
  

  

Abstract—This paper investigated the performance of affine 
optical flow (AFOF) in motion tracking of the arterial wall 
from B-mode ultrasound images and the effect of its 
combination with multiscale image analysis on the accuracy of 
the process. Multiscale AFOF (MAFOF) exploits the 
information obtained with AFOF from the approximation sub-
images at different spatial resolution levels of the images, 
obtained using a 2D discrete wavelet transform. Both AFOF 
and MAFOF were evaluated through their application to 
synthetic image sequences of the common carotid artery. 
Multiscale image analysis increased the accuracy in motion 
tracking, with MAFOF yielding average displacement error 
reductions of 9% with respect to AFOF. The methods were also 
effectively applied to real ultrasound image sequences of the 
carotid artery. The results showed that MAFOF could be 
considered as a reliable estimator for arterial wall motion from 
B-mode ultrasound images.  

I. INTRODUCTION 
rterial wall motion during the cardiac cycle can be 
estimated from B-mode ultrasound by recording image 
sequences and subsequently applying a motion 

estimation (ME) algorithm. The two methods previously 
used for ME of the arterial wall are block matching (BM) 
and optical flow (OF) [1]. A comparative study of these 
methods was carried out by applying them to real B-mode 
ultrasound image sequences of the carotid artery [2] and, 
although peaks in waveforms produced with the two 
techniques occurred at the same time points, the shapes of 
the waveforms were different. Therefore, it was suggested to 
validate these algorithms, along with more sophisticated 
versions (e.g. affine OF (AFOF)), by means of simulated 
data experiments [1]. In another study [3] BM and Kalman 
filter-based extensions of BM were evaluated on noise-free 
and noisy synthetic image sequences, but the methods were 
not effective enough for increased noise levels.  

Wavelet-based multiscale image analysis has recently 
emerged as a promising technique for several image 
processing tasks due to its flexibility in providing a unifying 
framework for decomposing images into their elementary 
constituents across scale and its ability to adapt to changing 
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local image statistics and high background noise. This 
approach has been efficiently used for texture classification 
of atherosclerotic tissue from B-mode ultrasound [4]. 
Multiscale image analysis has also been combined with ME 
to improve video compression through the optimization of 
the ME process [5]. 

In this work, AFOF, which is an improved version of 
OF, was combined with wavelet-based multiscale image 
analysis. The proposed method, which will be referred to as 
multiscale AFOF (MAFOF), is based on the decomposition 
of the images of a sequence using a two-dimensional (2D) 
discrete wavelet transform (DWT) and it exploits the motion 
information obtained from different resolution levels of the 
images to produce an accurate estimation about the radial 
and longitudinal displacements of selected targets. AFOF 
and MAFOF were evaluated on both synthetic and real 
ultrasound image sequences of the common carotid artery.  

II. METHODOLOGY 
The combination of multiscale image analysis with ME 

was inspired by the multiresolution ME (MRME) scheme 
proposed by Zhang and Zafar [5]. In a MRME scheme, 
motion is first estimated at the lowest spatial resolution and 
the obtained information is then manipulated as the 
prediction at finer spatial resolutions. In the following, the 
basic principles of AFOF and DWT-based image 
decomposition are briefly described, and the proposed 
multiscale ME scheme is then presented. 

A. Affine Optical Flow 
The initial hypothesis of OF is that image intensities are 

approximately constant over motion for at least a short 
duration, which is a reasonable assumption for high frame 
rates. OF relies on first-order spatiotemporal derivatives of 
image intensities [6] and its accuracy increases when the 
intensity spatial gradient is not too small and varies from 
point to point. It estimates a pixel’s velocity using the pixels 
in a local neighborhood, assuming that they share the same 
velocity. For these pixels it performs a least-squares 
minimization [6] with a low-pass weighted function that 
gives more weight to the pixels closer to the target.  

AFOF is an improved version of OF, where velocity is 
not constant in the local neighborhood. In this case, velocity 
is parameterized by a six-dimensional vector and it permits 
not only translation, but also rotation and scaling of the local 
neighborhood across time [7].  

In this study, 12×11 pixels local neighborhoods were 
used and a 2D Gaussian distribution was selected as a low-
pass weighted function. Additionally, taking into 
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consideration that derivatives are strongly affected by noise, 
a preliminary step of image smoothing with a 2D Gaussian 
was implemented before the computation of spatiotemporal 
derivatives. 

B. Discrete Wavelet Transform  
The DWT of a signal is defined as its convolution with a 

set of lowpass H[n] and highpass G[n] half-band filters, 
followed by downsampling by two, where G[n]=(-1)1-nH[1-
n] satisfy the following conditions among scaled versions of 
the functions φj,n and ψj,n, n∈ Z: 

∑ ⋅−=+
n

njtj tnH ,,1 ]2[ φφ       (1) 

∑ ⋅−=+
n

njtj tnG ,,1 ]2[ φψ       (2) 

The functions φj,t and ψj,t consist of versions of the 
prototype scaling φ and wavelet ψ functions, discretized at 
level j and at translation t. They form an orthonormal set of 
vectors, a combination of which can completely define the 
signal allowing its analysis in a multiresolution scheme [8]. 

The 2D DWT of an image is defined as two successive 
DWTs, firstly on the rows of the image and then on the 
columns of the resulted image. The decomposition of the 
image yields four sub-images at the first level (j=1), namely 
an approximation sub-image Aj and the horizontal, vertical, 
and diagonal detail sub-images Dhj, Dvj, and Ddj (Fig. 1). 
Each sub-image is the result of a convolution with two half-
band filters; two lowpass filters for Aj, a lowpass and a 
highpass for Dhj, a highpass and a lowpass for Dvj, and two 
highpass filters for Ddj. At the next, and each subsequent, 
level, only the approximation sub-image is further 
decomposed into new four sub-images. The total number of 
levels L depends on the size of the original image; the 
maximum value of L is equal to min (log2N, log2M), where N 
is the number of rows and M is the number of columns.  

Fig. 1.  Schematic diagram of the 2D DWT decomposition scheme for a 
given level of analysis. Note that, for j=0, A0 is the original image. Hr, Hc, 
Gr, Gc are the lowpass and highpass filters on the rows and columns of each 
subimage. The symbols ‘2↓1’ and ‘1↓2’ denote the downsampling 
procedure on the columns and rows, respectively. 

Among a large number of wavelet families (Haar, 
Daubechies, symlets, coiflets and biorthogonal) Haar was 
used in this study due to its orthogonality and symmetry 
properties. Orthogonal filters conserve energy and maintain 
the same amount of energy noise at each level of 
decomposition. Symmetric filters are also important because 
they do not affect the output of the signal. 

C. Multiscale Affine Optical Flow  
MAFOF uses only one type of sub-images of each 

image, and it consists of the following steps (Fig. 2).  
1) DWT at L levels: The images of a sequence are 

decomposed up to L levels using a 2D DWT. The lowest 
decomposition level corresponds to the highest spatial 
resolution level (original images), whereas the highest 
decomposition level corresponds to the lowest spatial 
resolution level (Fig. 3).  
2) Target selection: A pixel is selected as a target in the first 
image of the sequence of original images. The initial 
position of the target at lower spatial resolution levels is 
computed as follows: Considering that the size of the sub-
images at level j is twice the size of sub-images at level 
(j+1), the position of a target at level j can be found by 
scaling its position in the original image by a factor of 2-j. 
Steps (3)-(5) are repeated for every subsequent image of the 
sequence: 
3) AFOF at level j=L: AFOF is initially performed at the 
highest decomposition level L and the radial, radL, and 
longitudinal, longL, positions of the target are estimated. 
4) Coarse-to-fine transition: For every lower decomposition 
level j, with 0≤ j<L, it is assumed that the positions of the 
target, radj and longj, are twice the estimated positions, 
radj+1 and longj+1, at the previous (higher decomposition) 
level. Afterwards, measurements of radj and longj, namely 
zradj and zlongj, are obtained by performing AFOF at level j. 
The final estimates are produced by the average of these two 
approaches, as shown in (3). 
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This step finally, i.e. when j=0, leads to rad0 and long0 
which correspond to the final motion estimates at the lowest 
decomposition level of the current image.  
5) Update lower spatial resolution levels: Following the 
procedure described in step (2), the final motion estimates 
radj and longj for 0<j≤L are updated by appropriately scaling 
the positions rad0 and long0. This step is necessary for the 
implementation of steps (3-4) for the next image, because 
the weighted window is centered on the position of the target 
in the previous image.  

III. SYNTHETIC DATA EXPERIMENTS 
MAFOF was optimized and, both AFOF and MAFOF 

were validated by applying them to four synthetic 87-image 
sequences of the common carotid artery, corresponding to 
three cardiac cycles. The first synthetic sequence (S0) was 
created by distorting a real ultrasonic B-mode image 
according to a mathematical motion model [9]. Two 
additional sequences were created by adding noise levels of 
25 decibels (S25) and 15 decibels (S15), respectively, to the 
first sequence. The fourth synthetic sequence (SF) was 
constructed using the Field II software package and the same 
mathematical motion model [9]. Fig. 4 presents examples of 
the first images of the synthetic sequences and the 
corresponding first level approximation and detail sub-
images. 176 pixels for sequences S0, S25, and S15, and 196 
pixels for the sequence SF, were selected as targets. 
Performance was assessed by means of the warping index 
for total displacements [3], which represents an overall 
estimate of the error for all interrogated targets and all 
images of the sequence. 
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The optimization procedure first included the type of 
sub-images, which was used in MAFOF (Table I). This 
investigation showed that MAFOF produced the highest 
warping indices when the vertical or the diagonal detail sub-
images were used. No considerable differences were 
observed in the performance of MAFOF, when either the 
approximation or the horizontal detail sub-images were 
selected. However, performance was maximized in the first 
case and, as a result, MAFOF was implemented using the 
approximation sub-images. The experimentation with 
different values of L, varying between 1 and 3, then showed 
that best results were achieved for L=1. The selected 
parameters were independent of the noise levels, and can be 
held constant in motion tracking of the arterial wall. 

According to Table I, the warping indices increased with 

increasing noise levels for both AFOF and MAFOF. 
Additionally, all versions of MAFOF produced lower errors 
than AFOF for all sequences, which suggests that multiscale 
image analysis increased the accuracy of ME independent of 
the selected sub-images. The most effective version of 
MAFOF, i.e. when the approximation sub-images were used 
and L=1, yielded error reductions of 7%, 7%, 11%, and 10%, 
compared to AFOF, for the sequences S0, S25, S15, and SF, 
respectively. The statistical significance of these results was 
validated through Wilcoxon rank-sum tests (p-values: 0.028, 
0.015, 0.019, and 0.003 for S0, S25, S15, and SF, respectively). 

In terms of the computational cost, tracking one target in 
an 87-image sequence required 30 s for AFOF and 45 s for 
MAFOF, using a Pentium(R) Dual-Core CPU T4400 at 2.20 
GHz.

Fig.  2.  Block diagram of MAFOF. 

Fig. 3.  The pyramid structure of DWT image decomposition.

IV. REAL DATA EXPERIMENTS 
AFOF and MAFOF (as optimized above) were applied to 

two real ultrasound image sequences of the carotid artery; 
one of a young normal subject and one of an elderly patient 
with an atherosclerotic plaque on the posterior wall. The 
sequences were recorded with an ATL (Advanced 
Technology Laboratory) Ultramark 4 Duplex scanner at a 
rate of 25 frames/s for approximately 4 s (2-3 cardiac 
cycles). The first frame of each sequence is shown in Fig. 5 
(a, c). 

TABLE I 
WARPING INDICES FOR TOTAL DISPLACEMENTS IN PIXELS FOR 

AFOF AND DIFFERENT VERSIONS OF MAFOF FOR THE 
SEQUENCES S0, S25, S15, AND SF 

 S0 S25 S15 SF 
AFOF 1.07 2.02 2.81 3.25 

MAFOF (A) 0.99 1.88 2.50 2.91 
MAFOF (Dh) 1.01 1.88 2.52 2.93 
MAFOF (Dv) 1.04 1.95 2.57 3.01 
MAFOF (Dd) 1.06 1.98 2.62 3.08 

Fig. 5 (b, d) illustrates examples of radial and 

longitudinal displacements for two blocks (‘ANT’ and 
‘POST’) located in opposite wall-lumen interfaces (Fig. 5 (a, 
c)), using the two methods. The displacements in each 
direction were calculated by subtracting the positions of the 
block at end diastole, which was identified from the 
minimum radial distance between ANT and POST.  

(a) (f) 

 
(b) (c) (g) (h) 

 
(d) (e) (i) (j) 

Fig. 4.  Examples of images of the common carotid artery wall in synthetic 
sequences (a) S25 and (f) SF. First level (b, g) approximation and (c, h) 
horizontal, (d, i) vertical, and (e, j) diagonal detail sub-images of the 
synthetic images. 

Both methods detected the periodic vessel motion, 
especially in the radial direction, which is caused by the 
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periodic function of the heart. As we can see, the two 
methods produce very similar waveforms, probably because 
of low noise levels where their performances do not 
significantly differ.  

V. DISCUSSION 
 This study investigated the performance of AFOF in 

motion tracking of the arterial wall from B-mode ultrasound 
images and the effect of multiscale image analysis on the 
accuracy of the process. According to the synthetic data 
experiments, MAFOF was more accurate than AFOF, which 
could be associated with the fact that the wavelet-based 

multiresolution approach provides information about motion 
structures at different resolutions and scales [5]. The 
resolution is linked to frequency content, whereas scale to 
mapping of large or small objects of the image. As the level 
of decomposition increases the original image passes 
through a series of low-pass and high-pass filters and its 
resolution is reduced. However, scale is increased due to 
downsampling. Thus, increased levels of decomposition 
refer to sub-images where objects are relatively large (large 
scale) and their motion can be detected.  

However, the optimization process showed that the 
approximation sub-images were more suitable to MAFOF, 
probably because they result from the convolution with two 
lowpass filters. Consequently, they contain a large 
percentage of the total energy of the original image, 
maintaining a large amount of the information which is 
necessary for the ME process. The convolution with lowpass 
filters also causes the reduction of noise levels, because both 
Gaussian and speckle noise (which may exist in an 
ultrasound image) are high-frequency components of the 
images. On the other hand the detail sub-images, which 
result from the convolution with one or two highpass filters, 
lack information and they mainly maintain fine texture, 
edges and noisy characteristics of the original image. This is 
more obvious in the diagonal detail sub-images which result 
from the convolution with two highpass filters.   

The optimization process also showed that performance 
was maximized when the images were decomposed up to 
one level. This might be associated with (a) the limitation (at 

that level) of the shift-variant property of the DWT because 
of the decimation process (lowpass filtering followed by 
downsampling), and (b) the reduction of the information 
which is maintained in higher decomposition levels. 

In the context of real data experiments, AFOF and 
MAFOF produced the expected periodic waveforms when 
applied to real ultrasound image sequences of the carotid 
artery, which, along with the synthetic data experiments, 
enhanced the reliability of both methods.  

In conclusion, wavelet-based multiscale image 
decomposition combined with AFOF proved to be an 
effective computational tool for motion analysis of the 

arterial wall from B-mode ultrasound. Further investigations 
using additional wavelet families in combination with 
alternative shift-invariant wavelet decomposition schemes 
would be interesting future perspectives in this line of work. 
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(a)                                                                                     (b) 

 
 

(c)                                                                                     (d) 
Fig. 5.  (a, c) The first frame of an ultrasound image sequence of (a) a young normal subject and (c) an elderly patient with an atherosclerotic plaque on the 
posterior wall. (b, d) Examples of radial (RD) and longitudinal (LD) displacements of ANT and POST for (b) the young normal subject and (d) the elderly 
patient, using AFOF and MAFOF. 
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