evaluates true, stop there is no convergence
13.1f step 10 is true, i.e. is true, i.e. system has converged
then stop the process
14. Output the convergence result
15.stop the process
Fig 4.1.3 Algorithm -NR

65 QBASIC Programming Without Stress
The program listing of LST4.1.2e attempts to find the roots of x3 +

x -2=0. (Note: the equation must be equated to zero then make f(x) =0
i.e
f(x) = x>+ x -2=0

where the derivative f (x) = 3x* + 1)

SideTak
Dr.J. A. OMOLEYE
(Mechanical Engineering
Department —University of
[lorin- has amodified N-R

scheme to evaluate other roots of
apolynomia at ago. It should
be seen that the N-R agorithm is
for asingle root!

LST4.1.2e N-R Programming

1@ REM A simple NR program by:
20 ¢ A.A. ADENIYI
30 ¢
49 °
5@ DIM Counter, I[tMAX AS INTEGER: DIM Conv

60 DIM Init, XN,X@,Eps AS SINGLE

7@ Counter=0@ : ItMAX=100@: Eps=0.0001

80 PRINT “N-R Solution of F(x)=x"3 + x - 2 =@”

9@ INPUT “Enter the guess root” ; Init

100 XD=Init

195 DO

110 XN=X@-(XD"3+ XB@-2)/(3*XD"2 +1)

120 Conv=ABS((XN-X@)/XN)*10@

130 X@=XN

14@ Counter=Counter +1

15@ LOOP UNTIL (Conv<=Eps) OR (Counter> ItMAX)

160 IF Counter> ITmax THEN

17@ PRINT “No convergence after Iterations ="; Counter
18@ PRINT “Retry with another guess value”

199 ELSE

20@ PRINT “Converged”

21@ PRINT “Root x="; XN

22@ PRINT “Iterations="; Counter

230 END IF

240 END

84.1.3.2 “Subject of theformula”

By subject of the formula | mean attempting to make the variable
split into parts where it will exist on both sides of the equation but only
thesingle variable ison one sidei.e. given afunction g(x) such that we

can express x=f(x). for example given g(x)=x? +4x-10 =0 we can write

x=(10-x)/4and X = /10 — 4X

With these two functions we can iterate for the two roots (if the equations
will converge). Standard mathematical text books will give more light on

conditions for convergence in iterations.

67 QBASIC Programming Without Stress
Unlike the Newton-Raphson scheme there is no need for

differentiation as Xn=Ff(xo for exampleto solve x* + 4x - 10 we use:

(10 — x%o)
Xy = A ——0r ——Xy = /10 — 4x, in place

of

B (X, + 4%, —10)
(2%, +4)

Y ou may want to try Newton-Raphson and the “ Subject of the

Xn = %o

formula’ method for this system of equation and compare the number of
iterations. There is one advantage here; the two equations (or the number
of equations) will converge to different roots whereas Newton-Raphson
convergence depends on the initial choice. If an equation has solutions
x=2.5 and x= -1. Initial guess values of x=3 and x=-1.5 will give different

convergence to evaluate the two roots.

68 QBASIC Programming Without Stress
84.2 SUMMARY

Controlling the flow of program depends on the ability of the
programmer to use looping statements and conditional statement plus his
intuitive reasoning as regards pitfallsin codes.

Looping can be achieved in about four ways or more ranging
from the simple FOR-NEXT structure to the WHILE-WEND. Loops can
be ssmple or complex as the situation may necessitate.

This chapter discussed three conditional statement structures from
the ssimple IF-THEN to the versatile SELECT-CASE structure. To close
the chapter a very important tool in computation was discussed, iterative
scheme with the development of algorithm and sample program on

iteration.

69 QBASIC Programming Without Stress
84.3 QuUIZ

(1) To wait for user to press any key appeared in which program

listing(s) in this chapter?

84.4 PROJECT
@ Develop a program to solve a polynomial of the form

1‘(x)=iaixi

f(X) =ag + aX + &X°+.......... ax
Whereay, &y, & a, are constants to be entered at run time.
(Use N-R scheme or otherwise)
(b) Develop a program to compute GPA of Students using the
GPA format following:

70 QBASIC Programming Without Stress

N
> (Credit; x Point)
GPA = 1=

N

Y Credit,
i=1

Credit; =Credit Unit of each registered coursei
Point; = Point in course i

Where point is obtained from:

SCORE POINT
70-100 5
60-69
55-59
50-54
0-40

o N| Wl »

(Hint: Use 10 courses to make project easy. The results should be
entered: -Use Select Case and Do-Loops)

1 QBASIC Programming Without Stress
Bibliography

» A.A.ADENIYI (2003) — Computer Analysis for Presentation of
Students Results Using Visual Basic — Mechanical
Engineering Departmental Project, University of Ilorin.

» Dr.J. A OMOLEY E — Unpublished lecture note on QBASIC for
MEESJ5 (University of llorin)

» Erwin Kreyzig (1999) — Advanced Engineering Mathematics,
John Wiley & Sons, INC, New Y ork

\Y /

cHAA
: \
MY
e
->
el

73 QBASIC Programming Without Stress
CHAPTER FIVE

85.1 ORGANIZING A PROJECT

A completely design program to perform a specific set of tasksis
termed project in this book. A project should be designed to be robust i.e.
should be able to stand test of time as regards error input and life span. A
well-organized project like every other projects starts from good
planning.

To write a very good project, pencil work is very essential. It is
highly tempting to sit by a computer and start programming without prior
planning. Although one may write code that will “perform” what is
expected of it but organized planning cannot be overemphasized (I used
to bevictim).

The steps below would be a good guide but it is by no means the
standard set by Microsoft Corporation (See http://www.msn.com for
more). The steps have proven good in my various projects:

Defining the task to be performed

Developing Algorithm on the task

Testing Algorithm with sample(expected) input
Repeating (2) if (3) does not work well
Developing flowchart (if convenient)

Setting out variables

Setting out variables

Programming in modules (parts)

© 0 N O 0ok~ W DN P

Testing (with different users and repeating necessary steps when
errors are found) and Debugging. You use functions keys F4(View
output), F8 (Step run), F3 (Search) etc .

74 QBASIC Programming Without Stress

After reading this chapter you should be able to write good and
“user friendly” codes as well as understandable codes. The chapter takes

you through using functions and subroutines.

85.1.1 Remarking, Dimensioning and Programmer-friendly —
Declarations
Remarking
This is putting comments at strategic positions in your code. This
does not in any way affect the output or the

. . SideTalk
program flow. The aim is to assist the programmer If you—don’t use

or any person going through the program to get a | REMin your
code you may

feel of what is going on at various stages in the || ¢, get

program. The keyword used is REM or the || confused with

: your own code!
apostrophe (') sign. Any other statement or

“stories’ written in front isignored by the interpreter.
Do not see remarking as a source of high memory for your code it

isnot! However it is boring to boring to over-remark.

Dimensioning
To dimension a variable is to alocate or reserve memory space

for the variable. Variables could be static

_ _ o SideTalk
variables dimensioning is DIM or REDIM. The DIM SHARED

REDIM is used to re-dimension an earlier || is used to allow

_ . . a variable to be
dimensioned variable. passed to a

subroutine

75 QBASIC Programming Without Stress
When naming variables, it is advisable to use “names’ that you

will easily recognize. Using variables like x, y or t can be confusing
when you are managing a big project (as experience has shown). You can
use names of up to 256 characters! However, you cannot combine
characters like underscore, #,*,-,&, / or other “non-regular characters’
but you can combine al phabets A-Z with numerals 0-9. It should be noted
that keywords should not be used as variable names. There should be no
space between and numerals should not start a name.

The following names are good examples of variables:
Telephone$, XAxisVaue, Gradient, Interest, MatA(Row, Col) etc.

Programming-friendly Declar ations

Just as variables should be “friendly-dimensioned”, functions and
subroutines should be given friendly names. All these friendliness
discussed is not for the machine but the programmer. The following
function names ae friendly enough: Grad(x1,x2,yl,y2),
Cot(x),Logl10(x), Parse(Text$) etc and the subroutines following are
friendly named: Delay, Sort, WelcomeScreen, TEXxitScreen, and
TestPrint.

Note that keywords are not to be used to name either functions or
subroutines. Note that Screen, Exit and Print are keywords.

Unlike variables, functions and Subroutines are Declared instead

of Dimensioned. The syntax is

DECLARE FUNCTION functionName(V ariable(s) type(s)) AS Type
e.g. DECLARE FUNCTION Logl0(X AS SINGLE) ASSINGLE

76 QBASIC Programming Without Stress
Where Log10 is the function name

X isthe parameter passed to the function

“AS SINGLE” is the type returned by the function (the X AS
SINGLE means avariable X of type SINGLE is passed to the Function.
To Declare a Subroutine, the syntax is
DECLARE SUB subroutineName(Parameter (s)Passed)

For example:
DECLARE SUB WelcomeScreen()
DECLARE SUB TestPrint(NPages%)
DECLARE SUB TEXxitScreen(x%, y%)

If you do not type the DECLARE line, after running the code, the
statements are automatically included in your IDE (like a template) but
you can edit (the signatures) if the variable types are not similar to what
you desire. Note however that no statement, not even the traditional CLS
or REM should come before DECLARE keyword in your code.

852 FUNCTIONS

There are two kinds of functions: The Built-in and the User
Defined functions. If you ever used calculators such as CASIO FX 991™
or Purpo™ you will find functions on the keyboard (built-in) also you

can insert formulas to perform some cal cul ations (User-Defined).

7 QBASIC Programming Without Stress
§5.2.1 Built-in functions

These are functions that come with the “machine” —-QBASIC
comes with some set of functions such as SIN('), COS(), LOG(), SGN(
) etc. To get more of the built-in functions see the Help file that comes
with your QBASIC.

85.2.2 User-Defined Functions (UDF)
As the Built-in

. . SideTalk
functions cannot satisty all The trigonometric functions built-in with
the forms of || QBASIC are evaluated in Radians i.e.

SIN(30)# 0.5
You have to convert to

SINGOx—1)=0.5
180

eguation/functions that exist
there is a need to be able to
create functions to be able to

create functions that are user

The log function is not to base 10 but to
defined. User defined || baseeie. LOG(10) = 1but
Log(10) = 2.302585092994045684...

functions can be a

combination of Built-in functions and others functions.
UDF can be built instead of repeatedly writing “same code”. User

Defined Functions are basically two in structure as discussed below.

§5.2.2.1 DEF FN

This is the simpler of the user defined functions. It does not
require the DECLARE statement earlier discussed, the syntax being:

DEF FN functionName(Variablel[,Variable2][,...])=Expression code

8 QBASIC Programming Without Stress
The use requires you to pass the variables values to the FN

FunctionName(). The program listing of LST5.2 shows a simple use of
DEF FN form of UDF.

LST5.2 Using DEF EN

10 REM Program to Display Log to base 2
20‘ from 10 to 15 in steps of 0.2
30 DEF FNLog2(x) =LOG(x)/LOG (2)

40 CLS: DIM Values AS SINGLE

45 PRINT “Value Log Base 2"
50 FOR Values=10 TO 15 STEP 0.2

60 PRINT Values, FNLog2 (Values)

70 NEXT

80 END

Observe that the variable name used in defining the function in
LST5.2 live 30 is x but another variable (Values) was used when the
function was “called”. It isjust to show you that the variables are passed
by reference. Y ou can pass any variable of similar type. If in the example
just given, you type the function as Log2(Vaue) instead of

FNLog2(Value) of line 60, you receive error or O is given as the result.

9 QBASIC Programming Without Stress
Such functions must be prefixed with FN to show that they are Functions

(and not just a variable or a subroutine)

The variable(s) list must be similarly passed otherwise an error is

generated. If afunction is defined as
DEF FNGrad(x1, x2, y1, y2) = (y2-y1)/(x2-x1)

The call to the function must pass four variables (i.e. values) to
the function FNGrad any attempt to run the line FNGrad(2,4) will give an
error. Running FNGrad(2,3,6,8) will give a good value.(Running
FNGrad(0,0,3,4) will crash your program unless you put error trapping
codes-(why?)- See 5.5).

_ _ SideTalk
§5.2.2.2 Declar e Function-Function Type the keyword

FUNCTION and the
function name then

A more flexible user defined function

P . . press enter to go to the
type is discussed now. The function defined Module. End Function is

earlier can only be defined on asinglelineand || added automatically.

various conditions cannot be easily
programmed.

The structure requires the DECLARE FUNCTION structure
discussed earlier. The structureis:

DECLARE FUNCTION fname(x,y,z...)

FUNCTION fname(x,y,z,...)
Statement(s)
[EXIT FUNCTION]
[Statement(s)]

END FUNCTION

80 QBASIC Programming Without Stress
As earlier mentioned, typing the DECLARE FUNCTION line is

“optiona”; it is automatically included if not typed. The FUNCTION-
END FUNCTION part does the computation or necessary logic.
Although you can type the function anywhere in the code, it is
automatically put in a module. If you are inexperienced you may feel
your code is gone. You can access al the modules by pressing the F2
function key and select the function you want to edit (you may decide to
include or remove variable(s) passed to the function-it is allowed, but
you haveto be careful).

When | write functions | keep them at the end of my main
program in this book. The program listing of LST5.2b shows a simple

use of function.

LST5.2b Using Function-End Function

DECLARE FUNCTION grad(x1,x2,y1,y2) AS SINGLE
10 CLS

20 REM Evaluating gradient of slopes

30 PRINT “Enter coordinates A(x1,yl) and B(x2,y2)"
50 PRINT “ FOR 5 POINTS”

60 DIM Inc AS INTEGER

70FORInc=1TO5

80 INPUT “x1, y1"; x1, y1

90 INPUT “x2, y2”; x2, y2

100 PRINT “Slope of line ="; grad(x1,x2,y1,y2)
110 NEXT

120 END

81 QBASIC Programming Without Stress

FUNCTION grad(x1,x2,y1,y2)

130 DIM Numerator , Denom AS SINGLE

140 Numerator=y2-y1

150 Denom =x2-x1

160 IF Denom=0 THEN

170 PRINT “SLOPE Vertical /Same Point A=B”
180 grad=8888888.8888888888888;: PRINT “Infinity”
190 ELSE

200 grad=Numerator/Denom

210 END IF

END FUNCTION

Obvioudly, this type of function is flexible and can be muilti-
purpose. Observe the use of the function name. it does not require the
prefix FN unlike the DEF FN that requires it. When equating the name
(grad), the parenthesis was not included (see LST5.2b lines 180 and
200).

There can be as many functions as required in a project and the
functions can call themselves as well as a function call itself (recursion).
However, care should be taken because too deep calling may cause out of

stack memory error.

85.3 SUBROUTINES
Some activities need to be performed similarly in more than one

place in a project. To avoid wasting space or unnecessary making the

82 QBASIC Programming Without Stress
project very large, subroutines are written. Subroutines are similar to

functions in writing and placing but unlike a function, a sub does not
return a value. Every other thing like passing variables or parameters is
similarly done.

This book identifies three types of subroutines. “GOTO”,
GOSUB, and CALL-SUB structures. See following sections for more.

§5.3.1 GOTO

GOTO statement is not a standard subroutine statement. It is used
to transfer control to a line number (or line label). Note that it is spelt
GOTO and not GO TO! The structureis:

100 Statements play: Statements
120 GOTO 90 done: Statements
GOTO play

The line labels are play and done with colon in the front.

It is regarded as a bad programming style to use GOTO as a
subroutine programming tool; even a good programmer limits the use of
GOTO inuse.

85.3.2 GOSUB

GOSUB has a pair RETURN which must be encountered at the
end of the subroutine action. There may be many GOSUBSs in a project
but there must be at least one RETURN to be encountered. Many
GOSUB statements can refer to a single line number (where the
RETURN statement is).

83 QBASIC Programming Without Stress
The structureis:

GOSUB lineNurmber/lineLabel

LineNumber/lineLabel

RETURN
The program listing of 5.2c shows a simple use of GOSUB

LST5.3a Using GOSUB/RETURN

10 CLS

20 PRINT “GOSUB PROGRAMMING”

30 GOSUB 100

40 GOSUB 150

50 GOSUB 300

55 GOSUB 500

60 END
D29,9,9,0,0,0,9,9.9.9.9,9,9,0,0,9,9.9.9.9.0.9.9,0,0,0,9,9.9.9.0.9,0.
100 PRINT “AT 100"

110 PRINT “AT 110"

150 PRINT “AT 150~

300 PRINT “AT 300"

400 RETURN

500 PRINT “TRYING SECOND RETURN STATEMENT”
510 PRINT “LINE 510"

520 RETURN

84 QBASIC Programming Without Stress
Note that all the GOSUB statements encountered RETURN

although there are only two RETURN statements but four GOSUBS.
Another program on quadratic equation using GOSUB is shown
in LST5.3b.

LST5.3b GOSUB I

10CLS :DIM a, b, ¢, d, x1, x2
20 INPUT "a, b,c";a, b, c
30d=b”"2-4*a*c

40 IF d = 0 THEN GOSUB 1000
50 IF d > 0 THEN GOSUB 2000
60 IF d < 0 THEN GOSUB 3000
70 PRINT "DONE"

80 END

1000 x1=b/ (2 * a)

1010 x2 = x1

1020 PRINT "Equal Roots x ="; x1
1030 RETURN

2000 GOSUB 4000
2010 x1 = (-b + SQR(d)) / (2 * a) Make LST5.3b robust e.g.
2020 x2 = (-b - SQR(d)) / (2 * a) avoid a=0 or string entry

2030 PRINT "X1 ="; x1; " X2 ="; x2
2040 RETURN

3000 GOSUB 4000

3010 PRINT "X= ";

3020 PRINT b/ (2 * a): " +/- | SQR(-d) / (2 * a)
3030 RETURN

4000 PRINT "THE SOLUTION OF THE QUADRATIC EQUATION”
4010 PRINT a; " X2 +" b; "X +"¢;" =0"

4020 RETURN

85 QBASIC Programming Without Stress
§5.3.3 CALL-SUB

Subroutines are written like the functions of section 5.2.2.2. To
transfer control to a subroutine, the keyword CALL isused (although it is
optional you use CALL- you can just type the SUB Name and it is
called). The DECLARE statement for Subsis:

DECLARE SUB SubName(Parameter (s))

SUB SubName(Parameter (s))

END SUB
The function key F2 is also used to access Subs. The program listing of

LST5.3c shows ause of CALL-SUB.

LST5.3c Call Sub

DECLARE SUB Animate (Text$)
DECLARE SUB Welcome ()
DECLARE SUB REQUEST ()
10 CLS

20 DIM SHARED Text$
30 Welcome

REM Also CALL Welcome
40 DO

50 REQUEST

86 QBASIC Programming Without Stress

60 LOOP UNTIL Text$ = "Quitting the Animation”
70 END

80 REM

SUB Animate (Text$)

180 CLS : DIM Litxt

190 COLOR 14: REM Give color to the text

200 Ltxt = LEN(Text$)

210 DIM i% ‘Delay

220 FOR i% =1 TO Ltxt

230 PRINT MID$(Text$, i%, 1);

240 SLEEP 1' FOR Delay =1 TO 95100: NEXT
250 NEXT: PRINT : PRINT

260 FORi% =Ltxt TO 1 STEP -1

270 PRINT MID$(Text$, i%, 1);

280 SLEEP1' FOR Delay =1 TO 39100: NEXT
290 NEXT

291 PRINT : PRINT

292 PRINT "Press Any Key"

293 DO: LOOP UNTIL INKEY$ <> "": CLS

END SUB

SUB REQUEST

150 PRINT : PRINT : PRINT "Quit to Stop"

160 INPUT "Type your Text"; Text$ /I
170 CLS

171 IF Text$ = "Quit" THEN Text$ = "Quitting the Animation”
172 Animate (Text$)

END SUB

QBASIC Programming Without Stress

SUB Welcome
100 CLS

110 Text$ = "Welcome to Simple Animation”

120 Text$ = Text$ + "Brought to you by AcubeSoft of Nigeria"
140 Animate (Text$): PRINT: PRINT
END SUB

854 USER DEFINED TYPES

User (i.e. programmer) has the type-block handy to make specia
type of definitions. This Type definition assists in organizing projects. A
project on books in the library may need user defined types to ease the
many declarations that may be required. The book project example will

be used to throw more light on types. The structureis:

TYPE VariableType

Dimension statements
END TYPE

bIM Variable as VariableType

Variable.DimensionStyle=...

88 QBASIC Programming Without Stress
The program listing of LST5.4a shows a typical use of the Type

structure.

LST5.4a Using Define Types

10 CLS

20 TYPE Book

30 Author AS STRING * 15
40 Publisher AS STRING* 25
50 Edition AS STRING * 13
60 YrPublished AS INTEGER
70 END TYPE

80 DIM Text AS Book

90 INPUT “Enter Author’'s Name”; Text.Author
100 Text.Publisher = “Université de AcubeSoft”
110 Text.Edition = “1st Edition”

120 Text.YrPublished = 2004

The advantage of the Type structure becomes apparent when you
need an array of such “type”’. (See chapter six for more on arrays). The
example below (LST5.4b) uses array with Type structure.

89 QBASIC Programming Without Stress

LST5.4b Music Type Example

10 CLS

20 TYPE Music

30 Composer AS STRING*25

40 Album AS INTEGER

50 Producer AS STRING*25

60 CopiesSold AS INTEGER

70 END TYPE

80 DIM NCas, i%

90 INPUT “Enter no of cassette”; NCas

100 DIM Song(NCas) AS MUSIC

120 FOR i%=1 TO NCas

130 PRINT “For song”; i%; “Please Supply the following data”
140 INPUT “COMPOSER : “;Song(i%).Composer

150 INPUT “PRODUCER : “;Song(i%).Producer

160 INPUT “ALBUM : “;Song(i%).Album

170 INPUT “COPIES SOLD : “;Song(i%).CopiesSold
180 NEXT

190 CLS

200 PRINT “Make Request for a song”

210 PRINT “Specify Number between 1 & “;NCas

220 INPUT i%

230 SELECT CASE %

240 CASE 1 TO NCas

241 PRINT “For the input we found result as:”
250 PRINT “COMPOSER : “;Song(i%).Composer
260 PRINT “PRODUCER : “;Song(i%).Producer
270 PRINT “ALBUM : " ;Song(i%).Album

280 PRINT “COPIES SOLD : ";Song(i%).CopiesSold
290 CASE ELSE

300 PRINT “Invalid Input”

310 END SELECT

320 END

90 QBASIC Programming Without Stress
Do you have afed that it is pretty good to use Types? However,

Type structure may not be supported by your version of QBASIC. The

Visual Basic programmer will find it very useful.

85,5 ERRORS

Errors are bound to occur during the course of running or
programming. This chapter briefly discusses errors; the discussion is
brief for you have to get some experience on your own from which you

will soon develop your own philosophy about errors.

85.5.1 Program-Time

When programming, two types of errors can occur, the two are:
() Syntax Error and (ii) Semantic Error.

Syntax error is an error that occurs as a result of wrongly
“syntaxing” of keywords. A very common one to beginners
(programmers) istyping “T” and Zero i.e. T@ for TO in the FOR-NEXT
loop. The interpreter isintelligent to respond to syntax errors by flagging
suggestions e.g. “Expected TO”, “FOR WITHOUT NEXT”, “NEXT
WITHOUT FOR”, “SELECT CASE WITHOUT END SELECT”,
“EXPECTED IDENTIFIER” etc.

The intelligence of the interpreter, however, should not be taken
as a complete wizard. Following “all” the suggestion may completely
change the idea of the program you are coding! To avoid many errors,

strictly follow the structures of the keywords or statements to the letters.

91 QBASIC Programming Without Stress
Semantic errors are errors that the interpreter (or the compiler or

the assembler) will not catch! Semantic error occurs as a result of either
or al of the following:
I Mistyping variables
I. Wrong Algorithm
iii. Not clearing memories or wrong initialization of variables
iv. Wrong placement of line or lines of codes
V. Counting loops with non-integers etc

(i) Mistyping variables

Some programming languages have facilities for handling this
type, for example Visual Basic uses Option Explicit to track variables
misspelt. If you have the following lines of codein QBASIC

190 XO=50

120 PRINT X@

Line 18 is“X” and letter “O” whole line 120 is letter “X” and number
zero. The expected output is 5 in line 12@ but the output is zero or the
value X0 was before line 10@. This is a very serious bug in programs.
(Note that QBASIC is not case sensitive, do not use same letters of
different cases to mean different things, it will rather be updated! e.g.

10 Ada=500

200 ADA=15

500 aDA=20
5205 PRINT Ada

92 QBASIC Programming Without Stress
The output is 20 not 509, this is a simple semantic error if you

expected the result to be 53@ because of the difference in cases.

(if) Wrong Algorithm

It is vital that your Algorithm is correct otherwise you may end
up getting unexpected output (Garbage-In-Garbage-Out: GIGO).

Do not see computer as a genius. It only responds fast to your
ingenious programs in a very fast way than you could do. Compare the
two Algorithms of Figures Figb.5a and Fig5.5b. They are intended to
prepare Rice.

93 QBASIC Programming Without Stress

Get acup of rice
“Wash” therice
Boil for ten minutes
Add a spoon of salt
Serve

MAaC Ca AlAaarvithina fAr DiAA L

Get acup of rice

“Wash” therice

Place aSize A pot on fire
Put 50cL water in the pot
Add therice

Put 1 spoon of Salt

Boil for ten minutes

Serve

Fig5.5b Algorithm for Rice |

1
2
3
4
5
6
7
8

Did you observe any bug in Fig5.5a? Y ou may bother to study it
before | point them out.
Comparing Fig5.5aand Fig5.5b

5.5a does not specify the size of the pot to be used for the cooking
(a big bug!), The quantity of water required to cook the rice was not
specified, the rice of Fig5.5a may be prepare well but the salt distribution
will be poor, in Figh.5b you add salt before the boiling not after!

94 QBASIC Programming Without Stress
Although the two Algorithms are not perfect but has pointed out how

wrong Algorithm could cause error.

(iii) Not Clearing Memories or Wrong Initialization
The “expected” value of 1% by the programmer of the lines below
is 53 but arather different output was got!

110 i%=0 : REM Initialization
111 FOR %=1 TO 50

112 PRINT Mat (i%)
113 NEXT

114 1%=1%+3

115 PRINT 1%

The code assumes Mat is a matrix earlier defined, the Output of line
115is 54 not 53, find out why.
§5.5.2 “Run-Time"

Pressing the function key F5 runs your code. All what happens
during this period is referred as Run Time. Any error that happens hereis
referred as Run-Time Error. What causes error here can be either/all of:

» Wrong input
» Program crash
» Wrong Code etc

95 QBASIC Programming Without Stress
(i) Wrong input

DOS traps this kind of error by giving a response “Redo from
Start”. If an expected input is an integer and a String is supplied or inputs
to be separated with comma(s) are not rightly supplied, this error is
encountered until the right input is supplied. The statement INPUT a, b, ¢
expectsinput line 5, 3, 4.05 etc

(ii) Program Crash

A program crashes if the flow encounters lines of code that are

malicious. The following could crash your code:

a. Using an array without pre-dimensioning
b. Using an array beyond its dimensioned capacity

c. Assigning avalue beyond the dimension type e.g. if X is an
integer, assigning value X=89080980808080808902344554421
will crash your code (see Table 3.1 in Chapter 3)

d. Requesting for unavailable drive(s) e.g. The use of OPEN

keyword on an unconnected disk drive.
e. Encountering lines causing division by zero.

f. Running out of stack space (e.g. as a result of over looping-
break down loops to avoid this)

g. etc

9% QBASIC Programming Without Stress
(iii) Wrong Code
Wrong syntax in code may not al be trappable when doing the
programming depending on the size of your code or the complexity of
the syntax, any attempt to run the part of the program crashes the
program. The good thing is suggestions are made; however, it may not
help!

(iv) Wrong placement of line or lines of codes (or Counting with non-

Integers)

If you count loops with non-integer variables you may fall into

error pit, so watch out! You may get errors if you position the line or
lines of codes wrongly. Your Algorithm may be right but the placement

matters. The following set of programs will give different outputs

C=10 C=10

DO DO

C=2*C PRINT C

PRINT C C=2*C
LOOPUNTIL C>100 LOOPUNTIL C>100

97 QBASIC Programming Without Stress
85.6 TRAPPING ERRORS

Most errors that might occur in your programs can be envisaged
during your programming. QBASIC has a way of tracking down some
trappable errors using error statements. The following are used:

ON — ERROR / RESUME Structure

ERR.NUMBER Statement
(i) ON ERROR/RESUME

(& The structureis:
lineNumber/LineLabel: ON ERROR GOTO lineNumber/Label

lineNumber/LineLabel: Satements
RESUME lineNumber/label/INEXT

(b) lineNumber/Label: ON ERROR RESUME NEXT
The two types cause program flow to be transferred to a line number
/ or label or to the next lineif an error occurs. The program listing of

L ST5.6a shows asimple use of error statements.

98 QBASIC Programming Without Stress

LST5.6a Error Program |

10 ON ERROR GOTO handler

20 OPEN “A:\text.dat” FOR INPUT AS #1
30 REM Try to open a file in a floppy

40 DIM i: i=1: DIM Ex AS INTEGER

45 REM Ex=10000000000000000000 ‘See Explanation
50 DO

55 i=i+1

60 GET i, NameTxt$

70 PRINT NameTxt$

80 LOOP UNTIL i=3

90 END

100 REM Error handling part

Handler:

PRINT “FILE NOT FOUND OR”

PRINT “FLOPPY NOT READY”

PRINT “CHECK FAULT”

PRINT “ENTER R TO RESTART”

PRINT “ENTER S TO STOP”

IF INPUT$(1) = “R” THEN RESUME 10 ELSE RESUME 90

Place the error handling “subroutine” such that it cannot be
encountered unless there is an error. It is traditional to place Error
handling routines after the END statement. The code of LST5.6b

handles the Error of the fact that there would be a division by zero.

9 QBASIC Programming Without Stress

LST5.6b Error Programming |l
10 CLS: DIM x AS SINGLE
20 PRINT “Y = 11/(2-x)"
30 PRINT “Values near the asymptote of Y”
40 DEF FNY(x)=11/(2-x)
50 ON ERROR RESUME NEXT
60 FOR x=1.9 TO 2.1 STEP 0.001

70 PRINT “x =*; x

80 PRINT “Y =", FNY(x)

90 NEXT
100 PRINT “AT ASYMPTOTE Y= Infinity”

120 END

An error handling subroutine could have been written to get a
better output,
Handler: PRINT “Infinity”
RESUME NEXT
Thisis placed after line 120 but the line 50 would look like this:
50 ON ERROR GOTO Handler

(i) ERR.NUMBER is used to return the error code for the particular type

of error. The various trappable errors have numbers used to recognize

100 QBASIC Programming Without Stress
them, so that wrong information is not supplied. The code LST5.6a

would aways flag error even if you have a floppy with file name
A:\test.dat, but the flag would indicate that the file is not found, assuming
line 45 were not REM. The error would have been that the value assigned
to Ex (an integer) is beyond the maximum integer value. To check for
such as simple “Select Case Err.Number” could be used to see if the

error, the “ Case Else” could message that the error is something el se.

85.7 IMPLICATION OF ERRORS

The errors you commit in your programs could go along way to
affect lives of people, it may come in financia, health or otherwise. The
following story should “warn” you.

Some year before 1997, the operator of a pool maintenance
company in New Jersey got the idea to use computer to monitor his
customers pool heaters. Using a microcomputer and a modem, he
developed a program that would connect by phone with the heaters,
check for correct operation and adjust temperature.

After afew weeks of operation, he got a frantic call from one of
his client — the water in the pool was 100° and rising! He drove to the
pool and adjusted thee the temperature by hand. Later he was able to find
a bug in his program. Fortunately, nobody was injured by the scalding
water (P.38 Berman). Should you jump to such a pool, would you wish

well for “whoever is responsible- the programmer!”

101 QBASIC Programming Without Stress
This other story exists; A programming error in an AT & T™

Telecommunication switch shut down AT & T long-distance service for
9 hours blocking approximately 5 million calls(P.39 Berman).

Also a software error at Bank of New York lost an estimate of
$5million in 1985 (P.39 Berman).

The programmer should always am for a bug free code.
According to Mary Laude, a member of the Technical staff at Sun
Microsystems and a Test engineer, fixing an error in the field costs about
3 times as much as fixing the same error before release [to the
market] (P.43 Berman).

One of my friends (a programmer) once said, jokingly, that he can
put some bug in his codes so that he will be called for maintenance in the
nearest future. | told him it was a bad habit to do that. You don’t have to
bug your code before you will be called for a maintenance routine. If you
see it as your duty to perform maintenance, it is the duty of the
maintenance department or section of the organization to decide whether
to give you to maintain or give the contract to other developers, if they
are not satisfied with your code. I'll prefer you sell your ability so that
you may be called for other projects or recommendations be made about
you. Care has to be taken in whatever step you take in life, for the future

may not forgive!

102 QBASIC Programming Without Stress
85.8 SUMMARY

This chapter has taken you through basics of organizing a
QBASIC project. It discussed making Remarks and using friendly codes.
Y ou have gone through Functions and Subroutines as well as using error
traps in programming.

The following chapter takes you through array programming and

some useful Algorithms.

859 QUIZ
How do you pass a value from one Subroutine to another in a
module? Attempt: Use DIM SHARED

859 PROJECT

Design and program a customized Calculator for the following
functions: In(x); Cos'x ; FahCel(x) and Cel Fah(x).

FahCel: Fahrenheit to Celsius

CelFah: Celsiusto Fahrenheit converter.

The program should give room for user to select the kind of function she

wants.

Hint 1: Use Do-Loop and Select Case for the Input$. The calculator
should display the function list (with a Sub) as shown below:

103 QBASIC Programming Without Stress

kkhkkkkhkkhkkhkkhkkhhkkkhhkkhkkhhkhkkhhkhkkhhkhkhhkhkkhhkhkkhkhkkhkhkkhkkk,x*x

SELECT THE FUNCTION NUMBER

In(x) *
ArcCos(x) *
FahCel(Temp) *
CelFah(Temp) *
Quit *

kkhkkkkhkkhkkhkkhkhhkkhkkhhkkhkkhhkhkkhhkhkkhhkhkhhkhkkhhkhkkhkhkkhkkkhkkk*x*x

* ok k¥ ¥ F

ockrwbdr

Hint 2: Use a convergent seriesto find In or ArcCos
see a standard text for the seriese.g.:
> Advanced Engineering Mathematics — Erwin Kreyzig

> Engineering Mathematics- K. A Shroud

104 QBASIC Programming Without Stress
Bibliography

» Berman A. Michadl (1997), Data Structure VIA C++: Objects by
Evolution, Oxford University Press, New Y ork (Oxford).

“9pIO

X =

105

QBASIC Programming Without Stress

106 QBASIC Programming Without Stress
CHAPTER SIX

86.1 WORKING WITH ARRAYS

An Array is defined as an impressive display or a series. It isalso
defined as a type of data structure that has a multiple values. In the
programming sense, an array is an “organized” storage of data with a
variable. By being organized does not necessarily mean that it is a sorted
or an arranged collection, it is organized in the sense that “Virtual
positioning” existsin an array

In an array, a Matrix-like positioning is used to place data. The
Mathematical equivalent of programming array is the Matrix. If you have
not worked with Matrices before, the following examples should give
you a picture. Let us define a Matrix M as a store of information on the
Prices of 3 Booksin 3 years.

250.00 259.50 400.00

MatM =| 80.30 100.00 150.50
1000.00 1020.00 1500.60

The columns represent the years while the rows represent the
books. Matrix M could be expressed in clearer terms as.

107 QBASIC Programming Without Stress

Priceof .AinYr.1 Priceof .AinYr.2 Priceof .AinYr.3
Mat.M =| Priceof .BinYr.1 Priceof.BinYr.2 Priceof.Bin.Yr.3
Priceof .CinYr.l Priceof.CinYr.2 Priceof.C.inYr.3

In mathematics, each item of the matrix is called an element. For

easy programming, it is interesting to be able to point to an element of a

matrix. The matrix M is also presented in elemental terms:

Mll M12 M13
MatM =|M,, M, M,
MSl MSZ M33

That is, an element of a matrix could be represented as
Mij, Vi, jeZ(i.e.wherei andj areintegers). Thei represents the row
and j represents the column. The Matrix below represents a generalized
a 8 a3 - Ay
a21 a22)) a2m
a;
a, - : . a

Matrix A. A=

nm

108 QBASIC Programming Without Stress
86.1.1 Dimensioning Arrays(DIM & REDIM)- Matrix

The size of the matrix A aboveisn X m. by size, it does not mean
the amount of bytes or the memory unit, but it means the allocated
memory locations for the data. It is necessary to pre-allocate memory for
an array before it is used anywhere in the program, although if the array
sizeisless than 10 it may not be required, however, it is a good practice
to dimension your arrays to prevent error.

DIM and REDIM are used to tell your computer (or QBASIC) to
either alocate space or reallocate space respectively for your matrix. The
syntax is.

DIM VariableName(Integer[,Integer] [,Integer])
REDIM VariableName(Integer[,Integer] [,Integer])| AStype]

The AS type could be included if the data type is known, it is
safer to leave it out when in doubt. However, it must be included if the

datatypeisastring. The following are typical examples:

DIM MatA(5@,19), MatB(1J,19)

DIM X(59), ExtraLag(5,19,3)

Dim SoxN(13,13) AS STRING

DIM Age$(12,10) : * This is string Array

The default starting position in rows or columns counting is from
1 but you may change the default Dimensioning to start from zero by
placing the statement OPTION BASE @ before any DIM or REDIM
keywords. (You may want to put OPTION BASE 1; to tell your code

reader that you count from 1, though not necessary)

109 QBASIC Programming Without Stress

86.1.2 Manipulating Arrays

A database becomes useless if it could not give rea life values.
To make sense with a set of data it has to be manipulated. There are
various ways by which an array (matrix) could be manipulated. Y ou may
even have your own format, sections 1 to 5 give some manipulations on

arrays.

86.1.2.1 Matrix Addition

Like we perform addition on non-array variables it is possible
with matrices, but unlike the addition of the latter, the former requires
elemental addition. Addition of matrices is the addition of corresponding
elements of the matrices. This implies that two matrices A and B can
only add if they have same dimension (the two must be string types if
you are to add strings or each element be converted (to string) before the
addition).

A man owns two book shops where he sells mainly four types of
books. The sdes for three days in the shops are respectively:

53 5 16 20 30

4 4 2 1 3 1
ShopA= —————- — ShopB =

6 2 0 0O 0 4

0 510 10 3 2

The listing below (LST6.1a) shows a simple (non-flexible) program he
used to find the sale from the two shops.

110

LST6.1a A Simple Matrix Addition

19 CLS

20 PRINT “BIG JOE BOOKS, IKARE"

30 REM SHOP A

40 DATA 5,3,5,4,4,2,6,2,0,98,5,10

50 REM SHOP B

60 DATA 16,20,30

73 DATA 1,31

80 DATA @,90,4

90 DATA 19,3,2

QBASIC Programming Without Stress

1@ REM Compare the two Arrangement of data !

110 REM

12¢ DIM ShopA(4,3), ShopB(4,3) , Sales(4,3)

13 REM The array sizes are equal.

140 REM Put the data in the Arrays

150 DIM Rows, Cols AS INTEGER

111 QBASIC Programming Without Stress

160 REM Shop A

170 FOR Rows=1TO 4

183 FOR Cols=1TO 3

199 READ ShopA(Rows,Cols)
195 REM Why not put Code Here?
200 NEXT

213 NEXT

220 FOR Rows=1TO 4

233 FOR Cols=1TO 3

240 READ ShopB(Rows,Cols)
250 NEXT

260 NEXT

265 ‘YOU COULD HAVE PLACE 24@ IN 195 TO AVOID 22@-260
270 REM Find Sum and Output Result

29@ REM *kkkkhkhkhkkkkkkkkkhkhhhhhhhrhkrkkkkkkkhiik

SideTalk
Remove the PRINT of line
37@ in LST6.1a and watch

out for a mess up

295 PRINT “SALES FROM 2 SHOPS”

296 PRINT “ IN 3 DAYS ON FOUR BOOKS”
3037 PRINT “DAY1", “DAY2", “DAY3"

312 FOR Rows=1TO 4

320 PRINT “BOOK”; Rows

338 FOR Cols=1TO 3

340 Sales(Rows,Cols) = ShopA(Rows,Cols)+ShopB(Rows,Cols)
359 PRINT Sales(Rows,Cols),

360 NEXT

379 PRINT

380 NEXT

399 END

112 QBASIC Programming Without Stress
If you have 3 matrices, one for Surname the other for Middle

name and the last for First name, of 50 people. It should not be difficult
to get a new matrix MatNames to contain the whole names (Surname:
made Capital and a comma placed in front; other names with the first
letters capital like this: ADENIYI, Akinola Abdul. The dimension is
something like Dim A(59) etc.)

86.1.2.2 Matrices Multiplication

Of more interest in mathematics is the multiplication of matrices.
It is highly important that you follow the order used in matrix
multiplication otherwise, you end up getting figures but they will merely
be garbage!

Suppose you have two matrices A(n,m) and B(q,r) i.e. the
dimension of A is nxm and B is gxr. For you to be able to multiply

matrices A and B

(@) m must be equal to q (i.e. m=q), the column of the
first matrix must be equal to the Column of the
second

(b) multiplication of matricesis not commutative (i.e.

AxB#BxA)

113 QBASIC Programming Without Stress
resulting matrix, i.e. product matrix hasa sizen x r

(c)
e.g.
A(n,q) x B(q,r) =C(n,r)
B(gq,r) xA(r, m = C(qm)

Lo]

O/P
The example below is the multiplication of two matrices A(4,3)

and B(3,2)

[
o

1 2 3
4 5 6
A=
7 8 9
10 11 12
(Although you cannot add A + B but A x B is possible-why? Can you

get B x A?)" See the 7-structure and note that Dot represents multiplication i.e.

3.4=12"
1 2 3 0 1 1.10+23+431 1.1+22+36
4 5 6 3 > 410+53+6.1 41+52+6.6
X =
7 8 9 L6 7.10+8.3+9.1 7.1+8.2+9.6
10 11 12 10.10+11.3+12.0 10.1+11.2+12.6
19 23
|61 50
1103 77
145 104

114 QBASIC Programming Without Stress
To seethe 7 structure look at this:

AT T IXB

T

Does thisstill make sense? C= Row of A X Col of B summed- How far?
The question now is how do you write a QBASIC code to effect
matrices multiplication? Just as in development of other programs, let us
do it by Algorithm — coding method.
Figure Fig6.1 shows an algorithm on multiplication of two
matrices MatA and MatB.

115 QBASIC Programming Without Stress

1. Request the array size of each matrix: MatA and MatB say
MatA (mxn) and MatB(gxr)

2. Check the condition for multiplicity of the two matricesi.e.
n=q

3. Flag error and stop if n#q else Dimension MatPrd(mxr)

4. Request/Enter the data for the matrices

5. Multiply the rows (elements) of MatA with the columns
(elements) of MatB individually and sum. Thisis done for
each row and corresponding columns to get the new matrix
MatPrd(mxr)

6. Output the result MatPrd(mxr)

7. Stop

Fig 6.1 Matrices Multiplication Algorithm

116 QBASIC Programming Without Stress
The Algorithm would be made clearer by using the flowchart of

Fig6.2 (Note however that this flowchart is not the best, but to assist a
beginner — think about improving it)

o @—P Col=Col+1

m=? n=? q=7 r=?

l l Col<=n °

Allocate MatA(mxn),MatB(qxr)

Col=1
v
A\ 4
= MatB(Row,Col)=
Col =1
o
() Row=Row +1 U
A 4 %
o

Row =1
IA
+‘
MatA(Row,Col)= a
Col=Col +1

|

m

Row=Row +1

Row <
Col <=7

17 QBASIC Programming Without Stress

o

SumElement =@

v
i=1 :
j=1

k=1

O

SumElement = SumElement + MatA(l,k)*MatB(k, j) .

v / Output MatPrd /
keke 1 —

A
K<=n ~© i=j+1
j<=r
MatPrd(i,j)=SumElement i
SumElement=@

l i=i+

j=ji+l

-

°
e

The flowchart and Algorithm above is hereby converted to a QBASIC
code (see LST6.1b)

118 QBASIC Programming Without Stress

LST6.1b Matrix Multiplication Code

18 CLS: DIM m, n, g, r AS INTEGER

20 PRINT “MULTIPLICATION OF MATRICES”
32 PRINT ok

49 PRINT : PRINT “To multiply A(mxn) and B(gxr)”
5@ INPUT “Enter m”;m

69 INPUT “Enter n”;n

99 INPUT “Enter q”; g: INPUT “Enter r”; r
107 PRINT: PRINT

119 IF gq<>n THEN 999

12@ DIM MatA(m,n), MatB(q,n), MatPrd(m,r)
137 REM “Entering matrix A”

149 DIM Col , Row

1503 FOR Col =1 TO n

16 FORRow=1TOm

179 PRINT “A ("; Row; “,"; Col;) =";
180 INPUT MatA(Row,Col)

199 PRINT © 7;

200 NEXT Row :PRINT

21 NEXT Col

220 REM Entering Matrix-B

233 FOR Col=1TOr

240 FOR Row =TO q

250 PRINT “B(";Row; “;";Col;") =;

26 INPUT MatB (Row ,Col)

270 PRINT * 7

119 QBASIC Programming Without Stress

280 NEXT Row

299

PRINT

307 NEXT Col

319 DIM SumElement, i, j, k
32@ SumElement =g

330 FOR =1 TOr

340
350
369
379
380
385

399

FOR|j=1TOr
FORk=1TOn
SumElement = SumElement + MatA(i,k)* MatB(k,j)
NEXT k
MatPrd(i,j)=SumElement

SumElement=g
NEXT j

430 NEXT i
419 REM Output Section

420
430
440
450
460
470
480

490
500
999
1000

PRINT “PRODUCT OF AxB”
FORi=1TOT
FORj=1TOm
PRINT MatPrd(i,j),
NEXT j
PRINT
NEXT i

PRINT “DONE”

PRINT el i A

PRINT “USE ANOTHER TIME...THANK YOU":
END

120 QBASIC Programming Without Stress
86.1.2.3 Matrix Deter minant
In many applications in Physics, Mathematics, Economics and
Engineering, Matrix determinants are of invaluable use. The
determination of determinants is discussed below. Note however that the
complexity of determinantsis afunction of the dimension of the matrix.
A sguare matrix is a matrix with number of rows equa the
number of columns. You find determinants of square matrices. | shall

explain determinants of matrices starting with the 2x2 square matrix

shown below:
a;
A(2x2) = (, the determinant is represented as
1 Ay
a; . . .
and the determinant Det A or AA=a;;'8, — &8s

a21 a22
(Note the cross multiplication)
Another matrix, but a 3x3 square matrix A(3x3)

a; 3, g
A(Bx3)=|a, a, a, |andthedeterminantis
8y 8y Aag
a; 3y A
a a a a a a
DetA=la, a, axy/=a; azz azg —a, azl azg +ay; aZl azz
a, a, a 2 3 1 3 31 2

= a11(‘5122"3‘33 - aszazs) —a, (a21a33 - a31azs) + a3 (a21aez - a31a22)
Note: The sign coefficients of the elements are (-1) " where i, j are the

row and column numbers respectively.

121 QBASIC Programming Without Stress
Let us now consider the 4x4 matrix A (4x4)

a; &, a3 a4y
A — a21 a22 a23 a24
A 8y 8y Ay

a41 a42 a43 a44

Bp S 8y Y Ay Ay Ay Ay Gy 8y

DetA:auasz Qg Q| — A8y Qg3 gy T A58y By gy — QYA By g
a, Q3 dy 3 Q4 ay 3, 38, ay a, 8, ag

The breakdown continues as with the 3x3 matrix determinant above.
The program listing of LSt6.1c
shows a simple program to find the

SideTalk
LST6.1c is a kind of On The Fly
Programming (OTFP)-No good for

determinant of a 3x3 matrix.

LST6.1c Determinant for a 3x3 matrix

10 REM Program Determinant a serious programmer, though the

2@ CLS job is done!
33 PRINT “Enter the Matrix A(3x3)”

4@ PRINT Ukkkkkhkkhkhkkhhkhhkkkkkhhkhhkkx?

50 DIM N AS INTEGER, | AS INTEGER, J AS INTEGER
7@ DIM SHARED A(N,N)

122 QBASIC Programming Without Stress

8JFORI=1TON

9% FORJ=1TON

109 INPUT “A”; A(1,J)

119 REM Take next

12 NEXT

1303 NEXT

140 SUM=Q

150 REM Pass the crossed matrix to a function
16 ‘to determine a 2x2 determinant

170 DIM COL,ROW

180 FOR COL=1TO N

199 SUM=SUM+(-1)*(1+COL)*CROSSEDMAT(COL)*A(1,COL)
203 NEXT

219 PRINT “DETERMINANT =" ; SUM
220 END

FUNCTION CROSSEDMAT(COL)

230 REDIM MAT(2,2)

240 DIM CLM

250 FOR I=1 TO 2

260 FORJ=1TO2

279 SELECT CASE COL

280 CASE IS =1

299 CLM=J+1

300 CASE IS =2

319 IF J=COL THEN CLM=J+1 ELSE CLM=J
320 CASE IS =3

330 CLM=]

349 END SELECT

350 MAT(I,J)=A(I+1,CLM)

360 NEXT

365 NEXT

3703 CROSSEDMAT=MAT(1,1)*MAT(2,2)-MAT(2,1)*MAT(1,2)
END FUNCTION

123 QBASIC Programming Without Stress
§86.1.2.4 Cramer’'sRule

To solve a problem involving n-unknowns, it requires n-equations
(which are not linearly dependent). The assumption is that the variables
are linear (i.e. not to power greater than 1). There are various methods by
which a system of simultaneous linear equations can be solved.

If you ever did elementary mathematics, you should be familiar
with the substitution and elimination methods. Some of these methods do
not prove viable always especially when the order of the “matrix” system
(i.e. the simultaneous equations) is big. It is expected that there should be
other more powerful systems (especially those that can be coded for a
computer for usein industrial or research application).

Cramer’s rule and Gauss-Seidel iterative methods are methods
treated in this book but note that there are other methods. Gaussian
Elimination, Gauss-Jordan to mention just two.

The Cramer rule would by explained for the 33 matrix system
below:

% + 8, X, + 8% =Dy

Ay X +ay,X +axX =b, ———————— S1

Ay X + 8 X, + g% = by

Thissystemisexpressedin matrixformas

A & A|%)| (b
A By Ay| X |=|b |- S2

aSl a32 a33 X3 b3

Notethat multiplyi ng back givessystemSL
gained- Erwin Kreyzig

Experience is not taught but

124 QBASIC Programming Without Stress
The solution of the system of equationsis:

Az 32 33

b, a, aj;

|A1| =|b, a, ay
b B Ay (Note the replacements)

ay, b, ag

|A2| =|ay bz ay

ay by ag

a, ap, b

|A3| =|ay ayp bz

ay az Db

It is obvious that the solutions exist only if |A| = 0- equations not

linearly dependent. Obviously, your ability to code the Cramer’s rule
depends on if you can code determinants. The Algorithm below (Fig6.3)

is used for the Cramer’srule.

125 QBASIC Programming Without Stress

Enter matrix A(nxn)
2. Enter matrix B(n)

3. Determine the determinant |A|
4. For n-times, determine determinants |A,| Vi =12,..n

5. For the n-solutions (|A| = 0)
X; :H, Vi=12,..n

6. Output x, Vi=12,..n

7. Stop
Fig6.3 Cramer’srule Algorithm

Note, when programming, to find determinants, all that is
required isto pass the array into the subroutines that handle determinants,
say. Note also that you can reserve a dummy matrix whose columns are
changed. Y ou may follow the Algorithm below (Fig6.4) to achieve step 4
of Fig6.3

126 QBASIC Programming Without Stress
Define a dummy matrix DumMat(nxn)

Definei=1
Read Array A(nxn) into DumMat(nxn)
Read into Column | of DumMat(nxn), Array B(n)

Pass DumMat(nxn) into the Determinant sub and obtain A,

Increment |, until i=n, repeat step 3

N o o &~ w DdhPRE

Stop
Fig6.4 The Determinants of many Matrices

At the end of the day you should come up with a very lengthy code (a
project indeed). The good thing is that you will have a system for
solving an nxn matrix — using your personal software!

The program listing of LST6.1d shows a crude code to solve a

3x3 system of equations by the Cramer’srule.

LST6.1d Program — Cramer

DECLARE SUB WELCOME()
REM
REM PROGRAMMER AcubeSoft of Nigeria
REM
REM 10TH JUNE 20904
DIM A(3,3),B(3)

DIM TempMat(3,3)

CLS
PRINT

PRINT “***********CRAM ER’S RULE*************”
PRINT “iiiiris KikkkRRRRRRRR

127 QBASIC Programming Without Stress

FOR I=1TO 3
FORJ=1TO 3
INPUT “A=";A(1,J)
NEXT
INPUT “B="; B(l)
NEXT

WELCOME
DIM Z, CURRENTCOL, DT, R, C, CMAT
DIM MAIN AS INTEGER

DIM DET(4)
REM FIND THE MAIN DETERMINANT
MAIN=1
REM LOAD THE TEMPORARY ARRAY
FOR Z=@ TO 3
CURRENTCOL =2
GOSUB LoadTempMat
GOSUB DETERMINANT
DET(Z+1)=DT
NEXT
IF DET(MAIN)=@ THEN
PRINT “Sorry this system cannot be solved by crammers rule”

PRINT “....Exiting”
GOTO LastLine

ELSE
PRINT “The solutions are:”
FORJ=1TO3
PRINT USING “X# = ##tititt ###" J, DET(J+1)/DET(MAIN)
NEXT
END IF
LastLine: END

128 QBASIC Programming Without Stress

REM

LoadTempmat:
FORR=1TO 3
FORC=1TO3
IF C=CURRENTCOL THEN
TempMat(R,C)=B(R)
ELSE
TempMat(R,C)=A(R,C)
END IF
NEXT
NEXT
RETURN
CROSSEDMAT:
FOR I=1TO 2
FOR J=1TO 2
SELECT CASE COL
CASE 1S=1
CLM=J+1
CASE IS =2
IF J=COL THEN CLM=J+1 ELSE CLM=1
CASE 3
CLM=J
END SELECT
MAT(1,J)=TempMat((I+1,CLM)
NEXT
NEXT
CMAT=MAT*1,1)*MAT(2,2)-MAT(2,1)*MAT(1,2)
RETURN
REM

129 QBASIC Programming Without Stress

DETERMINANT:
SUM=g
REM Pass the Crossed Matrix to find 2x2 Det.
FOR COL=1TO 3
GOSUB CROSSEDMAT
SUM=SUM+(-1)*(1+COL)*TempMat(1,col)*CMAT
NEXT
DT=SUM
RETURN
SUB Welcome()
REM
CLS
PRINT “XXXXXXXXXXXXXXXXXXXKXXXXKXXXXKXXXKXKXXK
PRINT “Xxxxx CRAMMER’S RULE XXXXXXXXXX”
PRINT “xxxxx FOR SYSTEM OF MATRICES (3x3) XXXXXXX"
PRINT “xxxxx BY: ACUBESOFT OF NIGERIA XXXXXXX"
PRINT “XXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXKXXXX”
END SUB

The code you have here is a handy tool for solving, any solvable,
3x3 matrix. Note however that Cramer’s rule is not generally regarded
as good for solving matrix systems (the reason is probably for the
complexity in finding determinants).

130 QBASIC Programming Without Stress
86.1.1.1 Gauss-Seiddl Iteration

This is another method for solving a system of equations of the
form AX=B. unlike the previously described methods, it starts by taking
a guess set of values for the solutions and then iterate using the
“arranged” equations until there is convergence (if it converges).

The Gauss-Seidel iteration is better explained using the matrix
system below:

A X + X, +AXs + . +a, n:bl
Ay X, + Apy Xy + AggXg + e+ 3, X, = b,

2n“*n
Ay X; + 85 Xg + By Xy + e+ 85, X, =15
4o+ =
4o+ =

Ay X +a,X + 8%+t 8, X, =D
Itisnot difficult toseethat thissystem can beexpressedas

1
X =— (B — X, —AsXs — e —a,X,)
ay
1
X, =—— (0, =8, X —AuX; — e —a,,X,)
a22
Xy =— (03 — 85X — 85X, — v, a, X,)
3
1
X, =— (0, —a X —8,X, =i a1 Xg)

131 QBASIC Programming Without Stress
Ontheconditionthata, =0 Vi=2123..n.For the iteration, initial

guess values are assigned for x,,X,,.....X,,. These are substituted in the
first equation to get a “new” x,. In the next equation the updated value
of x,isused to get Xx,, this new value is used to get x,and the process
continues until x,. The iteration is repeated until the convergence

criterion say gmax is reached using the equation:

£ :‘xpld —xi”e""‘sg Vi=1,23..n. The

i (Mmax) i max

equation should firstly be checked to ensure that
Ontheconditionthata;, =0 Vi=123...n.if anyone equals zero, the
matrix should be rearranged.

To get an easy programming, the equation could be expressed as:

Lx+ Ix+Ux=Db
whereL = Lower triangular matrix
| = Identity matrix
U = Upper triangular matrix.
Let meusea 3x 3matrix asan example.

132 QBASIC Programming Without Stress

5X, + 25x, +15x, = 10
24X, + 6x, +12x,=12
X, + 25X, + 15X, = 15
Thismatrix can beexpressed as :
5 25 15)x, 10

24 6 12|x, |=|12

1 2 5)x, 15

1 5 3Y\x, 2
or 4 1 2|x,|=|2
02 04 1)x, 3
and
O O 0) (1 0 0) (O 5 3 2
4 0 O0|+|0 1 0|+|0 0 2| X=|2
02 04 0) (O 0 1) (0O 0O 3

thisisof theform :
[L+1+UJX =D

133 QBASIC Programming Without Stress

Following is an Algorithm for the Gauss-Seidel iteration

1

w

© oo N o 0 &

2. Check Aii

10.
11.
12.

13.

Enter the Matrices A, B

If Aji=@ quit else proceed to 4 (A more robust version should
try to rearrange)

Define matrix L, U and b

“ Xn=b-LXg-UXg"

Fori=1 ... n, Read guess Xg.

Compute X With X,=b-LXg-UXg

Update Xg) for Xn

Compute error term éi

Repeat 7to9fori=1... n
Check for convergence
Stop at Convergence or repeat 7 if iteration has not exceeded
maximum number of iterations.
Stop { Gauss-Seidel}
Fig6.4 Algorithm-Gauss Seidel

The program listing of LST6.1e is to execute Gauss-Seidel

iterative scheme.

134 QBASIC Programming Without Stress

“ LST6.1e Program-Gauss Seidel H
17 ON ERROR GOTO LastLine

11 CLS

20 PRINT " GAUSS-SEIDEL ITERATION"

3 PRINT "INPUT MATRIX AX=B"

49 PRINT " Where aii<>@J "

5@ PRINT : PRINT : PRINT : DIM N AS INTEGER

60 INPUT " ENTER THE ORDER OF THE MATRIX N="; N
7@ REDIM A(N, N), b(N), XNew(N), XOId(N)

8J REDIM Eps(N)

99 DIM EpsMax: INPUT "ENTER CONVERGENCE Eps"; EpsMax
182 DIM i, j, k AS INTEGER

191 DIM SumUp, SumLow, Eps(N), True, Cnt

113 PRINT ok ok ok *

115 PRINT " BUSY...."

120 FORi=1TON

133 FORj=1TON

149 PRINT “A("; i; ", j; ")=";
159 INPUT A(j, j)

160 NEXT |

179 PRINT "B("; i; ")=";
180 INPUT b(i)

190 NEXT i

203 REM TEST FOR aii

21 FORi=1TON

220 IF A(i, i) = g THEN ‘ You can modify this line to cater for this type!
2390 PRINT "MATRIX NOT SUITABLE"

240 PRINT USING " At least A(#;#)=@"; i; i

135 QBASIC Programming Without Stress

250 GOTO LastLine

260 END IF

270 NEXT

271 DIM DMat(N)

272FORi=1TON

273 DMat(i) = A(i, i): REM Temporarily Store the Column Elements
274 NEXT

280 REM ConverttoLand U and b

299 FORi=1TON

330 b(i) = b(i) / DMat(i)

300 FORj=1TON

310 A(i, j) = A(i, j) / DMat(i)

320 NEXT

348 NEXT

341 ERASE DMat

354 REM Read in Values for L and U
36 FORi=1TON

370 FORj=1TON

380 IFj<=iTHENKk=QJELSEk=1
390 U@, j) =A@, j) *k

391 IFj>=iTHEN k=GO ELSEk=1
392 LG, j) = A, j) *k

393 NEXT

vikes1%] NEXT

41 PRINT "Enter initial guess values"
420 PRINT "Press Z to use @ throughout"
430 PRINT "Press N to enter values"

440
450
469
470
480
490
500
519
520
5390
540
550
5690
570
590
609
619
620
639
649
659
66Q
670
689
699
790
719

136 QBASIC Programming Without Stress

IF UCASES$(INPUT$(1)) = "Z" THEN
FORi=1TON
XOld(i) =9
NEXT
ELSE
FORiIi=1TON
PRINT "X " i; " ="
INPUT XOld(i)
NEXT
END IF
PRINT "Busy....."
SumUp = @: SumLow =@: Cnt=¢
DO
: 580 FORiIi=1TON
FORj=1TON
SumUp = SumUp + U(i, j) * XOId(j)
SumLow = SumLow + L(i, j) * XNew(j)
NEXT
XNew(i) = b(i) - SumUp - SumLow
Eps(i) = ABS(XOId(i) - XNew(i))
XOId(i) = XNew(i)
SumUp = &@: SumLow = &
IF Eps(i) <= EpsMax THEN True =1 ELSE True = @
NEXT i
Cnt=Cnt+1
IF Cnt > 400 THEN
PRINT "THE SYSTEM DID NOT CONVERGE"

137 QBASIC Programming Without Stress

720 GOTO LastLine: REM You can use EXIT DO here
730 END IF

74 LOOP UNTIL True=1

750 PRINT "Converged after "; Cnt; "iterations”

76 PRINT : PRINT SPACE$(25); "SOLUTIONS"

773 PRINT

783 FORj=1TON

790 PRINT USING "X## =", j;

80D PRINT XNew(j)

810 PRINT

820 NEXT

832 PRINT "Done !": PRINT "Yet another Y/N ?"

840 IF UCASES$(INPUTS$(1)) ="Y" THEN 19

850 REM CAN YOU SEE WHY REDIM was used at Line 70?

999 END

LastLine: PRINT "ERROR! The Matrix caused Error "
PRINT " Try another [Use other guess]"
PRINT "Avoid too large Array size"

PRINT " Thank you for using this program"
1003 GOTO 999

86.2 SORTING ALGORITHMS
There are various Algorithms developed to sort an array. More
often than not you will want to sort an array. It may be paramount to find

the best way out. While some are easy to code some execute fast. The

138 QBASIC Programming Without Stress
following are viable ways of sorting arrays. Bubble sort, Shell Sort,

Quick Sort, Insertion sort, Exchange sort to mention afew.

86.2.1 Bubble Sort

It loops through an array and makes comparison with adjacent
items of the array to check whether they are out of order. If they are not
out of order, keep looping through the array until no items are swapped,
this implies a sorted array. Unfortunately this is the slowest of all. The

program listing of LST6.2atries to execute Bubble sort.

LST6.2a Program Bubble Sort
CLS
REM GENERATE RANDOM NUMBER ARRAY
RANDOMIZE TIMER
DIM A(59), I, J
FOR I=1TO 59
A()=INT(193*RND(D))
PRINT A(l),
NEXT
PRINT “UNSORTED LIST”
REM DO SORT
103 PRINT “SORTING STARTED =" ; TIME$
FOR I=2 TO 50
FOR J=50 TO | STEP -1
IF A(J-1)>A(l) THEN
‘SWAP A(J-1), A(J) OR
Temp=A(J-1)

139 QBASIC Programming Without Stress

A(J-1)= AQJ)
A(J)=Temp
END IF
NEXT
NEXT

FOR I=1 TO 5@
PRINT A(l);
NEXT
PRINT “SORTED”
2@ PRINT “SORTING ENDED AT =”; TIME$
END

86.2.2 Shell Sort

This agorithm was discovered by Donald Shell about 37 years
ago. The method works similarly to the Bubble sort but instead of
comparing adjacent items in an array, it takes items that are half-way
between the first and the last items in the array, in itsinitial comparison.
If the array is not yet in tune, it swaps them. It then determines the
halfway point again and repeats the process. This halving of the items
and the logical comparison is not stopped until adjacent items are being
compared. This would have ensured that most item in the array are been
sorted. A loop through the array, finaly, goes same way as the Bubble
sort and the array is therefore said to be sorted.

If you have 1GHz Giga pro VIA Samuel processor, in less than 4
seconds you could sort an array of 53@@ integers with Shell sort but

that take over 5 seconds for Bubble sort! Y ou may want to compare the

140 QBASIC Programming Without Stress
speed of sorting of similar arrays by sorting a large arrays on your

system, a simple trick would help you get the sorting time: print time
(using the statement PRINT TIMES$) at the beginning (before sorting)
and after sorting, see lines 13 and 20@ of LST6.2a.Y ou can compare
the data generation time and the sorting time, you will be surprised to
see that it take more time to generate than sorting using an efficient
sorting Algorithm.

The LST6.2b isfor the Shell sort Algorithm.

LST6.2b SHELL Sort

CLS
REM Generate the Array

GOSUB GenARRAY

PRINT "SHELL SORT"

PRINT "SORTING Initiated "; TIME$
PRINT "Busy....... "

DIM Asize, Inc, Hold
Asize = UBOUND(B)
Inc = Asize \ 2
DO UNTIL Inc<1
FORi=Inc +1TO Asize
Hold = B(l)
FOR|j=i-Inc TO 1 STEP -Inc
IF Hold >= B(j) THEN

141 QBASIC Programming Without Stress

EXIT FOR
ELSE
B(j + Inc) = B())
END IF
NEXT j
B(j + Inc) = hold
NEXT i
Inc=1Inc\2
LOOP
PRINT “SORTED ARRAY...”
FORiIi=1TO m
PRINT B(i)
NEXT

PRINT "Array Sort completed "; TIMES$

END

GenARRAY:

DIM B(539D)

PRINT “UNSORTED ARRAY”

FOR i=1 TO 539@
B(i)=CINT(RND*123a)
PRINT B(i);

NEXT

PRINT

RETURN

86.2.3 Merge Sort

142 QBASIC Programming Without Stress
The Algorithm follows the form:

To sort an Array
If an array has no one entry stop
SORT (the first Half)
SORT (the second hal f)
COVMBI NE (the two); i.e. MERGE
STOP
The listing of LST6.2d shows a code for the Merging Sort. Assuming an

Array A() exists.

LST6.2d PROGRAM MERGE SORT

DECLARE SUB MergeSort(A(),Start%, Finish%)

DECLARE SUB ArrayMerge (A(), Start%, Middle%, Finish%)

REM MERGE SORT

REM Put Code to generate A()

‘ DIM MdI,St, Fin : REM Middle, Start, Finish

‘ DIM B1,E1,B2,E2, TempLoc

REM B=>Beginning E=> End and TemLoc=> Temporary Location

PRINT Fkkkkkikkookkokkikookdkcokodokk
REM The procedure used is a RECURSIVE method where a Sub is REM
CALLED in itself.
MergeSort(A(),Start,Finish)
FOR i=1 TO UBOUND(A)
PRINT A(i);
NEXT: PRINT “SORTED”
END

143 QBASIC Programming Without Stress

SUB MergerSort(A(),Start,Finish)
DIM Mdl AS INTEGER
IF Start< Finish THEN
Mdl=(Start+Finish)\2
MergeSort A(), Start, Mdl
MergeSort A(), MdI+1, Finish
ArrayMerge A(), Start, Mdl, Finish
END IF
END SUB
SUB ArrayMerge (A(), Start, Middle, Finish)
REDIM ATemp(Start TO Finish) :" AS TYPE
‘Note that you can dim this way using to keyword
DIM B1,E1,B2,E2 AS INTEGER
DIM TempLoc, i AS INTEGER
B1l=Start
E1=Middle
B2=E1+1: E2=Finish

TempLoc=Finish
DO WHILE ((B1<=E1) AND (B2<=E2))
IF A(B1) <=A(B2) THEN
ATemp(TempLoc)=A(B1)
TempLoc=TempLoc + 1
B1=B1+1

144 QBASIC Programming Without Stress

ELSE
ATemp(TempLoc)=A(B2)
TempLoc=TempLoc + 1
B2=B2+1

END IF
LOOP
IF Bl<= E1 THEN
FOR i=B1 TO E1
ATemp(TempLoc)=A(i)
TempLoc = TempLoc +1
NEXT
END IF
FOR i= Start TO Finish
A()=ATemp(i)
NEXT
END SUB

§86.3 SUMMARY

You have been taken through some ways of handling arrays
which included allocating memory to a variable as an array, storing data
in array variables, making an array as user defined type.

The chapter aso takes you through some mathematical
applications with matrix by explaining and programming some of the
Algorithms.

Finally, this chapter explains sorting arrays. You find codes for
Bubble, Shell and Merge sorts, all of which you can modify to suite your

future requirements.

145 QBASIC Programming Without Stress

86.4 QUIZ
How many sub 2x2 matrices are obtained by finding the

determinant of an 8x8 matrix?

6.5 PROJECT

(@ Design and code a QBASIC code that visually exhibits the
performance of the three sorting scheme explained in this
chapter.

Hint: The array could be used to determine the heights of bars of

different colours (or pie chart of different colours and angles) drawn

side by side, the sorting should then be shown. You may read up

graphics to know how to use lines (See chapter eight)

146 QBASIC Programming Without Stress
(b) Find out the speed of your system and fill the chart below (right

in this book (with pencil)

COMPUTER SPEED:
TY PE: €c. rentium vy

ARRAY SIZE ~ ALGORITHM TIME START TIME END TOTAL TIME TAKEN

Bubble
Shell
Merge
Bubble
Shell
Merge
Bubble
Shell
Merge
Bubble
Shell
Merge
Bubble
Shell
Merge

Comment on your result and possibly forward to

engradeniyi @gmail.com.

147 QBASIC Programming Without Stress
Bibliography

» Erwin Kreyzig (2001),Advanced Engineering Mathematics, 8 Ed.,
John Willey & Sons, Inc, New Y ork

» Rob Thayer (1998), Visual Basic 6 Unleashed, Sams Publishing,
United States of America

m«{9pIO

Zmgm

148

QBASIC Programming Without Stress

149 QBASIC Programming Without Stress

CHAPTER SEVEN
87.1 WORKING WITH FILES & DATA
DOS commands can be executed within your QBASIC code. The

following isalist of some of the file handling DOS commands:

MKDIR: To make adirectory (called folder in Windows OS)

RMDIR: Toremove adirectory from adisk

KILL: Todeleteafilefromadisk

SHELL: Thisisafunction used to run any .com, .exe, .bat

etcfile.

locLs WARNING!
20KILL “A**” DO NOT RUN THISMALICIOUS CODE!
30 END No warning, just delete al!

You have these handy, however, care should be taken not to
corrupt afile or delete file(s) (You may not be able to retrieve or restore
deleted or corrupted files!). Suppose you have afloppy disk on the floppy
drive and you run the code:

Y ou can run the following:

150 QBASIC Programming Without Stress

LST7.1a Simple File Handling

10 CLS: ON ERROR GOTO 9999

20 MKDIR “A:\Folder”

25 PRINT “Folder Created”

30 OPEN “A:\Folder\Trial.dat” FOR OUTPUT AS #1
40 CLOSE 1

50 KILL “A:\Folder\Trial.dat”

55 PRINT “Folder Deleted!”

58 PRINT “LOADING MARIO please wait...”

60 SHELL “C:\MISC\XMARIO.EXE”"

70 REM Assuming the game XMario.exe is installed on C:\Misc
80 PRINT “Loaded and done!”

90 END

999 RESUME NEXT

§7.1.1.1 Sequential files

At this stage you should have at least a vague idea of what afile
means in computer programming. A sequentia file is similar to audio
tape. To get a data from it you start from the beginning and play till you
get to where you want and push stop when you are through. There is no

automatic way to get to any location within an audio cassette.

It is advisable to use sequential file only if:
(1) The information rarely changesin thefile

151 QBASIC Programming Without Stress
(i) Theprocessing isfrom “start to end”

(i) Addingto thefileisto the end.

(But try to avoid it if you can).

To create “asequential file” from your code, use the statement:

OPEN FileName FOR OUTPUT AS#FileNum

If the file name already exists, the content is deleted! The file

name may be a path e.g. C:\MISC|Acube.dat. if the path is not specified,
QBASIC placesthefilein the current directory of the executing program.
Not that you cannot use the following characters in naming in DOS \, ?,
¥, <, >, or |. However, you should follow the rules for filenames that
DOS imposes.

» 8 Characters or less plus 3 letters extension (optional)

» Characters: A-Z,0-9,(),{,}, @, # %, %, &,!,-, ,~/

> Not case sensitive

Reading from a Sequential file
Use the statement:
OPEN FileName FOR INPUT AS#FileNum
(where FileNume=1,2,3,...)

152 QBASIC Programming Without Stress
To read from the open sequentia file, use:

INPUT #FileNum, VariableName(s) for example:

OPEN “C:\MISC\Dummy.dat” FOR INPUT AS #1
INPUT #1, Age$
PRINT Age$

CLOSE 1
The keyword CLOSE is like pressing STOP after playing a

cassette.

Adding to a Sequential File
To add data or record to a sequentia file you use the statement:
OPEN FileName FOR APPEND AS #FileNum
Then you use the WRITE # or PRINT # to do the actual appending asin

the example below:

INPUT “C:\MISC\Dummy.dat” FOR APPEND AS #2
WRITE #2, “This is an appended text: WRITE #”
PRINT #2, “This is another appended text: PRINT #”
CLOSE 2

END

183 QBASIC Programming Without Stress
Editing the content of a Sequential file

It is possible that you make changes to a sequential file although

it is pretty involved. You can use the Algorithm below to effect editing

on asequentid file:

OPEN OriginalFile (For INPUT)
OPEN TempFile (For OUTPUT)
INPUT Field from OriginalFile
DO UNTIL EOF (Original File Number)
Check Condition
True{ WRITE Changesto the TempFile}
False{WRITE Field to the TempFile}
GET NEXT field value from OriginalFile
Continue Loop
CLOSE OriginalFile
KILL OriginalFile
ReName TempFile AS OriginalFile
CLOSE {TempFile Number}
STOP { Algorithm}
Fig7.1a Algorithm — Editing Sequential file

SideTalk
§7.1.1.2 Random Accessfile NAME “C:\MISC\Test bas” AS “CAMISC\New.bas’

To rename a file

(Note the path must be on the same drive but not
necessarily on the same directory)

Unlike in a sequentia file,

a Random access file alows you
to locate a record say 20th position without necessarily going through the
19th record. This saves a considerable amount of time.

154 QBASIC Programming Without Stress
The command for setting up a Random-Access file is analogous

to that of a sequentia file e.g.

OPEN “C:\MISC\Musicals.RND” AS #3 LEN=100

The LEN=100 means that each record can hold 100 characters.
There is no need to include FOR OUTPUT or APPEND as you did in
sequential file. In Random-Access file you can read and write
simultaneous. The underlying files in your OS config.sys file set the only
restriction.

As in sequential files you use the CLOSE command. Here you
use the GET and PUT commands to read and write to an .rnd file.

§7.1.1.3 Binary files

Binary files are like random-access files in that the open
statement allows you to read and write simultaneously to the file, unlike
the other types, binary files techniques allow you to manipulate any kind
of file (i.e. not just text files). The technique allows you to edit any byte
of afile.

The command for setting up binary fileis:

OPEN FileName FOR BINARY AS #FileNumber

You use INPUT$() function to read from such afile. | believe you
might have tried to open afile and saw horrible looking characters, if not
try the following (BE CAREFUL NOT TO MAKE ANY CHANGES
OTHERWISE YOU WILL CORRUPT THE FILE!).

185 QBASIC Programming Without Stress
) Open anew window in QBASIC

(i) Write a ssimple BASIC code to print the sum of al integers
from 0O to 100, then the square root of all numbers from 201 to
215in stepsof 0.1

(i) Savethefile (As QBASIC fast load i.e. not as file readable by
other program) as “c:\test.bas’

(iv) Closethefile

v) On the DOS prompt enter EDIT C:\Test.bas or open the file
C:\Test.bas with Notepad on windows

(vi) If you do not have QBASIC on your system try to open a
picture file with Notepad to see them (horrible looking
“creatures’)

You will see what | mean by horrible characters. Opening a
bitmap file with atext editor gives similar action.

With Binary mode, you can open and print the contents of any
file, regardless of any embedded control characters:

Do the following, draw a circle in Bitmap (Microsoft Paint) and
save as C:\M SIC\Circle.omp close the file and run the following lines of

code:

OPEN “C:\MSIC\Circle.omp” FOR BINARY AS #4
DIM i%, C$
FOR i=1 TO LOF (4)
C$=INPUT$(1, 4): REM Single Character
PRINT C$

NEXT

156 QBASIC Programming Without Stress

CLOSE 4

END

Handling Binary filesis beyond this kind of introductory text.

87.1.2 Storage Devices and Accesstypes

The following are the storage devices that are commonly used:

o

o

o

o

Hard disk

Floppy disk (3%2" or5%")
Compact Disk (CD)

Zip disk etc

While you can Read or Write to your hard disk and floppy you

cannot write to a CD-Rom (ROM means Read-Only memory). If your

floppy disk is write-protected, you can only read but cannot write;

although you can uncover the write-protect notch to give you a write-

access.,

You can make a file have an access you want by using the

following:

OPEN path [FOR MODE] [ACCESS access] AS [#][Number][LEN=RecordLength]

Where;

1. path = Path or file name
2. MODE = Any of APPEND, BINARY, INPUT, OUTPUT or
RANDOM
3. access= READ, WRITE or READ WRITE
e.g. OPEN “Test.txt” FOR BINARY ACCESS READ AS#2
(Allows reading but no changing)

157 QBASIC Programming Without Stress
4. LOCK= SHARED (eg. on a network), LOCK READ, LOCK

WRITE, LOCK READ WRITE
Lock controls what other process can do on the samefile:
e.g.
OPEN filename FOR BINARY ACCESS READ LOCK READ AS#1
Number = any free number 1, 2,3 ...511

6. RecordLength: an integer from 1 to 32,767, in Random Access it
implies Record length; in Sequentia file it implies number of
characters buffered by the OS.

§7.1.3 Editing Data (Edit Command)

As you code big programs, you later deal with huge size of data. |
once worked on a data from a device that measures atmospheric data
every 3 minutes interval. The program requires finding average and other
Physical valuesfields from 1998 to 2000! It means finding the average of
3 minutes values within February 28th 1998 to November 2000!

Y ou cannot open such Data on your QBASIC IDE. Y ou can view
such data from the EDIT window. From your IDE select DOS Shell and
on the DOS prompt ENTER EDIT filename to view the content of such a

largefile.

158 QBASIC Programming Without Stress
8§7.2 FILE STATEMENTS

The generalized OPEN statement without the Access and Locking
IS
OPEN pathname [FOR MODE] AS #Number

The modes are OUTPUT, INPUT or APPEND and RANDOM or
BINARY just discussed.
OUTPUT

This creates a new file (sequential). If the path name aready
exists, it deletes the content and makes it ready for output. It should
however be noted that you cannot open a read only disk for output (see
7.1.2)
APPEND

It allows you to add extrarecord to an existing file, if the file does
not exist, before, it creates a new file. It is not alowed to append to a
read-only file.
§7.21 GET & PUT

These file statements work with Random Access file to Read or
Write to a particular position. The example following (LST7.2a)
illustrates well their use (in file processing — note that they exist in

graphics statements)

159 QBASIC Programming Without Stress

LST7.2a GET & PUT-File

CLS

OPEN “C:\MISC\MUSICALS.RND” AS #1 LEN = 95
REM Assuming the file Musicals.Rnd

‘Contains Record in the following format
* Artist, Title, Country

TYPE Music

Artist AS STRING*25

Title AS STRING*50

Country AS STRING*20
END TYPE
REM LEN=25+50+20
DIM MusicDesc AS Music
GET 1,12, MusicDesc
PRINT “ The Artist in the 12th record has :”
PRINT “NAME: ="; MusicDesc.Artist
PRINT “Title of Song ="; MusicDesc.Title
PRINT “Country where produced ="; MusicDesc.Country
PRINT “CHANGED THE THIRD RECORD”
INPUT “ Name ”; MusicDesc.Artist
INPUT “ Song title ”; MusicDesc.Title
INPUT “ Country ”; MusicDesc.Country
PUT 1,3, MusicDesc
END

160 QBASIC Programming Without Stress
Theformat is:

GET FileNumber, RecordPosition, Record
PUT FileNumber, RecordPosition, Record

§7.2.2 CLOSE

To close afile, opened using the OPEN statement, use:

CLOSE [FileNumber][,FileNumber2][......]

eg.CLOSE], 2,3

It must be preceded by an open statement. After closing a file
number same number could be used to open same or another file. Note
that if after closing the code references an open statement calling an
already close file number, it amounts to a run time error. However if the

file numbers are ignored, al the open files are closed.

§7.2.3 KILL

The KILL statement is used to delete afile. You can only delete a
filethat is not on read only disk. Y ou cannot delete from a CD-Rom say.

TheKILL statement is: KILL filename

e.g. KILL “C:\MISC\Test.dat”

Running the KILL statement after deleting the file flags an error :
FILE NOT FOUND — A trappable error.

§7.3 DATABASE
A database is a large store of data held in a computer and easily

accessible to person using it. There are specia software designed solely

161 QBASIC Programming Without Stress
for database programming, such programs include but not limited to

DBASE; Microsoft ACCESS, FOXPRO, ORACLE etc.
You can although design a database manager with your random
file and Binary files using ingenuity but it may not be worth the task

when you can easlly learn any serious database software.

8§74 SUMMARY

Y ou have been taken through the rudiments of file processing in
this chapter, we have discussed the following types of files: Sequentia
files, Random files, and a little introduction to Binary files.

Also, you learnt about storage devices and access to files as well
as how to use editor to open data files.

Lastly you learnt the files statements and got an insight to
database programming.

875 QUIZ
GET and PUT are similar to what and what?

162 QBASIC Programming Without Stress
8§7.6 PROJECT

(a) Develop a Database manager for a Record Studio to assist in
locating shelve and audio cassette. The customer specifies either
the Artist, Song or Volume etc

Hint:
Create files for the data, Use Random file and DO-WHILE

(b) Write a code to mimic the search and change of your QBASIC
IDE.

163 QBASIC Programming Without Stress
Bibliography

» Rob Thayer (1998), Visual Basic 6 Unleashed, Sams Publishing,
United States of America

m«{9pIO

4I0-

164

QBASIC Programming Without Stress

165 QBASIC Programming Without Stress
CHAPTER EIGHT

§8.1 GRAPHICSWITH QBASIC

Computer graphics has gone very far. There are hosts of software
application for graphics; they include CorelDraw; Microsoft Paint;
Macromedia Flash MX™ etc. QBASIC graphics still needs to be
discussed, despite various advances in computer graphics, for

appreciation purpose at least.

88.1.1 Screen Modes
The output screens have numbers designated to them. The modes
determine the “kind” of output: line types, text size, and resolution to
mention some. The syntax is:
[LineNumber] SCREEN [Mode][,[ColorSwitch]][,[apage]][,[vpage]]
Where the optional variables mean:
Mode
Thisisan integer value or a constant that represents
Screen mode. The various valid modes are discussed
immediately following this section.
ColorSwitch
Thisisanumeric value ranging from 0 to 255 that
determines whether color is displayed on composite
monitors.
Note: When it is nhonzero, color is disabled and only
black and white images are displayed but if
ColorSwitch is zero, images arein color. However,

166 QBASIC Programming Without Stress
the meaning of the ColorSwitch argument is inverted

in screen mode O while the ColorSwitch isignored

in screen mode 2.

apage
apage is anumeric expression that is the number of the

screen page that text output or graphics commands write
to.
See documentation on your QBASIC installation disk.

vpage
This is aso a numeric expression that is the number of the
screen page being displayed.
More on modes

SCREEN 0: Text mode only

SCREEN 1: 320 x 200 graphics

SCREEN 2: 640 x 200 graphics

SCREEN 3: Hercules adapter required, monochrome monitor only

SCREEN 7: 320 x 200 graphics

SCREEN 8: 640 x 200 graphics

SCREEN 9: 640 x 350 graphics

SCREEN 10: 640 x 350 graphics, monochrome monitor only

Screen 11: 640 x 480 graphics

Screen 13: 320 x 200 graphics; 40 x 25 text format

| strongly recommend that you look up the documentation on your QBASIC IDE for

efficient use of the screen modes.

88.1.2 WINDOW statement
The WINDOW statement is used to give physical boundary scale

to your screen (i.e. monitor) so that you can customize coordinates on

167 QBASIC Programming Without Stress
your screen. The screen of Fig8a shows the implication of using the

statement WINDOW (-1, -1) — (1, 1)

A(-1,1) B(1,1)

E(0,0)

D(-1,-1) C(1,-1
I |
Fig8a: Screen Positions

The statement is similar to WINDOW (-1, 1)-(1,-1) where the
points in brackets are the coordinates of the boundaries.

WINDOW (X1, Y1) — (X2, Y2)
Where your choice of the coordinates depends on what you intend to

draw.
88.1.3 COLOR statement & Pixel

Color statement is used to specify the text and background (fore)
colours:

COLOR TextColour Number, ForeCol our Number
Where TextColourNumber is any integer ranging from 0 to 15. The
numbers are coded e.g. 4 represent Red and 15 bright white.
ForeColourNumber is similarly coded. If the numbers are the same, you
cannot see printed text. Note that not all screen modes support the
statement. Try to find out. The table below shows the numbers and their

colors equivaent:

168 QBASIC Programming Without Stress

0 Black ' 5 Magenta © 10 Light green
1Blue 6 Brown 11 Light Cyan

2 Green 7 White 12 Light red

3 Cyan 8 Gray 13 Light magenta
4Red 9 Light Blue 14 Yellow

15 High-intensity white | XXXXXXXX TXXXXXKXX

Pixel: Thisisapicture element; it is the smallest unit of
resolution on your monitor. To turn-on apixel, you can use the PSET
statement as used below:

PSET (Column, Row) [, ColorCode]

The ColorCode, as indicated by the square bracket, is optional.

Y ou can plot graphs with the
PSET statement. The

LST8.1a Using PSET

10 CLS: WINDOW (-1, 1) - (1, -1): DIM
Reply

15 CONST PI=3.14159
20 PRINT “SELECT A GRAPH”
30 PRINT “1 - Sine Graph” !
40 PRINT “2 - Quadratic Graph” SideTalk
50 PRINT “3 - Four — Leaf Clover”
60 PRINT “0 — Quit”
70 INPUT “ ", Reply

80 SELECT CASE Reply
90 CASE 3

program listing of LST8.1a
uses the PSET statement to

plot three different graphs.

Try to change the STEPs to see

the dramatic change in output
try 0.0001, 0.1 and 0.5 or even
leaving them out i.e. STEP 1

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

169 QBASIC Programming Without Stress

FOR I=0 TO 2*PI STEP 0.01
Radius = COS (2*1)
X = Radius *COS (I)
Y = Radius * SIN (1)
PSET (X,Y), 15
NEXT
CASE 2
FORX=-1TO1 STEPO0.01
Y = X"2+2
PSET (X, Y), 2
NEXT
CASE 1

RADIUS =1
FORI=0TO 2*PI STEP 0.01
Y= Radius * SIN (1)
REM Y=RADIUS*COS (I)
PSET (I, Y), 4
NEXT
CASE 0
GOTO LastLine
END SELECT

PRINT “PRESS ANY KEY TO CONTINUE”
DO: LOOP UNTIL INKEY$<>
CLS: 340 GOTO 20

LastLine:
350 END

88.1.4 LINE statement

170 QBASIC Programming Without Stress
This statement is used to draw aline on the Screen. The syntax is:

LINE [[step][(x1,y1)]-[step] (x2,y2)[.[Color Code] [B[F]][Styl€]

Where (x1,y1) and (x2,y2) specify coordinates.

(x1,y1) : Beginning coordinate

(x2,y2): End coordinate

Sep: if used enables you to specify relative screen coordinate
i.e. from alocation to another with the step value given.

Color: See88.1.3

BF: Option draws afilled box (box fill)

B: Draws a box with diagonal of the specified coordinates
(x1,y1)-(x2,y2)

The program listing of LST8.1b shows some simple use of line

statement.

LST8.1b Lines

10 CLS

20 SCREEN 2 : WINDOW (-10,10) - (10,10)
40 LINE (0,0) - (3,3) : REM Line A

50 LINE - (3,4) : REM Line B

60 LINE — STEP (1,1) : REM Line C

70 LINE STEP (1,2) - STEP(1,1) : REM Line D
80 LINE - (0,0) : REM Line E

90 PRINT “Press Key” : DO : LOOP UNTIL INKEY$<> *’
100 LINE (0,0) - (10,10),,,&HFF00: REM Dashed Line
120 END

171 QBASIC Programming Without Stress

(10,10)

(-10, -10)

NI

Fig8.1 Expected Output of LST8.1b

[Note that the labels are not expected-it was put to give you light]

8§ 8.1.5 CIRCLE statement

172 QBASIC Programming Without Stress
This statement is used to draw Circles, Arcs, Ellipses and Sectors.

Unlikein LINE statement where BF can be used you use PAINT to put

(fill) colour. The Circle syntax is:

CIRCLE [STEP](X, Y), Radius[, Color][,[Sart][,[End][,Aspect]]]

The optional Start and End are used to draw Arc. While STEP is
used to specify arelative position if used, X, Y specifies the center of the
circle.

Aspect, al'so known as aspect ratio, istheratio of the Y-Radius to
the X-Radius. The default value for aspect is the value required to draw
around circlein the Screen mode (88.1.1). Y ou calcul ate aspect ratio
using the relation:

4* (Y Pixel /X Pixels)/3

Screen resolution is defined by XPixel x YPixel for example the
resolution of Screen 1is 320 x 200, therefore the aspect ratio is=
4*(200/320) /3 = 5/6

If aspect ratio islessthan 1, theradiusis X-Radius, it is Y-Radius
if aspect ratio is greater than 1.

Y ou can write programs and put Circle statement in aloop etc.
8§82 SIMPLE ANIMATION

Animation is the technique of making people or animalsin
pictures appear to move. It involves giving “observers’ theimpression
that an image is moving or performing some actions. Thistechniqueis
employed in cartoons. Some animated pictures come with windows. |

once animated pictures with Coffee Animator™ software, where | used

173 QBASIC Programming Without Stress
seven different images to give an impression that an electric motor is

“working”.

With QBASIC, like in many programming languages, you can
create animations depending on your level of intuitiveness. To redly
appreciate the ssimple animations of LST8.1c you have to run the codein
QBASIC environment.

LST8.1c SIMPLE ANIMATION CODE

DIM Tennis (90)

DIM VirtualPad (90):'These arrays hold enough memory
DIM |, AUTHURS$

AUTHURS = "ACUBESOFT OF NIGERIA" + SPACE$(30)
T =10: 10 Seconds

DO

T=T-1

COLOR INT(1 + RND * 14) " Random colours

LOCATE 13, 35: PRINT T: REM Display count down
SLEEP 1

LOOP UNTILT=0

SCREEN 2

CLS

CIRCLE (6, 6), 5 '‘Draw and paint Tennis.

PAINT (6, 6), 1

GET (0, 0)-(14, 14), Tennis

CLS

174 QBASIC Programming Without Stress

LINE (1, 1)-(10, 10), , BF * Box Fill
GET (0, 0)-(14, 14), VirtualPad
DIM Horiz, Vert, u
Horiz = 10: Vert = 10
HO =.91: V0= .91
LINE (0, 0)-(550, 160), , B
LINE (10, 10)-(500, 150), , B
LOCATE 22: PRINT "NAUGHTY CODE!"
DO
Horiz = Horiz + HO
Vert = Vert + VO
IF INKEY$ <>"" THEN END ' Test for key press.

'‘Change direction if Tennis hits left or right edge.
IF (Horiz < 10.1 OR Horiz > 480) THEN
HO = -HO
PUT (Horiz, Vert), VirtualPad, PRESET
LOCATE 20, 5: PRINT "Caught"; TIME$

175 QBASIC Programming Without Stress

SLEEP 1
END IF
LOCATE 20, 5: PRINT" "; TIME$
IF | = LEN(AUTHURS) THEN
LOCATE 22, 20: PRINT "
=1
ELSE
LOCATE 22, 20: PRINT MID$(AUTHURS, 1, I)
l=1+1
END IF
IF (Vert <10 OR Vert > 140) THEN
V0 =-V0
END IF
FOR u =1 TO 3000: NEXT
PUT (Horiz, Vert), Tennis, PSET
LOOP
END

88.3 Summary

With QBASIC, you can generate shapes with the graphics
statements as well as perform some simple graphical animations
depending on your skills and ingenuity although thereis alimit to what
you can do with graphicsin QBASIC.

176 QBASIC Programming Without Stress
88.4 Project

Design the draft board shown and allow a user to move seed

using the arrow keys.

Hint: Use two FOR-NEXT loops; LINE (BF) then adapt the code of LST8.1¢c
i.e. GET and PUT the seed

Bibliography
» Microsoft QuickBASIC online Help.

QBASIC Programming Without Stress

177

\Y /

A/
VIQLkWE Z=21

178 QBASIC Programming Without Stress
CHAPTER NINE

89.1 MISCELLANEOUSTOPICS

You have been through a great deal of programming concepts
with QBASIC, however, you have not arrived yet. QBASIC has more
powerful things it can perform. You have to see more advanced
textbooks for more. | can guarantee you that having gone through and
understood this book, you can now be sure that you can proceed to any
programming text with little or no specia assistance and get more (even
on other languages like C++, FORTRAN77 and so on)

This ending chapter will help you see some programs which will

assist you somehow.

89.1.1 TIMER FUNCTION
To write a code that will operate on time basis rather than user
input, the Timer Function may come helpful. See LST9.1a for an

example.

179 QBASIC Programming Without Stress

LST9.1a Timer
10 CLS: C=0:
LOCATE 18
PRINT “STOP WATCH"
PRINT
PRINT “*
PRINT “*
PRINT
70 ON TIMER (1) GOSUB TPRINTER
REM Call Timer Subroutine

LOCATE 50: PRINT “R - Refresh”
LOCATE 51: PRINT “C - Continue”
LOCATE 52: PRINT “S - Stop”
LOCATE 54: PRINT P - Pause”
DIM KEY1$
DO: KEY1$ = INKEY$
SELECT CASE UCASES$(KEY1$)
CASE “P”
TIMER STOP
CASE “C”
TIMER ON
CASE “s”
TIMER OFF
CASE “R”
C=0
END SELECT

TPRINTER:
LOCATE 20
SELECT CASEC
CASEO0TO 60
PRINT C;
PRINT “SECONDS”
CASE ELSE
C=0
END SELECT
C=C+1
RETURN

END

180 QBASIC Programming Without Stress

You should find it easy to modify LST9.1a to print minutes and hours
elapsed.
89.1.2 Wildcard Searching

If you have searched for files on Windows or DOS prompt you
will be familiar with wildcards. They are adso found in most database
applications where records can be found.

A typica DOS command to search al files with extension .bas
can be gotten as follows:

C:\DIR A*.bas/p/s 4 will return files like the following:

ADE.BAS

ALABI.BAS

ALGOLS.BAS

APPENDIX.BAS etc

Thewildcard is“*”

C:\ DIR *.D*/S /P 4 will return al files with the extension
starting with D. the following will be returned (say):

C:\WINDOWS\mypictures\file2.dat

C:\WINDOWS\My Documents\Registry.doc etc.

The program listing of LST9.1b shows a simple programming for
wildcard searching, assuming there is file C:\MISC\friends.txt containing
the names of your friends — say up to500 first names in a Notepad.

The program helps you search for names matching your search

criteriausing wildcards.

181 QBASIC Programming Without Stress

LST9.1b Wildcard Searching

DECLARE SUB DoAsterikSearch (Query AS STRING)

DECLARE SUB DoParticularSearch (Query AS STRING)

DECLARE SUB DoQuestionSearch (Query AS STRING)

DECLARE SUB Scroll (Text AS STRING)

DECLARE FUNCTION Parse$ (Query AS STRING, Delimiter AS STRING)
DECLARE FUNCTION DoSearch! (Query AS STRING)

DECLARE SUB Welcome ()

DECLARE SUB Help ()

ON ERROR GOTO LastLine

B o e o o 0 I T O B T o S S
CONST ProgramName = "WXp Search -04"

DIM SHARED Hit

DIM Query AS STRING

CONST Asterik = "*" : CONST Question ="?": CONST None = "None"
o o

TYPE Delimiter
Position AS INTEGER
Valid AS INTEGER

END TYPE

DIM SHARED D AS Delimiter

B S

182 QBASIC Programming Without Stress

CONST True =-1
CONST False = 0: Hit = &H12
"+++++++H
Welcome
DIM Functkey$
Functkey$ ="|"
KEY 1, Functkey$ + CHR$(13)
"++++++++
GetSearch:
INPUT Query
IF Query = Functkey$ THEN
Help
GOTO GetSearch
ELSEIF UCASES$(Query) = "/Q" THEN GOTO 100
ELSEIF Query =" THEN GOTO EnterPressed
ELSE
IF DoSearch(Query) = True THEN Hit = True ELSE Hit = False
Welcome
GOTO GetSearch
END IF
CLOSE 1
100 PRINT : PRINT : PRINT
Scroll ProgramName + " TERMINATED...THANK YOU "
COLOR 14
Scroll * ACUBESOFT OF NIGERIA " + CHR$(13) + CHR$(9) + DATE$
COLOR 0
END

183 QBASIC Programming Without Stress

LastLine: PRINT : PRINT : PRINT : PRINT
COLOR 4: Scroll ProgramName + " Execution Failure!": COLOR 15
RESUME 100
EnterPressed:
Welcome
Scroll "PRESSING ENTER, WITHOUT QUERY WILL NOT RETURN MEANINGFUL RESULTS "
GOTO GetSearch
SUB DoAsterikSearch (Query AS STRING)
DIM LeftPart AS STRING, RightPart AS STRING
IF Query = Asterik THEN

Scroll "Are you sure you want to display all Records ? Y/N"

IF LCASE$(INPUT$(1)) <> "y" THEN 7000

END IF
LeftPart = MID$(Query, 1, D.Position - 1)
RightPart = MID$(Query, D.Position + 1, LEN(Query))
DIM FileContent AS STRING
DIM HitsCount
HitsCount = 0
PRINT : PRINT
DIM L AS LONG
L=21
WHILE NOT EOF(1)

INPUT #1, FileContent
REM The following italicized lines should be a single Line

IF UCASE$(MID$(FileContent, 1, LEN(LeftPart))) =
UCASES$(LeftPart) AND UCASE$(RIGHT$(FileContent,
LEN(RightPart))) = UCASE$(RightPart) THEN
HitsCount = HitsCount + 1

184 QBASIC Programming Without Stress

IF HitsCount = L THEN :’ Display Results in 20 Per Page
L = HitsCount + 20
COLOR 6
Scroll " Press Spacebar to Continue"
COLOR 15
DO: LOOP UNTIL INKEY$ <> "
END IF
PRINT USING "#### &"; HitsCount; FileContent
REM The & (Ampersand) format means Print Entire string
END IF
WEND
IF HitsCount > 0 THEN
COLOR 13
Scroll" We found" + STR$(HitsCount) + " matching Record(s)"
COLOR 15
Hit = True
ELSE
PRINT : PRINT
COLOR 4
Scroll " We found no Matching record try again”
COLOR 15
Hit = False
END IF
Scroll "Press any key"
DO: LOOP UNTIL INKEY$ <> ""
7000 CLOSE 1
END SUB

185 QBASIC Programming Without Stress

SUB DoParticularSearch (Query AS STRING)
DIM FileContent AS STRING: DIM HitsCount
HitsCount = 0
PRINT : PRINT
WHILE NOT EOF(1)
INPUT #1, FileContent
IF UCASES$(FileContent) = UCASE$(Query) THEN
HitsCount = HitsCount + 1
PRINT USING "#### &"; HitsCount; FileContent
REM The & (Ampersand) format means Print Entire string
END IF
WEND
IF HitsCount > 0 THEN
COLOR 13
Scroll" We found" + STR$(HitsCount) + " matching Record(s)"
COLOR 15
Hit = True
ELSE
PRINT : PRINT
COLOR 4
Scroll " We found no Matching record try again”
COLOR 15
Hit = False
END IF
Scroll "Press any key"
DO: LOOP UNTIL INKEY$ <> ""
CLOSE 1
END SUB

186 QBASIC Programming Without Stress

FOR i =1 TO LEN(Query)
SELECT CASE MID$(Query, i, 1)
CASE Delimiter
P = Delimiter
CASE ELSE
P = None
END SELECT
IF P = Asterik THEN
D.Position =i
EXIT FOR
END IF
IF P = Question THEN
D.Position =i
EXIT FOR
END IF
D.Position = -1
NEXT
Parse = P
END FUNCTION
SUB Scroll (Text AS STRING)
DIM L, i, Delay: L = LEN(Text)
FORi=1TOL
PRINT MID$(Text, i, 1);
FOR Delay =1 TO 10000: NEXT
NEXT
PRINT
END SUB

187 QBASIC Programming Without Stress

SUB Welcome
CLS
COLOR 15
PRINT SPACE$(30); ProgramName
PRINT SPACES$(20); "++++++++++++++++++++++++++H++-++4+4"
PRINT SPACE$(20); "+++++ ENTER YOUR SEARCH ... +++++"
PRINT SPACE$(20); " PRESS "
COLOR 3: PRINT "F1"; : COLOR 15:
PRINT " TO SHOW " + ProgramName + " HELP "
PRINT SPACE$(30); "Enter "; : COLOR 12: PRINT "/Q";
COLOR 15: PRINT " To Quit"
COLOR 12
IF Hit = False THEN
Scroll ProgramName + " DID NOT HIT ANY TARGET! ENTER ANOTHER"
END IF
IF Hit = True THEN
PRINT SPACE$(40)
END IF
COLOR 15
END SUB

§9.1.3 Miscellaneous Programs
The following sets of codes are intended by the author to give

some insights.

188 QBASIC Programming Without Stress

LST9.1c PROGRAM FIBONACCI

DECLARE FUNCTION IsPrime! (X!)

P 9,:9.9.0.:9.9.9.9.9.9.9.9.0.:9.9.0.9.9.9.9.9.9.9.9.0.9.9.9.9.9.0.9.9.0.9.96.9.90.0.4
XXXXXXXX ACUBESOFT OF NIGERIA XXXXXXXXXXXXXXX
XXXXXX XXX XXX XXX XXX XKXXXXXKK27 - 10 - 2004 XX
CLS

DIMF1, F2, X, 1,J, Q1

CONST True =-1

CONST False =0

DIM Status AS STRING

F1=1

F2=1

N =20

Status =" is a Prime number"

COLOR 14

PRINT " FIBONACCI SERIES & PRIME NUMBERS"
COLOR 3

FOR 1 =1 TO 35: PRINT CHR$(21); : NEXT: PRINT
COLOR 15

PRINT USING "##H#H#H &"; F1; Status

PRINT USING "##H#H#H &"; F2; Status

189

FORJ=3TON+1
X=Fl1+F2
REM A NUMBER IS PRIME
"IF:
IF IsPrime(X) THEN ' See the nomenclature: Friendly ?

Status =" is a Prime number"
ELSE
Status =" is not a Prime number"
END IF
F1=F2
F2=X
PRINT USING "#####H##### &"; X; Status
NEXT J
END
FUNCTION IsPrime (X)
FOR | =2 TO INT(SQR(X))
Q=XI/1
Q1 =INT(Q)
IF Q = Q1 THEN 200
NEXT
Prime = True
GOTO 1000: EXIT FUNCTION
200 Prime = False
GOTO 1000: EXIT FUNCTION
1000: IsPrime = Prime
END FUNCTION

QBASIC Programming Without Stress

190

LST9.1d SIMPLE RECURSIVE ROUTINE
DECLARE FUNCTION FACT& (Num!)

10 CLS
PRINT “FACTORIAL CALCULATOR"
200 ON ERROR GOTO 1000
INPUT N
PRINT FACT(N)
PRINT "Another Factorial Y/N ?"
IF UCASE$(INPUT$(1)) = "Y" THEN 200
PRINT "Thank you good bye"
END
1000

PRINT "This code could note handle this value"

RESUME 10

FUNCTION FACT& (Num) STATIC

IF Num <=1 THEN
F=1

ELSE

REM Recursion — Calling itself in it self!
F = Num * FACT(Num - 1)

END IF

FACT=F

END FUNCTION

QBASIC Programming Without Stress

191 QBASIC Programming Without Stress

LST9.1e SPECIAL NUMBERS
ACUBESOFT OF NIGERIA
(C) 204

DIMn, e, X, Y,zr ‘Generated set output within 0 — 99999

_ 8208 =8++24+ 0 + 8¢
FOR n=1TO 5@
" 4150 = 45 +15455405

FORe=0TO9 4151 = 45 +15+55+15

= 54748 = 55 + 45+75+45 + 85
FORx=0TO9 92727 = P+ 25+75+2°5+7°
FORy=0TO9 03084 = 95+ 35+ (5 + 85+ 45

FORz=0TO9
FORr=@TO9
IF 10000 *e + 100D * x + 10D *y + 1@ * z +r > 1 THEN
IF 10000 *e + 100D *x+ 10D *y+ 1@ *z+r=e”n
+Xx*n +y*n+z~n+r”~nTHEN
PRINT (19000 *e + 100D *x + 18@ *y+ 1@ *z +r1); J

||=> n; e, ||/\||; n; n + ll; X, nAn; n; n + ||; y, ||/\||; n; n + ll; Z; IIAII; n; n +

B

END IF

END IF

NEXT: NEXT: NEXT: NEXT: NEXT: NEXT
END

192 QBASIC Programming Without Stress

LST9.1f Binary Numbers

CLS

DIM Value AS INTEGER

INPUT “Enter an integer”; Value

PRINT Code$(Value)

END

FUNCTION Code$ (Value)

REM Convert Integer Value to Binary Number

DIM Token AS STRING, c$

DIMR

11 R = Value MOD 2

Value = Value \ 2

‘Integer Division e.g. 3\2 = 1:: 3/2 = 1.5::CINT (3/2) =2::INT (3/2) =1
c$ =c$ + STR$(R)

IF Value <=1 THEN 22 ELSE 11

22 c$ = c$ + STR$(Value)

FOR j=LEN(c$) TO 1 STEP -1

'The Ltrim$ and Rtrim$ are to ensure close packing by trimming
Token = Token + LTRIM$(RTRIM$(MID$(c$, |, 1)))
NEXT

IF VAL(Token) =1 THEN Token ="1"

Code$ = Token

END FUNCTION

193 QBASIC Programming Without Stress

LST9.1g Time Interval
CLS

REM This function returns the number of

‘Seconds Difference between two times

PRINT “Time 1 = 13:23:10"

PRINT “Time 2 = 21:13:05"

PRINT “Time difference ="; Seconds (“21:13:05") - Seconds (“13:23:10")
END

FUNCTION Seconds (T$)

REM This Function assumes Time of format 24:00:00
DIM Sec, Min, Hr

Sec = VAL(MID$(T$, 7, 8))

Min = VAL(MID$(T$, 4, 5))

Hr = VAL(MID$(TS, 1, 2))

Seconds = Sec + Min * 60 + Hr * 60 * 60

END FUNCTION

LST9.1h Normal Distribution Curves

DECLARE FUNCTION NormalDist! (x!, Sigmal!, Miu!)

DECLARE SUB PutAxes ()

DIM Clr, Mean

10CLS: CIr=3
CONST PI = 3.141592653#

SCREEN 7

WINDOW (-5, -.5)-(5, 1.5)
PRINT "Enter Parameters: Mean=0 is Symmetric"
INPUT "Mean ="; Mean

PutAxes

FOR Sigma = .25 TO 1 STEP .25

LOCATE 12: PRINT USING "Sigma =#.##"; Sigma

Cr=CIr+1
FOR x=-2TO 2 STEP .001

Without Stress

PSET (x, NormalDist(x, Sigma, Mean)), CIr
NEXT
SLEEP 1
NEXT
LOCATE 21: PRINT "Normal Distribution *;
PRINT “Curves"
PRINT "Press a to do another"
LOCATE 12: PRINT " "
IF LCASE$(INPUT$(1)) = "a" THEN 10
REM Modify the Axes to put Labels
END

FUNCTION NormalDist (x, Sigma, Miu)
DIM Den, Partl

IF Sigma>0 THEN

Den=(Sigma * SQR(2 * PI))
Partl=((x - Miu) / Sigma) ~ 2
NormalDist = EXP(-.5 *Partl) / Den
END IF

END FUNCTION

SUB PutAxes

LINE (-5, 0)-(5, 0) 'X- Axis

LINE (0, 5)-(0, 0), 3 'Y- Axis

END SUB

195 QBASIC Programming Without Stress
§89.1.4 Printing Your Code

You may want to print your code on a printer, which may not
necessarily be a line printer; it is my way to print my codes using
Windows text editors like MS Word, WordPad and the like. To
accomplish this you save the QBASIC program as <Text- Readable by
other programs> in the save as dialog box of your QBASIC IDE as
shown in the figure below (Fig 9.1)

crosoft QuickBl -|0)x
IS8 Edit Uiew Search Bun Debug Calls Ogl::'mns He 1y
Untitled u

Save As

File Name: |Smpln
E:\DOCUME™1\ENGRAA™1 .ADENDESKTOP\QB45

Dirs/Drives

Format
¢) QuickBASIC -
Fast Load and
Save

(=) Text —
Readable by
Other Programs

{ Cancel > < Help >

Fig 9.1 Save As Dialog Box

Saving the program (Source Code) file in this format allows you
to be able to read the content of the file with text editors. If you save
your code as E:\GSeidel.bas you will have to use the open dialog of the
editor to locate or just type the path. If open is chosen from Word, the
default extension is *.doc not *.bas as you used to have it in QBASIC
IDE, so use (All Files) — *.* or specificaly use *.bas in the file Name
request of the Open Dialog. Y ou can then edit, print or mail your code to

your lecturer or do otherwise. See Fig9.1b — Open Dialog

196 QBASIC Programming

Without Stress

Fig9.1b Open Diaog Box

§ 9.1.5 Printing Output
Printing output looks like | am repeating a section, No! You, at
times want to have a paper copy of your code and may not have a line
printer to use the LPRINT command — see index. | will suggest that you
use either of the following to get your output to atext Editor:
() Use PRINT # or WRITE # discussed in Chapter Seven, then
read the content using the discussions of § 9.1.4 or
(i) (if) You Run your code then press the button Print Screen
SysRq on your keyboard. So doing copies the content of the
Window to the Clipboard. You then use paste methods of
Windows: Ctrl + V or Shift + Insert depending on your

197 QBASIC Programming Without Stress
windows setting. See your operating system manual for more

on Printing or Copying your Window.

89.2 Miscellaneous Test

Carry out a research on how file compression is done. Try to
code a compression program to compress any of the following file
formats (*.bmp, *.jpg, and *.txt). Y ou can get information on the web by
searching for the following words (Lemple-Ziv-Welch-LZW, Huffman
Compression, Run-Length Encoding — RLE, Code Table Optimization)
using any good search site, but | recommend http\\www.google.com ,
your school library or a state Library might be of invaluable help.

Even if you cannot code them, in a case where you are not very
optimistic, going through the Algorithms would let you appreciate
WINZIP™ | Stacker and the like used to compress files.

198 QBASIC Programming Without Stress
Bibliography

» Erwin Kreyzig (2001), Advanced Engineering Mathematics,
John Wiley & Sons (Asia) — p1085

» Microsoft QuickBASIC™ online help

» Rob Thayer(1998),Visual Basic 6 Unleashed, Sams Publishing

199 QBASIC Programming Without Stress

QBASIC Programming Without Stress is an
introductory book for people interestedin
programming or students taking a course in
computer programming. The book introduces basic
concept of programming using the Microsoft QBASIC
programming language. Understanding the basics of
any programming language can help to understand
what it takes to be a programmer.

This book was written in 2004 by Akinola A Adeniyi
and is available for free download on Scribd.com.

0O R0 00

ARARBBO1QPHSOO1

