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An organic thin ¯lm transistor (OTFT) based on pentacene was fabricated with SiO2 as the gate
dielectric material. We have investigated the e®ects of the thickness of pentacene layer and the
organic semiconductor (OSC) material on OTFT devices at two di®erent thicknesses. Au metal
was deposited for gate, source and drain contacts of the device by using thermal evaporation
method. Pentacene thin ¯lm layer was also prepared with thermal evaporation. Our study has
shown that the change in pentacene thickness makes a noteworthy di®erence on the ¯eld e®ect
mobility (�FET), values, threshold voltages (VTÞ and on/o® current ratios (Ion/IoffÞ. OTFTs
exhibited saturation at the order of �FET of 3.92 cm2/Vs and 0.86 cm2/Vs at di®erent thicknesses.
Ion/Ioff and VT are also thickness dependent. Ion/Ioff is 1� 103, 2� 102 and VT is 15V, 27V
of 40 nm and 60 nm, respectively. The optimized thickness of the pentacene layer was found
as 40 nm. The e®ect of the OSC layer thickness on the OTFT performance was found to be
conspicuous.
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1. Introduction

The interest for the organic-based transistors has in-

creased consistently with increasing technological

demand since the ¯rst polymer and small molecule

semiconductor-based organic ¯lm transistors were

produced and studied.1–5 Recently, a signi¯cant suc-

cess has been reached in organic thin ¯lm transistor

(OTFT) technology and the ¯eld e®ect mobility

(�FET) value has reached to a level of 3.2 cm2/Vs

which is considerably high.6 OTFT has become a very
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attractive tool for electronic applications such as

radio frequency detection (RFID) devices,7 °exible

displays,7,8 sensors9 and electronic barcodes.10,11

The basic layers of OTFTs are organic semicon-

ductor (OSC) and polymeric insulator (dielectric).

Some of the high conjugate OSCs, which have

been studied recently in common are pentacene,12–14

pentacene derivatives,15 alpha-hexathienylene,16

rubrene,17 poly(3-hexylthiophene),18–21 poly-(9,9-

dioctyl°uorene-co-bithiophene),22 poly(3,3 000-dialky-
quarterthiophene).23

Small molecule OSC materials, which are used

as an alternative to the polymeric materials, can

be used to produce a thin ¯lm by either dissolving

in a solvent or evaporating at high temperatures.

An aromatic compound pentacene, with its ¯ve

benzyl chain, is the best example among the materi-

als that their thin ¯lms can be grown by evaporation

method.

OTFTs which have been produced using penta-

cene OSC with inorganic materials such as SiO2 and

Al2O3 are commonly in use.24 Pentacene is a p-type

OSC material that has the most common use at

OTFT production. The highest mobility value of

pentacene in which polymeric insulator was used is

3 cm2/Vs.25 However, the mobility value for the

pentacene OTFTs which were grown on the chemi-

cally altered SiO2/Si layers was recorded as 6 cm2/

Vs.26 In addition to choosing the OSC material for an

OTFT design, choosing the suitable gate insulator

material is also another important issue which plays

a signi¯cant role as a performance parameter.27

Transistor parameters such as mobility and thresh-

old voltage are all deeply related to the chemical

structure and the dielectric properties of the insu-

lating materials.28 Many research groups have been

working on pentacene TFT dielectric interface

properties and the correlation between the pentacene

and oxygen.29–31

Recent studies show that the high performance

bottom-contact (cBC) structure is often used for

pentacene-based OTFTs (Table 1).32–36

In this study, pentacene-based OTFT was pro-

duced in which p-type Si/SiO2 was used as a dielectric

layer. We obtained the �FET, on/o® current ratio

(Ion/IoffÞ and threshold voltages (VTÞ from the output

and transfer characteristic curves for two di®erent

pentacene thickness driven by top contact pentacene

OTFTs as depicted in Fig. 1.

2. Experimental

2.1. Pentacene-based OTFT production

Pentacene (Fig. 2) and thermally oxidized Si wafers

(Fig. 3(a)) are commercially obtained. Pentacene

(Mn ¼ 278;35 g/mol, purity > 99%) was purchased

from Sigma-Aldrich. The thickness of silicon layer is

500�m� 50�m, the thickness of the oxide layer on

the Si is 500 nm� 50 nm and it is highly p-doped Si in

(111) orientation.

At the ¯rst step of the production, we have re-

moved some SiO2 from one side of the silicon surface.

SiO2 is also known as the best insulating inorganic

material for OTFT fabrication (Fig. 3(a)). We have

maintained a contact on the silicon layer at one

side of the substrate from which SiO2 was removed.

Table 1. Summary of pentacene-based
OTFTs.

�max (cm2/V�s) Ion=Ioff

Ref. 32 0.001 � 103

Ref. 33 0.003 2:4� 103

Ref. 34 0.05 2:1� 104

Ref. 35 0.24 1:9� 105

Ref. 36 2.3 � 105

4.2
4.4
4.8

This work 3.92 1� 103

0.86 2� 102

Fig. 1. Scheme of common top contact geometry for
pentacene OTFT.
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Then, SiO2 and Si surfaces were cleaned by technical

solvents and by distilled water in the ultrasonic bath.

Later, argon bath gas is also applied as the ¯nal

cleaning (Fig. 3(b)). The following process is to take

a gate contact on the Si layer and then we have

coated the pentacene on SiO2 layer by thermal

evaporation method under 3:7� 10�6 mbar pressure

(Fig. 3(c)). After the pentacene deposition, source

and drain electrodes with thickness of 50 nm were

deposited by Au over the pentacene layer using a

shadow mask under a pressure of 4� 10�6 mbar using

the thermal evaporation method again (Fig. 3(d)).

Finally, we have connected the contacts as in

(Fig. 3(d)) to perform the characteristic measure-

ments of our OTFT.

According to the production step and to the design

of our OTFT, our device geometry is a top contact

transistor model, which has drain and source contacts

on the semiconductor layer and the gate at the bot-

tom (Fig. 1).

3. Results and Discussion

3.1. The investigation of the
current–voltage characteristics
of the pentacene/SiO2-based OTFT

The current–voltage characteristics of our devices

were investigated by using a Keithley 4200 semicon-

ductor characterization system (SCS). The VDS–IDS

curves were plotted for two di®erent pentacene

thicknesses at four di®erent gate voltages (Fig. 4).

The device output and transfer values were measured

with the Keithley 4200 SCS.

The thickness of the pentacene ¯lm was measured

by a pro¯lometer. The thickness of the oxygen layer of

SiO2 is 500 nm. Output and transfer characteristics of

(a)

(b)

Fig. 4. IDS–VDS negative output curves of SiO2/penta-
cene-based OTFT at di®erent VGS potentials (a) 60 nm
pentacene thickness (b) 40 nm pentacene thickness.

Fig. 2. Structure of the pentacene molecule.

Fig. 3. The production steps of the OTFT.
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the pentacene/SiO2-based OTFT are as follows: W/L

ration is 1000�m/17�m. The device exhibits good

saturation characteristics at 30V operation voltage

(VGS ¼ 0 to �30V). The �FET values for 40 nm and

60 nm pentacene thin ¯lm layers were obtained as

3.92 cm2/Vs and 0.86 cm2/Vs, respectively.

We have evaluated the VGS vs IDS curves for

the same value of the VDS at �20V. In order to reach

the Ion/Ioff values we take the logarithm of current

values (Fig. 5). As it can be seen from the graph, the

Ion/Ioff values for 60 nm and 40 nm pentacene were

found as 2� 102 (Fig. 5(a)) and 1� 103 (Fig. 5(b)),

respectively.

Finally, as shown in Fig. 6, the �FET can be de-

termined from the slope of a plot between jIDSj0:5

vs VGS output curves derived from Eq. (1). The ex-

trapolated x-intercept of this plot yields the value of

the threshold voltage.

IDS ¼ �FET

WCi

2L
ðVGS � VT Þ2: ð1Þ

Where Ci is capacitance of insulator layer, W is

width of source and drain electrodes, L is length be-

tween source and drain electrodes and �FET is ¯eld

e®ect mobility of OTFT device. In this study, we

have used SiO2 as insulator layer. Si/SiO2 was pur-

chased commercially and capacitance of SiO2 layer

was 10 nF.

We have calculated the mobility value of the

SiO2/pentacene-based OTFT in its saturation zone
(a)

(b)

Fig. 5. SiO2/Pentacene-based OTFT IDS–VDS output
values (VDS ¼ �20) (a) 60 nm pentacene thickness, (b)
40 nm pentacene thickness.

(a)

(b)

Fig. 6. (IDSÞ1=2-VGS output curves of SiO2/Pentacene-
based OTFT (VDS ¼ �20) (a) 60 nm pentacene thickness,
(b) 40 nm pentacene thickness.
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from the slope (�) of the best ¯tted curve applying

the formula shown in Eq. (2).

� ¼ WCi

2L

� �
1=2

; ð2Þ

where � is slope of the (IDSÞ1=2 vs VGS plot.

4. Conclusion

The thickness of pentacene layers was found to have a

prominent in°uence on the performance of pentacene

OTFTs. The reason why the SiO2 dielectric layer did

not show good interface characteristics with penta-

cene thin layer in our OTFT devices is related to the

organic/inorganic incompatibility of the interface. On

the other hand, the mobility of our devices and their

performances are found to be almost in accordance

with some literature values, whereby a new veri¯ca-

tion of a promising assembly and material is added to

the literature. Additionally, because the performance

of OTFT based on pentacene device such as �FET and

Ion/Ioff will be a®ected by the OSC thickness, precise

thin ¯lms have to be optimized and employed.
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