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Abstract
Block matching (BM) has been previously used to estimate motion of the carotid artery from
B-mode ultrasound image sequences. In this paper, Kalman filtering (KF) was incorporated in
this conventional method in two distinct scenarios: (a) as an adaptive strategy, by renewing the
reference block and (b) by renewing the displacements estimated by BM or adaptive BM. All
methods resulting from combinations of BM and KF with the two scenarios were evaluated on
synthetic image sequences by computing the warping index, defined as the mean squared error
between the real and estimated displacements. Adaptive BM, followed by an update through
the second scenario at the end of tracking, ABM_KF-K2, minimized the warping index and
yielded average displacement error reductions of 24% with respect to BM. The same method
decreased estimation bias and jitter over varying center frequencies by 30% and 64%,
respectively, with respect to BM. These results demonstrated the increased accuracy and
robustness of ABM_KF-K2 in motion tracking of the arterial wall from B-mode ultrasound
images, which is crucial in the study of mechanical properties of normal and diseased arterial
segments.

Keywords: Kalman filter, block matching, motion analysis, ultrasound, arterial wall

1. Introduction

B-mode ultrasound imaging is a relatively inexpensive, fast,
noninvasive and radiation-free imaging technique, which is
widely used in the diagnosis of arterial disease. This imaging
technique can be used to study arterial wall motion during the
cardiac cycle by recording image sequences and subsequently
applying a motion estimation algorithm.

Block matching (BM) is a straightforward motion
estimation algorithm, which relies on the use of a reference
block of pixels in the first image of the sequence and the
identification, in each subsequent image, of a block that shows
the highest similarity to the reference block. The method has

been previously used to estimate carotid artery wall motion
from B-mode ultrasound [1–4]. Specifically, BM has been
applied to real ultrasound image sequences of the carotid artery
to estimate the vessel diameter in systole and diastole and
the arterial wall distensibility in the radial and longitudinal
directions [1]. Cinthio et al used the same method to study the
average motion amplitude and the shear strain within the wall
[2]. BM was also selected by Bang et al [3] to study motion
dynamics of carotid atheromatous plaque. In addition to the
above, BM was used to show that scanner settings, such as the
dynamic range and the persistence, do not significantly alter
radial and longitudinal carotid artery motion estimation [4].
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The conventional BM algorithm focuses on estimating
the motion field between specific image pairs of a sequence,
disregarding estimates obtained from previous image pairs.
Several attempts have been made to effectively incorporate the
temporal dimension into the motion estimation process. One
of these attempts included adaptive block matching (ABM), an
extension of the conventional BM, which updates the reference
block considering one or more of the previous frames. Four
update strategies have been proposed, namely single-frame,
multiframe, finite impulse response filtering and Kalman
filtering (KF), and it was shown that the use of KF was the most
robust strategy which minimized the mean tracking error [5].
The methods were also used to extract motor activity signals
of selected anatomical sites from video recordings of neonatal
seizures and the best performance was again achieved when
KF was used [6]. A simple one-dimensional (1D) KF was
applied, both as a post-processing and an embedded method,
to enhance the performance of motion estimation techniques in
low or very low bit rate applications such as videoconference
and videophone where conventional algorithms, such as BM,
were not effective enough [7]. In [8], the incorporation of KF
in motion tracking showed that taking into consideration the
temporal coherence of motion throughout an image sequence
resulted in considerable improvement in the quality of motion
estimation for large amplitudes of movement. The update
of motion estimates within the KF formalism also behaved
very well at discontinuities of the motion field [9]. Moreover,
KF has been implemented to recursively predict and update
contour deformations in real time, aiming at automatic tracking
of myocardial borders in two-dimensional [10, 11] or three-
dimensional [12] echocardiography.

The increased accuracy in motion tracking provided by
KF in the above applications, along with the fact that the
accuracy in arterial wall motion estimation is an important
clinical challenge not adequately addressed in the literature,
motivated the investigation of the performance of KF-based
motion estimators in this clinical area, where only conventional
algorithms have been used. The underlying ideas were first
introduced in a preliminary study of our group [13], where
KF was used (a) as an ABM strategy (ABM_KF), and to
renew the estimate of BM (b) during and (c) at the end
of tracking. The application of those three methods to B-
mode ultrasound image sequences of the carotid artery was
encouraging, suggesting that the potential of KF to enhance
the accuracy of BM in motion estimation is worth further
investigation.

Based on the above, this work systematically investigates
the potential of KF-based methodologies to accurately detect
carotid arterial wall motion from B-mode ultrasound. To
this end, a thorough optimization of the methods proposed in
[13] was performed on noise-free and noisy synthetic image
sequences of the common carotid artery. Additionally, these
methods were implemented in different scenarios, with KF
being used to renew the estimate of both BM and ABM_KF
during or/and at the end of tracking. Thus, a total of seven
KF-based motion estimators were produced which were
compared with the conventional BM. All methods were
evaluated on synthetic image sequences of the common

carotid artery with varying noise levels and center frequencies.
Finally, the performance of the most accurate algorithm
according to the synthetic data experiments was further
assessed through detailed experiments on real ultrasound
image sequences of the carotid artery of nine normal subjects.

2. Basic principles of KF

KF is an efficient recursive filter that estimates the current
state of a linear dynamic system from a series of noisy
measurements [14]. It assumes that the true state of the system
at time k is related to the state at time (k − 1) according to the
process model:

xk = Axk−1 + Buk + wk, (1)

where xk is the state at time k, A is the state transition
matrix applied to the previous state xk−1, B is the control-
input matrix applied to the control vector uk and wk is the
process noise with a zero mean normal distribution described
by the covariance matrix Q. At time k, an observation, or
measurement, zk of the true state xk is made according to the
measurement model:

zk = Hxk + vk, (2)

where H relates the measurement of the true state to the true
state and vk is the observation noise, the distribution of which
is described by the covariance matrix C. To use KF, one
should model the process according to the above equations.

Because KF is a recursive estimator, only the estimated
state from the previous time step (x̂k−1) and the current
measurement (zk) are needed to compute the estimate for the
current state (x̂k). KF acts in two distinct phases: prediction
and update. The prediction phase produces an a priori estimate
of the state (x̂−

k ) and the filter’s error, the distribution of which
is represented by the covariance matrix (P −

k ):

x̂−
k = Ax̂k−1 + Buk−1 (3)

P −
k = AP k−1A

T + Q. (4)

In the update phase, the a priori estimate is considered as
a linear combination of the a priori state estimate and the
difference (multiplied with an appropriate factor) between the
observation and the prediction of the observation:

x̂k = x̂−
k + K(zk − Hx̂−

k ). (5)

This factor is represented by the Kalman gain K:

K = P −
k HT(HP −

k HT + C)−1. (6)

The improved estimate is termed the a posteriori estimate of
the current state (x̂k) and the filter’s error is updated according
to the following equation:

P k = (I − KH)P −
k . (7)
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(a) (b) (c) (d)

Figure 1. Examples of images of the common carotid artery wall in synthetic sequences: (a) S0, (b) S25, (c) S15 and (d) SF. The white marks
represent the selected block centers.

3. Methods

3.1. Synthetic image data

All presented methods were optimized in terms of their
parameters and they were evaluated by applying them to
four synthetic 87-image sequences of the common carotid
artery, corresponding to three cardiac cycles. The first
synthetic sequence (S0) was created by distorting a real
ultrasonic B-mode image (see section 3.2) according to a
mathematical motion model [15]. Two additional sequences,
S25 and S15, were created by corrupting the first sequence
with Gaussian noise with signal-to-noise ratios equal to 25
and 15 dB, respectively. The fourth synthetic sequence (SF)
was constructed from a sequence of scattering strength maps
according to the procedures described in [15], using the field
II software package [16] and the same mathematical motion
model. Figure 1 presents the first images of the four synthetic
sequences.

The evaluation process of the methods was also dependent
on their performance over different imaging settings. Taking
into consideration that for S0, S25 and S15 these settings
are fixed at image acquisition, additional synthetic image
sequences were produced with field II and varying center
frequencies. Specifically, seven sequences were created, using
values of 5, 5.5, 6, 6.5, 7, 7.5 and 8 MHz, which are frequently
used in B-mode ultrasound imaging of the carotid artery. The
center frequency was selected for this investigation because in
the evaluation of a 1D motion estimator, it produced higher
standard deviations of errors than other imaging parameters
[17], suggesting that it strongly affects the accuracy in motion
estimation.

Performance was assessed by means of the warping index
(w) defined by (8)–(10), separately for the longitudinal (wlong),
radial (wrad) and total (wtotal) displacements, respectively:

wlong =
√∑m

j=1

∑n
i=1 (longreal(j, i) − longest(j, i))

2

n · m
(8)

wrad =
√∑m

j=1

∑n
i=1 (radreal(j, i) − radest(j, i))2

n · m
(9)

wtotal =
√

w2
long + w2

rad, (10)

where longreal and radreal are the real longitudinal and
radial displacements, respectively, longest and radest are the

(a) (b)

Figure 2. The first frame of an ultrasound image sequence of (a) a
young and (b) an elderly normal subject. The centers of the selected
blocks are shown with white marks.

longitudinal and radial displacements, respectively, estimated
by the algorithms, m is the number of selected blocks and
n is the number of images of each sequence. Accordingly,
w is the mean squared error between the real and estimated
displacements and it represents an overall estimate of the error
for all interrogated blocks and all images of the sequence.

The warping index was computed by choosing 176 block
centers for sequences S0, S25 and S15, and 196 block centers
for the sequence SF. Figures 1(a) and (d) show examples of
the selected block centers in the synthetic image sequences.

3.2. Real image data

To investigate the performance of the proposed methods in
real data, nine real ultrasound image sequences of the carotid
artery were used; five of young (ages: 25–32 years) and
four of elderly (ages: 44–73 years) normal subjects. The
sequences were recorded with an ATL (Advanced Technology
Laboratory) Ultramark 4 Duplex scanner and a high-resolution
7.5 MHz linear scan head. Scanner settings were as follows:
dynamic range 60 dB, 2D gray map, persistence low, frame
rate high. The sequences were recorded at a rate of 25
frames s−1 for approximately 3 s (two to three cardiac cycles).
Examples of the first frames of these sequences are shown in
figure 2.

The real data experiments were conducted in accordance
with the principles embodied in the Declaration of Helsinki,
were approved by the local institutional review board and all
individuals included in the study gave their informed consent
to ultrasound imaging and to the scientific use of the data.
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Table 1. ABM_KF, K1 and K2 optimal parameter values for the sequences S0, S25, S15 and SF.

ABM_KF K1 K2

q c p0 q c p0 q c p0

S0 0.01 11 0.11 9.10 2.70 0.11 2.70 2.10 0.60
S25 0.01 41 0.06 7.05 3.10 0.11 3.10 2.60 0.16
S15 5.01 91 0.01 2.10 4.30 0.10 1.10 3.60 0.11
SF 0.01 1 0.31 8.10 3.70 0.36 3.90 2.10 0.30

3.3. Block matching

BM assumes that a block of pixels remains constant over
motion and that all its pixels have the same velocity. The
algorithm consists in finding a block (best-matched block) in
an image that shows the highest similarity to the reference
block which is chosen by the user in the first image [18]. The
search for the best-matched block is performed in a limited
image region, called search window, around the best-matched
block of the previous image.

The performance of the algorithm is affected by the
similarity measure, the size and the location of the reference
block, and the size of the search window. A large reference
block improves the performance because it enhances the
uniqueness of the block but, if it is too large, the computational
cost increases. In terms of the location of the reference
block, the heterogeneity of the interrogated area improves
the performance. Finally the search window should be large
enough so as to include the expected motion without entailing
high computational cost.

In this work, BM methods were implemented in Matlab
(The MathWorks, Natick, MA, USA), using (a) the correlation
coefficient as the similarity measure, (b) 1.6 ×1 mm2 reference
blocks selected in the first frame and (c) 1.3 × 1.3 mm2 search
windows. The similarity measure and the size of the search
window were suggested in [1] as the most appropriate for this
application. The selection of the size of the reference blocks
was based on experimentation with different sizes, varying
between 0.7 × 0.7 [2] and 3.2 × 2.5 mm2 [1], in an attempt to
achieve a compromise between low warping indices and low
computational cost.

3.4. ABM using KF

In ABM, the reference block is updated to take into
consideration the changes in the appearance of the target [5].
KF can be used in ABM because it can estimate the reference
block used for image k by modeling the process as

Rk = Rk−1 + wk (11)

M k−1 = Rk−1 + vk, (12)

where R is the reference block and M is the best-matched
block. With reference to (1) and (2), A = H = I and B = 0.
Consequently, (3)–(7) are valid for x ≡ R and zk ≡ M k−1.

The matrices Q,C and P 0 were considered proportional
to the identity (Q = qI , C = cI,P = p0I) [19] and the
method was optimized in terms of the multiplication factors
q, c and p0. Experimentation with these parameters and
computation of the corresponding warping indices showed

that ABM_KF generally maximized its performance when
c > q and p0 � 0.31, while greater noise levels required
higher observation noise. This observation showed that the
error was minimized when the measurement was considered
less reliable than the a priori state estimate, which suggests
that each image tended to use the previous reference block as
a reference block, with a slight improvement derived from the
difference between the best-matched block and the reference
block of the previous image.

The optimal KF parameter values were different for each
sequence (table 1). Therefore, ABM_KF was then applied
to all sequences, using each set of optimal parameter values,
and it was investigated which set produced the lowest mean
warping index for total displacements. The results showed that
the first set, i.e. the optimal parameter values for S0, was the
most suitable choice and it was used for both the evaluation of
the method (section 4.1) and the real data experiments.

3.5. Updating motion estimation using KF

KF can be used to improve motion detection, by updating an
algorithm’s estimate for the position of the target throughout
an image sequence. The above can be achieved by modeling
the process as⎡

⎢⎢⎣
r(k)

l(k)

dr(k)

dl(k)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

r(k − 1)

l(k − 1)

dr(k − 1)

dl(k − 1)

⎤
⎥⎥⎦ + wk (13)

where l and r are the coordinates of a pixel in the longitudinal
and radial direction, respectively, and dl and dr are the
corresponding displacements with respect to the previous
image. The estimate of a motion-tracking algorithm, i.e. BM
or ABM_KF, for the coordinates of the pixel at image k is
considered as observation information:

[
zr(k)

zl(k)

]
=

[
1 0 0 0
0 1 0 0

] ⎡
⎢⎢⎣

r(k)

l(k)

dr(k)

dl(k)

⎤
⎥⎥⎦ + vk. (14)

This idea can be implemented during (K1) or/and after (K2)
the execution of an algorithm.

In this case, performance was still dependent on the
matrices Q,C and P 0 which were defined in the same way as
previously. Consequently, the methods were again optimized
in terms of the multiplication factors q, c and p0 (table 1).
The warping indices for different parameter sets showed that
K1 and K2 minimized their deviation from real motion when
c < q for S0, S25 and SF and c > q for S15. Additionally, as
in ABM_KF, greater noise levels required higher observation
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Table 2. Warping indices (in mm) for BM, ABM_KF and combinations of them with K1 and K2, for the sequences S0, S25, S15 and SF.
Boldface indicates minimum warping indices for total displacements for each sequence.

Algorithm wtotal wrad wlong Algorithm wtotal wrad wlong

S0 S25

BM 0.085 0.069 0.051 BM 0.314 0.071 0.306
BM-K1 0.084 0.052 0.065 BM-K1 0.361 0.054 0.357
BM-K2 0.084 0.069 0.048 BM-K2 0.312 0.071 0.304
BM-K1-K2 0.086 0.054 0.067 BM-K1-K2 0.361 0.056 0.357
ABM_KF 0.085 0.068 0.051 ABM_KF 0.266 0.070 0.257
ABM_KF-K1 0.118 0.049 0.108 ABM_KF-K1 0.361 0.051 0.367
ABM_KF-K2 0.084 0.069 0.048 ABM_KF-K2 0.265 0.070 0.256
ABM_KF-K1-K2 0.120 0.051 0.109 ABM_KF-K1-K2 0.361 0.054 0.357

S15 SF

BM 1.176 0.296 1.139 BM 0.257 0.067 0.249
BM-K1 1.216 0.282 1.183 BM-K1 0.248 0.049 0.243
BM-K2 1.174 0.291 1.138 BM-K2 0.257 0.067 0.249
BM-K1-K2 1.217 0.280 1.184 BM-K1-K2 0.248 0.049 0.243
ABM_KF 0.985 0.344 0.923 ABM_KF 0.095 0.072 0.063
ABM_KF-K1 1.054 0.337 0.999 ABM_KF-K1 0.097 0.074 0.065
ABM_KF-K2 0.983 0.342 0.922 ABM_KF-K2 0.095 0.072 0.063
ABM_KF-K1-K2 1.054 0.337 0.999 ABM_KF-K1-K2 0.097 0.074 0.065

noise and lower values of p0. According to these observations,
the measurement was considered more reliable than the a
priori estimate in noise-free sequences and in the presence
of low noise levels. However, its reliability decreased with
increasing noise levels and under very noisy conditions, i.e.
for S15, the methods required higher confidence to the process
model.

Following the same process as in ABM_KF for the
selection of parameter values to be held constant across
different data sets, the optimal parameter values for S0 were
again selected for the evaluation process of both K1 and K2,
as well as the real data experiments.

The combinations of BM and ABM_KF with K1 produced
BM-K1 and ABM_KF-K1. The corresponding combinations
with K2 produced BM-K2 and ABM_KF-K2. K2 was also
combined with BM-K1 and ABM_KF-K1; specifically, it was
applied at the end of the corresponding algorithms, resulting in
BM-K1-K2 and ABM_KF-K1-K2, respectively. Accordingly,
the previous combinations produced a total of seven methods
that were compared with BM.

4. Results

4.1. Synthetic image sequences

Table 2 shows the warping indices for each synthetic
sequence when motion was estimated by BM, ABM_KF and
combinations of these methods with K1 and K2. As expected,
the warping indices increased with increasing noise levels for
all methods. In most cases, errors in the longitudinal direction
were larger than in the radial one, which was more obvious in
the cases of the noisy sequences S25 and S15.

Generally the combinations of BM with K1 and
K2 produced higher total motion-tracking errors than the
combinations of ABM_KF with these methods. ABM_KF-
K2 minimized the warping indices for total displacements in
three out of the four sequences, suggesting that it was more

effective than BM. Specifically, ABM_KF-K2 yielded error
reductions of 1.93%, 15.60%, 16.41% and 63.03% for total
displacements, compared to BM, for the sequences S0, S25,
S15 and SF, respectively.

The statistical significance of these results was validated
following the process which is described below for each
synthetic sequence. First, the root-mean-square (RMS) errors
for total displacements for all the interrogated blocks were
estimated, resulting in eight RMS error distributions (one for
each method). Then, one-sample Kolmogorov–Smirnov tests
indicated that the error distributions were not normal and,
as a result, nonparametric tests were used for the statistical
analysis. In a third step, a Kruskal–Wallis test showed that at
least one error distribution was different from one of the others
(p-values: 0.048, 0.047, 0.045 and 0.038 for the sequences S0,
S25, S15 and SF, respectively). Finally, a Wilcoxon rank-sum
test between the error distributions of BM and ABM_KF-
K2 indicated that the error reductions with respect to BM
were statistically significant in most cases (p-values: 0.28,
0.042, 0.037 and 0.018 for the sequences S0, S25, S15 and SF,
respectively).

The selection of the most reliable algorithm was also
affected by the performance of the presented motion estimators
over different center frequencies. Table 3 presents bias and
jitter [20], estimated as the mean and the standard deviation,
respectively, of the warping indices for total displacements
for different center frequencies. ABM_KF produced the
lowest bias and ABM_KF-K2 the lowest jitter. ABM_KF-
K2 produced the second lowest bias, suggesting the increased
robustness of this algorithm. Compared to BM, ABM_KF-
K2 yielded bias and jitter reductions of 30% and 64%,
respectively.

In terms of the computational cost, tracking one block in
an 87-image sequence required 10 s for BM, 51 s for ABM_KF
and 53 s for ABM_KF-K2, using a Pentium(R) Dual-Core
CPU T4400 at 2.20 GHz. However, the minimization of
motion-tracking errors in most cases by ABM_KF-K2 and
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(a) (b)

(c) (d)

(e) ( f )

Figure 3. Radial (RD) (a), (b) and longitudinal (LD) (c), (d) displacements of a block located at the posterior wall–lumen interface in the
first image of the synthetic sequences S15 (a), (c) and SF (b), (d), using BM and ABM_KF-K2. RMS errors (e), (f ) for total displacements.
Different ranges were used for the y-axes for each sequence because of higher motion-tracking errors in the presence of noise.

Table 3. Bias and jitter (in mm) for BM, ABM_KF and combinations of them with K1 and K2, for varying center frequencies.

Algorithm Bias Jitter Algorithm Bias Jitter

BM 0.235 0.147 ABM_KF 0.147 0.235
BM-K1 0.496 0.282 ABM_KF-K1 0.189 0.145
BM-K2 0.190 0.145 ABM_KF-K2 0.164 0.053
BM-K1-K2 0.496 0.282 ABM_KF-K1-K2 1.186 0.054

its robustness in varying image conditions compensated for
the somewhat increased computational cost and the method
was selected as the most reliable algorithm for the analysis of
motion of the arterial wall from ultrasound images.

Figures 3(a)–(d) show examples of radial and longitudinal
displacements of a block located at the posterior wall–lumen
interface in the first image of the synthetic sequences S15 and
SF, using BM and ABM_KF-K2. The displacements in each
direction were calculated by subtracting the positions of the
block at end diastole. In both cases, ABM_KF-K2 produced
radial and longitudinal displacements that were closer to real
motion. In the longitudinal direction, in particular, ABM_KF-
K2 resulted in smoother, less spiky waveforms, than BM. In
figures 3(a) and (b), there is an almost constant difference
between real motion and the waveform of ABM_KF-K2,
which probably means that ABM_KF-K2 failed to find a
similar block in the first images of the sequence and, as a result,
the renewed reference blocks in subsequent images led the
method to follow motion of a neighboring block. Figures 3(e)
and (f ) additionally illustrate the corresponding RMS errors
for total displacements per image. The reduction in the mean

value of RMS error of ABM_KF-K2, compared to BM, for
these cases was 16.83% and 22.10%, respectively.

4.2. Real ultrasound image sequences

Considering that previous studies [1, 2] have shown that BM
can detect the periodic motion pattern of the arterial wall from
B-mode ultrasound, BM and ABM_KF-K2 were applied to
real ultrasound image sequences to compare the produced
radial and longitudinal displacements of selected blocks. Two
blocks (‘ANT’ and ‘POST’) were selected on opposite wall–
lumen interfaces (figure 2) and the displacement in each
direction (figure 4) was calculated by subtracting the position
of the block at end diastole, which in this case was identified
from the minimum radial distance between ANT and POST.
The waveforms produced using ABM_KF-K2 were generally
similar to those produced using BM especially in terms of
the expected periodic motion pattern. The BM waveforms
seemed to produce somewhat more spikes than the KF
ones. However, visual inspection of the sequences indicated
rather regular motion patterns, closer to those produced by
ABM_KF-K2.
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(a) (b)

(c) (d)

Figure 4. Examples of radial (a), (b) (RD) and longitudinal (LD) (c), (d) displacements of ANT and POST for a young (a), (c) and an
elderly (b), (d) normal subject, using BM and ABM_KF-K2. Different ranges were used for the y-axes for each sequence to demonstrate the
difference between BM and ABM_KF-K2.

(a) (b)

Figure 5. (a), (b) Longitudinal displacements (LD) (left axis) of the IM, ADV and TI and vessel diameter change (D) (right axis) for (a) a
young and (b) an elderly normal subject, using ABM_KF-K2.

Table 4. Mean (±SD) values of strain parameters of the common carotid artery of five young and four elderly normal subjects during two or
three consecutive cardiac cycles.

Young (n = 5) Elderly (n = 4) All

Radial strain (%) 15.80 ± 3.06 7.56 ± 0.24 13.45 ± 4.73
Shear strain IM/ADV (rad) 0.34 ± 0.14 0.56 ± 0.04 0.41 ± 0.16
Shear strain ADV/TI (rad) 0.44 ± 0.23 0.16 ± 0.04 0.35 ± 0.23

Additionally, ABM_KF-K2 was used to obtain
measurements of arterial strain in the radial and longitudinal
directions (table 4), which were compared to those of
similar studies. Specifically, the differences of radial
motion waveforms of ANT and POST corresponded to vessel
diameters (figure 5), which were used to estimate the radial
strain [2], a measure of arterial elasticity. For the longitudinal

direction, three blocks were selected at different layers of the
posterior wall (figure 2): one block was positioned at the
intima-media complex (IM), one block was positioned at the
adventitial region (ADV), 0.45–0.76 mm deeper into the vessel
wall than the block at IM, and one block was positioned at
the surrounding tissue (TI), 0.51–0.83 mm deeper into the
vessel wall than the block at ADV. The relative motion of
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the selected blocks in the longitudinal direction (figure 5)
introduced shear strain between the different layers, which
was calculated using the formulas provided in [2]. Mean
(±SD) values of these measurements for all recorded cycles
of all subjects are presented in table 4.

Radial strain was significantly lower in elderly subjects
compared to young ones (Wilcoxon rank-sum test, p-value:
0.014), implying an increase in radial arterial stiffness of
the carotid artery with age, which is in agreement with
existing knowledge [21]. Shear strain, on the other hand,
was not significantly different between young and elderly
subjects (Wilcoxon rank-sum test, p-value for both shear
strains: 0.269). Strain measurements previously reported
[2] were comparable to those of table 4. Specifically in [2],
measurements in a group of ten healthy subjects (ages: 27–62
years) produced lower radial strains (10.6% ± 2.9). The shear
strain between IM and ADV was 0.36 ± 0.26 rad, whereas
the shear strain between ADV and TI was 0.49 ± 0.20 rad.
No significant difference was found between the samples of
the two studies in terms of the radial strain (p-value: 0.445)
and the shear strain IM/ADV (p-value: 0.365). This finding
demonstrates that the two sample sets probably originate from
the same distribution and the differences in mean values may
be attributed to differences in the age and/or the sex of the
subjects.

5. Discussion

This work investigated the performance of KF-based
approaches for BM in arterial wall motion estimation in
an attempt to reduce motion-tracking errors of the BM
algorithm, which is the conventional state of the art in the
examined clinical application. It was found that the most
effective method was ABM_KF-K2, which resulted from the
incorporation of KF in BM as an update strategy for the
reference block, combined with an update of the algorithm’s
motion estimate with K2. ABM_KF-K2 produced statistically
significant reductions in motion-tracking errors in synthetic
sequences, was tolerant to varying center frequencies and
behaved well in real data experiments. Consequently, despite
its somewhat higher computational cost compared with BM, it
may be considered as an alternative to BM for motion analysis
of the arterial wall from B-mode ultrasound.

The application of the investigated methods to synthetic
data showed that in all cases the error increased when noise was
added to the synthetic sequences. This may be due to the fact
that noise reduces the image contrast and causes undesirable
spatiotemporal changes in image intensities, thus preventing
BM methods from finding the best-matched block. In most
cases, errors were greater in the longitudinal direction probably
because ultrasound imaging of the arterial wall shows higher
homogeneity in that direction.

The warping indices showed that the combinations of BM
with K1 and K2 were less effective than those of ABM_KF
with these methods. This could be associated with the fact
that ABM_KF takes into consideration changes in brightness
of the image, which cannot be avoided because of the effect
of speckle as well as the movement of the arterial wall out of

the B-mode section. The superiority of ABM_KF-K2 could
be attributed to the advantages of ABM_KF and the fact that
K2 limits the displacement estimate according to the defined
models. Such an update procedure probably prevents the
transmission of considerable errors in the subsequent images.

Apart from minimizing motion-tracking errors in
synthetic data experiments (table 2), ABM_KF-K2 also
produced low bias and jitter when it was applied to synthetic
image sequences with varying center frequencies. Bias
and jitter have been widely used in the assessment of 1D
motion estimators [20, 22]. Specifically, they have been
used in the evaluation of different estimators of time delay
between reference and reflected RF signals, assuming that
these measurements result from changes in the displacements
of acoustic scatterers. In this study, measurements of bias and
jitter revealed that variable imaging conditions may affect the
performance of motion estimators, considering that, although
ABM_KF and ABM_KF-K2 produced comparable motion-
tracking errors in the first set of synthetic sequences (table 2),
the latter was considerably more robust in the second set of
simulated data experiments (table 3). Investigation of the
performance of the examined methods over other important
imaging settings (such as electronic noise, bandwidth,
persistence and dynamic range) and different image-to-image
motion models would be an interesting future stage in this line
of work.

Additionally, the precision of the above-mentioned
1D motion estimators was enhanced by incorporating
interpolation techniques [23, 24], taking into account that
time delays are generally not integral multiples of the sampling
period. In the context of future work, further experimentations
with modifications of the suggested methodology, including
the application of interpolation techniques, might further
enhance the validity of our method.

KF seems to be a useful computational tool in motion
analysis of the arterial wall. The assumption of linearity for KF
in (1) and (2) was considered reasonable in this initial attempt
to address the specific problem, taking into account that (a) for
ABM_KF, such an assumption produced satisfactory results in
previous studies [5, 6] and (b) for K1/K2, there is no evidence
in the literature for a validated image-to-image motion model
for the carotid artery wall. However, an interesting future
perspective of our study would be to replace the process model
of K1 and K2, defined in (13), with the mathematical model
which was used in the construction of the synthetic sequences
[15] and investigate the effect of a nonlinear motion model
on the performance of the examined methods in real data. In
that case, KF would be replaced by extended or unscented KF,
which are suitable to nonlinear and highly nonlinear systems,
respectively [25].

In the context of real data experiments, ABM_KF-K2
produced the expected periodic motion waveforms when
applied to real ultrasound image sequences of the carotid
artery, a finding which enhanced its reliability. The
measurements of radial and shear strain further reinforced
this argument, because the results agreed with those of
previous studies [2] and knowledge previously addressed in
the literature [21]. Further experiments in additional samples
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of normal subjects and patients would supplement both the
investigation of the performance of ABM_KF-K2 in real
image data and the provided knowledge about arterial wall
motion.

Taking into consideration the synthetic and real data
experiments, KF was effectively incorporated in BM, resulting
in a sophisticated algorithm suitable for arterial tissue motion
estimation. This method would be very useful in motion
analysis of normal and diseased arterial segments during the
cardiac cycle.
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