
January-February 2003	 �



Ahmed B. Shuraim, Ph.D.
Associate Professor of Civil Engineering
Civil Engineering Department 
College of Engineering
King Saud University 
Riyadh, Saudi Arabia

This paper presents a new method for computing the flexural rigidity, 
EI, of prestressed concrete columns at their ultimate capacity. Flexural 
rigidity is needed to evaluate the critical buckling load which is 
used in the magnification formula. The proposed methodology for 
computing EI is based on two fundamental relationships: (1) the 
moment versus curvature relationship at a given load eccentricity, 
and (2) buckling under the assumption of pure concentric load. 
The proposed EI model was used with the moment magnification 
formula to obtain moment versus axial load interaction diagrams for 
a number of slender prestressed concrete columns. The diagrams 
were compared with those obtained from a finite element analysis 
and very good agreement was observed. Also good agreement was 
observed with available experimental test results. Comparisons with 
current code formulations and PCI recommendations are made, and 
a new procedure is proposed. Several numerical design examples, 
illustrating the new method, are provided.

Slenderness effects and possible 
buckling in prestressed con-
crete columns have challenged 

the minds of researchers for more 
than four decades. Several theories 
and some formulations have been pro-
posed but none have been completely 
satisfactory. Nonetheless, over the 
years, the performance of prestressed 
concrete columns in actual structures 
has been satisfactory and the demand 
for such members will definitely in-
crease in the future. 

Extensive investigations on pre-

stressed concrete columns have been 
carried out by many researchers; in-
cluded among these researchers are 
Lin and Itaya (1957),1 Zia and Morea-
dith (1966),2 Brown and Hall (1966),3 
Kabaila and Hall (1966),4 Aroni (1967, 
1968),5,6 Nathan (1972 to 1985),7,8,9,10 
Yuan (1987),11 Issa and Yuan (1989),12 
the PCI Committee on Prestressed 
Concrete Columns (1988),13 Shuraim 
and Naaman (1989),14 and Shuraim 
(1990).15 

While several of the above stud-
ies involved experimental work, most 
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investigators tried to develop accurate 
models capable of predicting the be-
havior as well as the ultimate strength 
of slender prestressed concrete col-
umns. In addition, some authors de-
rived simple design recommendations 
for practical implementation. 

For the past three decades, the ACI 
Building Code (ACI 318)16 has ad-
opted the magnification formula for 
the design of slender concrete col-
umns. The main function of the for-
mula may be explained with reference 
to Fig. 1, which shows a simply sup-
ported column, subjected to equal ec-
centric axial loads, P, at its ends. 

As the column deflects under such 
a loading, its midspan section is 
subject to an additional moment of 
P∆mid, where ∆mid is the deflection at 
midspan. Thus, the total moment for 
which the column should be designed 
for is Mmid = Mend + P∆mid. The mag-
nification formula attempts to estimate 
the total moment without evaluating 
∆mid explicitly.

In practice, the magnification factor 
should neither be underestimated, thus 
risking an unsafe structure, nor overes-
timated, thus leading to an uneconomi-
cal design. The formula was originally 
derived for simply supported columns 
subject to axial compressive load and 
end moments assuming linear elastic 
materials. It is usually expressed as 
follows:

M
M

P

P

mid
end

cr

=
−1  

               (1)

in which
Mend	 =	moment at the end of the 

column (that is, M = Pe)
P	 =	axial load at the end of the 

column
Pcr	 =	critical buckling load when 

the column is under concen-
tric axial compression

Mmid	=	total moment at midspan 
(see Fig. 1)

The Euler critical buckling load is 
given by:

P
EI

Lcr = π 2

2                   (2)
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Fig. 1. Model of slender column under equal end moments and axial load: 
(a) Deformed shape; (b) Magnified moment at midspan.

where 
L	 =	length of the column
I	 =	moment of inertia of the col-

umn cross section
E	=	modulus of elasticity
When Eqs. (1) and (2) were adopted 

for concrete columns in which the ma-
terials are essentially nonlinear and in-
elastic to a large degree, modifications 
were introduced regarding the flexural 
rigidity EI. Consequently, the valid-
ity of the equations depends on how 
accurately the flexural rigidity can be 
estimated.

This paper describes the main re-
sults of an investigation to evaluate 
the effective flexural rigidity, EI, used 
in Eq. (2) to calculate the buckling 
load for prestressed concrete (PC) col-
umns and hence, through Eq. (1), to 
estimate the load carrying capacity of 
slender PC columns. The proposed 
methodology for computing EI was 
formulated based on two fundamental 

relationships:
The first relates moment to curva-

ture at a given load eccentricity and 
the second is based on the concept of 
buckling under the assumption of pure 
concentric load.

The proposed methodology was de-
veloped following an extensive ana-
lytical evaluation of the behavior of 
numerous PC columns through a fi-
nite element analysis.14,15 The effect 
of many parameters such as nonlinear 
properties of the component materials, 
cracking, slenderness ratio, irregular 
section geometry, level of effective 
prestress, prestressing reinforcement 
ratio, and different boundary condi-
tions were considered. 

A computer program was written 
to carry out the simplified calcula-
tions, verify the accuracy and fine-
tune the calibration of the proposed 
design method vis-à-vis the finite ele-
ment analysis. Also, the accuracy of 
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the model was verified by comparing 
predicted results with experimental 
data from the technical literature. The 
program was then used to evaluate a 
wide range of parameters.

BACKGROUND ON 
FLEXURAL RIGIDITY (EI)

This section presents the ACI Code 
provisions for determining flexural 
rigidity and the PCI recommendations 
for evaluating slenderness effects of 
columns.

Current ACI 318 Equations for EI

To account for the influence of 
cracking, softening and creep of con-
crete in addition to the yield of rein-
forcement, in lieu of a more accurate 
analysis, the ACI Code recommends 
the use of the following simple design 
equations for calculating the rigidity of 
slender concrete columns:
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where 
Ec	 =	 concrete modulus of elasticity
Ig	 =	 gross moment of inertia of the 

column cross section
Es	 =	 reinforcing bar modulus of 

elasticity
Ise	 =	 moment of inertia of the rein-

forcing bars in the section
βd 	=	 coefficient to account for long-

term loading
The ACI Code Commentary states 

that Eq. (4) was derived for small ec-
centricity ratios and high levels of 
axial load where the slenderness ef-
fects are most pronounced. 

PCI Treatment of  
Slenderness Effects

The PCI Committee on Prestressed 
Concrete Columns13 concluded that 
Eqs. (3) and (4) cannot be applied di-
rectly to prestressed concrete columns 
and bearing walls. As an alternative, 
the PCI Committee recommended 
equations for EI, which are based pri-
marily on the work of Nathan (1972-
1985). The latest form of these equa-
tions (considering short-term loading) 
is given as:17

EI
E Ic g

d

=
+

/ λ
β1  

                 (5)

λ θ η= ≥ 3 2.                  (6)

η = +2 5 1 6
0

. .               (7)
P

P

where
P	 =	 applied axial load on the col-

umn from first order analysis 
P0	=	 pure axial load capacity of the 

section 
Upper and lower limits were speci-

fied for η so that it should not be taken 
less than 6 nor more than 70.

For sections without a compression 
flange, θ is given by:

Fig. 2. Sectional analysis of prestressed concrete column based on compatibility and 
equilibrium requirements.

θ
κ

= −27
0 05

L r/
.              (8)          

where
κ	 =	 coefficient for the effective 

length of the column consider-
ing end restraints

L	 =	 column length
r	 =	 radius of gyration of the cross 

section
For sections with a compression 

flange, θ is given by:

θ
κ

= −35
0 09

L r/
.              (9)          

Summary of Comparison Between 
ACI and PCI Methods

It can be observed from the above 
that the main difference between the 
ACI and PCI methods is the expres-
sion of EI; while λ in the ACI method 
is between 2.5 and 5, it ranges in the 
PCI method from 3.2 to a value much 
larger than 5 depending on the slen-
derness ratio and whether the section 
is flanged or not. 

Theoretical flexural 
rigidity (EI)

Since in practice Mmid is not always 
easy to determine, Eq. (1) is modified 
to relate Mend to the nominal moment, 
Mn, from sectional analysis, assuming 
the same axial load. Accordingly, the 
design nominal moment may be writ-
ten for the case of equal end moments 
as: 

M M P

P

n end

cr

=
−

1

1  
             (10)          

in which the capacity reduction factors 
usually added in the ACI Code are not 
included for the purpose of this dis-
cussion. In practice, the code formula 
should be used. 

Eq. (10) may be rearranged to give 
the critical load for a slender PC col-
umn of length L, assuming the remain-
ing variables (P, Mend, and Mn) are 
known:
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P
P
M

M

cr
end

n

=
−1  

               (11)          

Recalling that Pcr is given by Eq. (2), 
and equating the two equations yield 
the following formula for the theoreti-
cal effective flexural rigidity, EI:

EI
P
M

M

L

end

n

=
−1

2

2

  
              (12)

π

In principle, Eq. (12) gives the most 
accurate value of flexural rigidity, EI, 
that would make Mn predictable from 
Mend or vice-versa. A set of EI values 
may be generated using Eq. (12) in 
which the Mend and P are obtained 
from finite element analysis, while Mn 
is obtained from sectional analysis. 
This approach of extracting the effec-
tive EI for slender PC and RC columns 
was commonly followed by several 
investigators18,8,15,19 to allow further 
examination of the effective rigidity. 

The main aim of previous studies 
on flexural rigidity of slender concrete 
columns as well as this study is to es-
tablish an approximate model for EI 
that simulates as closely as possible 
the theoretical relationship. In some 
of these studies, notably MacGregor et 
al.,18 Nathan,8 and Mirza,19 data were 
collected on effective rigidity for some 
influencing variables in order to allow 
a statistical analysis. 

In this paper, an alternative approach 
is followed for determining EI using 
two fundamental concepts that were 
found to lead to reasonable agreement 
with the theoretical results from the 
finite element analysis. 

Proposed procedure
The proposed procedure for comput-

ing the flexural rigidity, EI, for slender 
PC columns is based on two concepts. 
The first idea takes advantage of the 
fundamental relationship between 
sectional moment and associated cur-
vature. The second concept is based 
on the tangent modulus of a slender 
concrete column at onset of buckling 
under concentric axial compression as-
suming a nonlinear stress-strain curve 
of concrete. 

Nominal Bending and  
Axial Resistance 

Regardless of the method used to 
determine EI, the nominal moment and 
axial load strength envelope of a col-
umn section is generally needed for 
the design of PC columns. It is de-
veloped on the basis of equilibrium, 
strain compatibility, and constitutive 
relationships. Fig. 2 shows a schematic 
representation of the calculations for 
a rectangular cross section having a 
height, h, and a width, b. The strain 
distribution is assumed linear over the 
cross section with a compression limit 
of 0.003. 

For an assumed value of neutral axis 
depth, c, the strains in any layer of pre-
stressing steel can be computed from:

ε εpi pe
pid c

c
= +

−
  

  
       (13)0 003.

where
epe	 =	 effective strain in prestressing 

steel 
dpi	 =	 depth of a steel layer, i, taken 

from the compression face
The steel stress, fpi, is found from an 

appropriate constitutive relationship 
such as that given in Reference 20, 
and the stress in concrete is defined 
as 0.85f ′c over an area of β1cb, where 
β1 is a factor defined as the ratio of 
the equivalent rectangular stress block 
depth to the distance from the extreme 
compression fiber to the neutral axis 
depth. Multiplying the stresses in steel 
and concrete by their corresponding 
areas, gives the forces in steel and con-
crete as Fpi and Cc, respectively.

Equilibrium requires that the nomi-
nal axial load, Pn, and the nominal 
flexural moment, Mn, be computed 
respectively from:
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= − ∑               (14)
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where npl is the number of prestress-

Fig. 3. Proposed EI model composed of descending branch of Sectional EI and upper 
portion from linear part. Also shown is EI from finite element analysis (FEA) for a 
slender PC column.
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ing layers in a section.

Sectional Flexural Rigidity at 
Nominal Strength

The curvature, ψn, at any section at 
nominal strength can be written as:

ψ n
nM

EI
=                    (16)

The curvature is also defined from 
compatibility requirements as the ratio 
of nominal strain at the top of the sec-
tion to the depth of the neutral axis as 
shown in Fig. 2. Assuming the com-
pressive strain is equal to 0.003 as per 
ACI 318, the curvature becomes: 

ψ n c
= 0 003.

                  (17)

By rearranging Eqs. (16) and (17), 
the flexural rigidity EI is computed as:

EI
M cn=

0 003.
                 (18)

The load eccentricity at nominal re-
sistance is defined as:

e
M

P
n

n

=                    (19)

For different values of c, the nomi-
nal bending strength and the flexural 
rigidity can be computed, respectively, 
from Eqs. (15) and (18). Then, the 
flexural rigidity can be plotted versus 
the eccentricity [from Eq. (19)] lead-
ing to an EI-e diagram. A typical ex-
ample is shown in Fig. 3 (derived from 
the examples of Appendix B), where 
the rigidity is termed Sectional EI, and 
is compared with the EI obtained from 
finite element analysis [Eq. (12)] and 
termed EI-FEA. 

The Sectional EI has an ascending 
branch that increases to a maximum 
value (Point B) followed by a descend-
ing branch covering a wide range of 
eccentricities. It can be observed that, 

Fig. 4. Comparisons of proposed EI model with existing code models and finite 
element model for a slender PC column (from examples of Appendix B).

while the ascending branch is in total 
disagreement with the corresponding 
portion of the EI-FEA curve, the de-
scending branch is very similar to it. 

This observation was typical of all 
the prestressed columns studied. Ac-
cordingly, it is believed that the de-
scending branch of the curve may be 
utilized to model the flexural rigidity 
EI for this range of eccentricities, but 
a different approach should be used 
for the smaller eccentricity range. 

Note that the concept of using the 
Sectional EI was first introduced in 
1990 (Reference 15) for PC columns 
and was also discussed in 1992 by 
Zeng et al.21 for reinforced concrete 
columns. However, Zeng et al.21 did 
not distinguish between the ascending 
and descending branches of the EI-e 
curve.

Sectional Rigidity and Eccentricity 
at Peak Point

The boundary of the descending 
branch may be determined either by 
inspection when sufficient numerical 
values are generated, or by using an 
expression that gives the neutral axis 
associated with the value of EI at the 
peak point (Point B in Fig. 3). Ana-
lytically, this can be achieved by dif-
ferentiating EI with respect to c and 
equating the derivative to zero. 

This leads to the neutral axis depth 
at which flexural rigidity reaches its 
maximum value; for a rectangular sec-
tion it is: 

c
h

peak = 2

3 1β
                   (20)

in which h is the total depth of the 
section. 

Analyzing the section with c = cpeak 
and computing Mn and Pn from Eqs. 
(14) and (15) allow for calculating EIpeak 
using Eq. (18) and the corresponding 
epeak using Eq. (19). 

Linear EI Method for Small 
Eccentricity Range (e < epeak) 

The ascending part of the Sectional 
EI presented in Fig. 3 (up to Point 
B) is in total disagreement with the 
theoretical EI from the finite element 
analysis. The apparent reason for this 
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is that under small eccentricities col-
umn failure is initiated by stability 
at relatively lower strains, while the 
section analysis assumes material 
failure at a relatively larger strain. 

Therefore, the ascending branch 
is not applicable for eccentricities 
smaller than the peak eccentricity. 
However, it is believed that the use 
of the tangent modulus of a slender 
PC column under pure compressive 
axial load can help in developing 
an approximate EI expression for 

this range of eccentricities; first, let us 
define:

              (EI)tan = EtcIg	 (21)

where Etc is the tangent modulus of con-
crete, given later by Eq. (27), and Ig is 
the gross moment of inertia of the col-
umn cross section. 

The derivation of this equation is given 
in Appendix A. In the following discus-
sion, only the end result is provided.

In summary, the proposed flexural ri-

Fig. 5. Flowchart for 
implementing the 
proposed model for 
a slender column 
under equal end 
moments ignoring 
all reduction 
factors.
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0 003.

Eq. (22) represents the EI model 
proposed in this study for PC col-

Using any numerical method, find Mn and 
its associated c, that satisfy the condition
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umns; it is plotted in Fig. 4 for a typ-
ical slender PC column. The curve 
comprises two parts with minor dis-
continuity at epeak. The EI from the fi-
nite element analysis is also plotted on 
the same figure for comparison (EI-
FEA). A very good agreement in both 
trend and numerical values is observed 
between the two curves even though 
they were developed independently. 

The current ACI 318 equations are 
also plotted in Fig. 4 and identified as 
ACI-EI Eqs. (3) and (4), respectively. 
They show a complete insensitivity to 
a wide change in eccentricity, and are 
too conservative at small eccentrici-
ties and unsafe at larger eccentricities.

Finally, the PCI recommendations 
represented by Eq. (5) are shown in 
the figure for comparison. For e/h < 
0.13, Eq. (5) is extremely conserva-
tive, however, beyond that, it is in 
close agreement with the proposed EI 
in both trend and numerical values. 

ImplementATION OF 

proposed procedure
In the proposed method, the eccen-

tricity of loading plays a major role in 
determining EI as illustrated next for 
different situations. Fig. 5 shows two 
paths for the calculations depending 
on epeak. When the applied eccentricity 
is less than the peak eccentricity, the 
linear EI in Eq. (22a) must be used. 
On the other hand, when the applied 
eccentricity is larger than the peak 
eccentricity, the Sectional EI in Eq. 
(22b) must be used.

Once the EI is known, the method 
is similar to the ACI Code method (or 
PCI recommendations) and the same 
procedure may be followed. It should 
be noted that in the flowchart and the 
examples solved in this paper, all the 
reduction factors and the long-term 
factor were dropped for clarity sake, 
but they can be restored for actual 
designs.

Checking the Adequacy of Column 
Strength Under a Given Loading

Fig. 6. Implementing proposed model for two cases: (1) Checking the adequacy for a 
given loading at Point A; (2) Locating Point B based on knowing Point D.

Assume that a long column is sub-
jected to a factored equal end moment, 
MA, and an axial load, PA; determine 
whether the column is capable of 
carrying such a load. The loading is 
shown in Fig. 6 as Point A. 

The eccentricity of the applied load-
ing ea = MA /PA is first compared with 
epeak. Example 2 in Appendix B illus-
trates the computation of epeak. 

Assume it is found that ea ≤ epeak. 
Then, one needs to compute EItan and 
EIpeak and use Eq. (22a). Example 1 
in Appendix B shows how to compute 
EItan, while Example 2 shows how to 
compute EIpeak.

Once EI is obtained, the critical load 
at the eccentricity ea is computed from 
Eq. (2), and the magnified moment is 
calculated from Eq. (10). The magni-
fied moment is compared with the sec-
tional moment at the same axial load, 
PA. Note that Example 3 of Appendix 
B provides a numerical example illus-
trating this situation.

Assume it is found that ea ≥ epeak. 
For this situation, EI is computed 
based on the nominal moment at Point 
D, MD, and the associated c in accor-
dance with Eq. (22b). Locating Point 
D may require some interpolation 
when a sufficient number of (Mn, Pn) 
points are generated for the section. 

Alternatively, an iterative proce-
dure may be followed by assuming c 
and computing Mn, and Pn until ea ≈ 
Mn/Pn. Hence, EI is computed by Eq. 
(22b) after substituting the values of 
c and Mn. The remaining steps are as 
indicated above, and as illustrated in 
Example 4 of Appendix B.

Developing Points on the 
Interaction Diagram for a  
Slender PC Column 

For illustration purposes, Point B, 
shown in Fig. 6 on the slender PC 
column interaction diagram, is to be 
evaluated based on Point D of the sec-
tional interaction diagram. At Point D, 
the eccentricity is e = MD/PD. When 
e is greater than epeak, EI is computed 
using Eq. (22b) by substituting c and 
MD at that point.

On the other hand, if e is smaller 
than or equal to epeak, EI is computed 
using the linear form Eq. (22a). Based 
on EI, the critical load is evaluated for 
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that eccentricity using Eq. (2). 
Knowing Pcr and the associated e, 

the desired point on the slender load-
moment interaction diagram (MB,PB) 
may be obtained by successive ap-
proximation. The main equation for 
finding this solution is obtained by 
rearranging Eq. (10) such that:

P
P

P e

M

B
cr

cr

B

=
+1

1

  
                 (23)

                

Satisfying Eq. (23) begins by as-
suming that MB1 = MD and solving 
for an approximate value for PB. In 
general, the resulting value of PB is a 
reasonable estimate leading to the cor-
rect value. However, to improve the 
prediction, additional iterations can be 
carried out. Given PB, the associated 
moment MB1 from sectional analysis is 
obtained, then substituted in Eq. (23) 
leading to an improved estimate of PB. 

This process may be repeated for a 
few cycles until the change in PB is 
within an acceptable limit, which indi-
cates convergence. After convergence 
is obtained, the moment associated with 
PB is MB = PBe which represents Point 
B in Fig. 6. Example 5 of Appendix 
B illustrates this process for a typical 
point. The above approach was used to 
generate data for the parametric analy-
ses presented in the following section.

Application and 
comparison

The proposed EI model was used to 
generate end moment versus axial load 
interaction diagrams for a number of 
slender columns having prestressed 
reinforcement ratios between 0.2 to 
0.5 percent. A typical square [8 x 8 
in. (103 x 103 mm)] simply supported 
slender PC column is considered with 
equal end eccentricity as illustrated in 
Fig. 1. For these applications, all re-
duction factors are ignored and short-
term loading is considered. A com-
puter program was written to carry out 
the computations for a practical range 
of values of the main parameters. 

Connecting twenty independent 
pairs of end moment and axial load 
points generated the end moment ver-
sus axial load envelope from the fi-

Fig. 7. Comparison of interaction diagrams developed on basis of flexural rigidities 
suggested by the current study, ACI 318, and PCI with finite element analysis (FEA) 
for L/r = 52 and ρp = 0.2 percent.

Fig. 8. Comparison of interaction diagrams developed on the basis of flexural 
rigidities suggested by current study, ACI 318, and PCI with finite element analysis 
(FEA) for L/r =52 and ρp = 0.3 percent.
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nite element analysis. A typical point 
is obtained by applying moment and 
axial load to the column ends in in-
cremental form using a computer pro-
gram developed earlier.15 The program 
is based on the well-known finite ele-
ment principles with consideration to 
material and geometric nonlinearities. 
The method carries no assumption re-
lated to or utilization of the magnifica-
tion formula. 

Along with the proposed approxi-
mate method and the finite element 
analysis, the current EI models recom-
mended by the ACI Building Code, 
Eq. (4), and PCI recommendations, 
Eq. (5), were both used to generate 
end moment versus axial load interac-
tion diagrams. 

Comparisons were made with the 
results obtained from the proposed 

model (Proposed), finite element anal-
ysis (FEA), current code recommenda-
tions (ACI and PCI), and experimental 
test results. Having the four methods 
represented concurrently for each case 
help broaden our understanding of 
their capabilities and limitations.

Columns with Slenderness Ratio 
(L/r) = 52

The moment versus axial load inter-
action diagram based on the proposed 
EI method is presented in Fig. 7 for a 
column with a prestressed reinforce-
ment ratio of 0.2 percent; it has two 
branches with a distinctive balance 
point having coordinates of 0.37P0 
and 2.1M0, where P0 is the nominal 
concentric axial load capacity of the 
section, and M0 is the nominal flexural 

moment capacity of the section at zero 
axial load. 

The upper branch reaches a maxi-
mum value of P0 and the entire branch 
is on the conservative side of the 
curve predicted by FEA. For the lower 
branch, the decrease in axial load is 
associated with a decrease in moment 
and the branch is very close in shape 
and value to the FEA curve. Fig. 8 
shows the curves for the same column 
with a 0.3 percent prestressed rein-
forcement ratio and a similar trend is 
observed. 

The curve generated using the ACI 
method for ρp = 0.2 percent has two 
branches similar to the proposed 
method with a balance point having 
an axial load of 0.29P0 and a moment 
of 2.0M0. While the upper branch is in 
agreement with the proposed method 
and on the conservative side, the lower 
branch predicts higher strengths and it 
is on the unsafe side with respect to the 
FEA results. Increasing the percentage 
of prestressing steel affects the bal-
anced moment as shown in Fig. 8 and 
Table 1 but leads to similar trends.

The curve generated from the PCI 
approach for ρp = 0.2 percent has 
slightly different features (see Fig. 7). 
The balanced point has coordinates 
of 0.34P0 and 1.71M0. This curve has 
a noticeable middle branch where the 
drop in axial load from 0.4P0 to 0.21P0 
occurs without much of a change in 
moments. Below 0.21P0, the moment 
decreases until it reaches a minimum 
value of 0.86M0 at 0.02P0 before in-
creasing again to M0. This curve rep-
resents the most conservative method 
among the four approaches shown in 
the figure. Similar observations can be 
made for ρp = 0.3 percent as shown in 
Fig. 8 and Table 1.

Columns with Slenderness Ratio 
(L/r) = 100

This is a square column such as de-
scribed in the examples of Appendix 
A. The moment versus load interac-
tion curve generated by the proposed 
method for ρp = 0.3 percent is shown 
in Fig. 9; it shows three parts: the 
upper part starts at a maximum load 
of 0.68P0 and extends linearly to the 
point defined by epeak at which the 
axial load is 0.26P0 and the moment is 

Fig. 9. Comparison of interaction diagrams developed on basis of flexural rigidities 
suggested by current investigation, ACI 318, and PCI with finite element analysis 
(FEA) for L/r = 100 and ρp = 0.3 percent.

Table 1. Summary of results for slenderness ratio (L/r) = 52.

	 Method of computing 	 Maximum	                                      Balanced point
	 EI	 load	 ρp = 0.2 percent	 ρp = 0.3 percent
	 Proposed	 1.0P0	 (2.1M0, 0.37P0)	 (1.53M0, 0.36P0)
	 ACI	 1.0P0	 (2.0M0, 0.29P0)	 (1.51M0, 0.25P0)
	 PCI	 0.95P0	 (1.71M0, 0.34P0)	 (1.27M0, 0.33P0)
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0.75M0. 
Below this part comes the middle 

part, which extends in a nonlinear form 
to a point with coordinates 0.04P0 and 
0.68M0. The lower part extends to the 
pure flexure case in a linear form. As 
ρp is increased to 0.4 and 0.5 percent 
(see Figs. 10 and 11), respectively, the 
main change occurs in the middle part, 
which becomes flatter. 

Overall, these strength envelopes 
have similar shapes to the correspond-
ing curves from FEA and are on the 
conservative side except for the con-
centric load, which is nearly identi-
cal to that computed by FEA. Table 2 
shows the numerical coordinates of the 
key points for these cases.

The curve generated by the ACI 
method for ρp = 0.3 percent has a 
maximum load of 0.14P0. Compared 
to the FEA curve, it underestimates 
strength for loads higher than 0.14P0 
and overestimates the strength for 
loads lower than 0.14P0. Moreover, 
the overall shape of the curve is in dis-
agreement with the trend established 
by FEA and confirmed by the pro-
posed model. Similar observations are 
made when ρp is increased to 0.4 and 
0.5 percent as shown in Figs. 10 and 
11, respectively.

The curve generated by the PCI 
method for ρp = 0.3 percent is char-
acterized by three distinctive parts. 
The maximum axial load is 0.26P0, 
which constitutes only 37 percent of 
that predicted by FEA. The middle 
part is characterized by a steep drop 
in axial load with a slight variation in 
moments; it starts from axial load of 
0.14P0 and the moment of 0.77M0, 
and extends to a point of 0.04P0 and 
0.66M0 before the moment increases 
to M0 at zero axial load. The middle 
part of the diagram becomes more 
conservative as ρp is increased to 0.4 
and 0.5 percent, as shown in Figs. 10 
and 11, respectively.

Comparison with  
test results

The finite element analysis model 
used to verify the proposed EI model 
of this study was compared with the 
results of 121 column tests obtained 
from various sources in the technical 
literature.6,21,11 A summary of the test 

Fig. 10. Comparison of interaction diagrams developed on basis of flexural rigidities 
suggested by current investigation, ACI 318, and PCI with finite element analysis 
(FEA) for L/r =100 and ρp = 0.4 percent.

Fig. 11. Comparison of interaction diagrams developed on basis of flexural rigidities 
suggested by current study, ACI 318, and PCI with finite element analysis (FEA) for 
L/r = 100 and ρp = 0.5 percent.
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results is shown in Table 3. 
The average of the Ptest to PFEA ratio 

is shown for each group of tests hav-
ing a range of 0.955 to 1.052 with 
an overall average ratio of 1.0. The 
breakdown of prediction accuracy is 
illustrated in the table. The predicted 
load versus the test load for all of the 
columns is presented in Fig. 12.

Table 3 and Fig. 12 confirm first the 
validity of the finite element model 
(FEA) used to conduct the predictions. 
Reasonable differences between pre-
dicted and experimental results are 
understandable due to a number of 
influencing factors, which include un-
certainty in material properties and the 

constitutive relationships. Also during 
the testing, accidental eccentricity or 
restraints due to friction at the ends of 
columns may have significant effects 
on the ultimate load. It was observed, 
for instance, that two otherwise identi-
cal columns led to ultimate loads that 
are different by 12 percent. 

Six slender prestressed concrete col-
umns tested by Carinci and Halvorsen 
in 198622 were chosen to illustrate 
the predictive capability of the differ-
ent methods considered in this study. 
They are selected to represent an im-
portant case of low reinforcement ratio 
and high slenderness.

Three of the columns are among 

Table 2. Critical points on interaction diagrams for slender PC columns (L/r) = 100.

	 Method of		  ρp = 0.4 percent			   ρp = 0.5 percent
	 computing EI	 Max. P	 Middle point	 Lower point	 Max. P	 Middle point	 Lower point	
	 Proposed	 0.69P0	 (0.62M0, 0.27P0)	 (0.71M0, 0.06P0)	 0.7P0	 (0.56M0, 0.26P0)	 (0.71M0, 0.075P0)
	 ACI	 0.33P0	 (0.80M0, 0.14P0)	 —	 0.34P0	 (0.76M0, 0.14P0)	 —
	 PCI	 0.26P0	 (0.67M0, 0.14P0)	 (0.63M0, 0.04P0)	 0.26P0	 (0.61M0, 0.13P0)	 (0.61M0, 0.04P0)

Table 3. Summary of comparison with test results of PC columns.

	 Source of	 No. of	 Average of	        No. of columns for which the PFEA is within
	 tests	 tests	 Ptest/PFEA	 5 percent	 10 percent	 15 percent	 20 percent
	 Aroni6	 36	 1.052	 13	 23	 32	 33
	Carinci and Halvorsen21	  36	 0.955	 20	 29	 35	 36
	 Yuan’s concentric-	

27	 0.960	 12	 23	 27	 27
	 short columns11

	Yuan’s long columns11	 22	 1.047	 6	 16	 19	 22
	 Total	 121	 1.00	 51	 91	 113	 118

Fig. 12. Finite element predicted load versus test load at failure for 121 slender 
columns obtained from technical literature. 

those predicted with a 5 percent accu-
racy and the other three are from those 
predicted with a 10 percent accuracy. 
The results for six columns are shown 
in Fig. 13 along with the FEA gener-
ated curve, the proposed curve, the 
ACI 318 Eq. (4) curve, and the curve 
based on the PCI recommendations. 

The tests confirm the overall ac-
curacy of the upper branch of the pro-
posed method, despite some overesti-
mated predictions that are considered 
within a reasonable limit as discussed 
earlier. The test results also confirm 
the degree of conservatism in the pre-
dictions based on ACI 318 or the PCI 
recommendations. Note that for com-
parison purposes, no reduction factors 
were used in any curve prediction.

CONCLUDING REMARKS
A comprehensive nonlinear finite 

element analysis suggests that the flex-
ural rigidity, EI, of prestressed con-
crete columns varies widely with the 
load eccentricity and other material 
and reinforcement parameters such as 
concrete strength, prestress level, rein-
forcement ratio and slenderness ratio. 
This variability is so complex that it 
cannot be described adequately by a 
simple formula such as that attempted 
in the ACI Code or the PCI recom-
mendations. 

The methodology proposed in this 
paper to estimate the flexural rigidity 
requires moderate analytical effort; it 
simulates very well the predicted ana-
lytical results while also incorporating 
results from experimental tests. Once 
the flexural rigidity is determined, the 
proposed method offers the advantage 
to simply integrate in the generally 
accepted procedure of the ACI Code 
to determine the critical buckling load 
used in the magnification formula, and 
thus to allow a prediction of nominal 
resistance. 

In comparison to predictions from 
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the finite element analysis, the pro-
posed method incorporates both trends 
and values significantly better than ei-
ther the ACI Code formula or the PCI 
recommendations. The effective rigid-
ity using the ACI Code shows very lit-
tle resemblance to the rigidity obtained 
from theoretical considerations. 

The effective rigidity using the PCI 
recommendations is generally on the 
safe side; however, it is too conserva-
tive particularly in the low eccentricity 
range and higher slenderness ratios. 
While the PCI approach is certainly 
acceptable for design, the correspond-
ing safety margin may be too large in 
some cases. 

Since the proposed method de-
scribed here provides a better answer 
overall without sacrificing safety, it is 
recommended for inclusion in future 
versions of the ACI Code; it is also 
recommended as a tentative procedure 
to replace the PCI recommendations to 
determine the flexural capacity of pre-
stressed concrete columns throughout 
the range of slenderness ratios. 
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Following the tangent modulus theory,23,24 the buckling 
load for a hinged prestressed concrete column considering 
nonlinear properties of the materials is given by: 

P
E I E I

Lcr
tc c tp p=

+π 2

2

( )  
                           (24)

                

where
Etc	=	tangent modulus of concrete 
Etp	=	tangent modulus of steel reinforcement
Ic 	 =	moment of inertia of concrete 
Ip 	 =	moment of inertia of steel reinforcement cross section

Equilibrium and compatibility conditions lead to:

P A E A Ecr c sc p sp pe= − −ε ε ε  (   )                     (25)

                

where
Esc	=	secant modulus of concrete
Esp	=	secant modulus of steel reinforcement
Ac 	=	cross-sectional area of concrete
Ap 	=	cross-sectional area of steel reinforcement
εpe	=	effective strain in prestressing steel

Since the area of steel is generally small, the contribution 
of the steel can be neglected from both equations. Conse-
quently, Eqs. (24) and (25) can be combined to produce Eq. 

Appendix A — derivations of EItan

(26):

P
E I

L
A Ecr

tc g
g sc= =

π
ε

2

2                       (26)

                

where 
Ig	 =	moment of inertia of cross section
Ag	=	area of gross cross section

The concrete tangent modulus Etc can be obtained by 
differentiating the stress-strain relationship with respect to 
strain. Using, for instance, the parabolic equation suggested 
by Hognestad25 leads to: 

E
f

tc
c= ′ −





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2
1

0 0ε
ε
ε

                              (27)

                

where ε0 is the concrete strain at maximum strength. 
For normal weight concrete, ε0 can be estimated by the 

following expression:26 

ε0 0 001648 0 000114= + ′. .                       (28)

                

fc

in which f ′c is in ksi units.
Similarly, the concrete secant modulus Esc at a particular 

strain can be obtained by dividing the stress in the stress-
strain relationship by the strain. Using the parabolic relation-
ship of Hognestad leads to: 

E
f

sc
c= ′ −





ε

ε
ε0 0

2                             (29)

                

Substituting the expressions of Etc and Esc into Eq. (26) 
and solving for the strain leads to:
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Solv-
ing Eq. (30) and substituting the resulting strain in Eq. (27) leads 
to what is defined here as the concrete tangent modulus for a given 
slender column under concentric axial load. The tangent flexural 
rigidity is obtainable by substituting Etc and the gross moment of in-
ertia for the cross section, Ig, into Eq. (21), that is:

                                (EI)tan = EtcIg	 (21)
The five examples presented in this Appendix are in reference to 

a slender column simply supported with equal end eccentricity as 
shown in Fig. 1. For these examples, all reduction factors are ignored 
and short-term loading is considered.

Geometrical data: L = 231 in., section area = 8 x 8 sq in.,  
r = 0.29h = 2.31 in., L/r = 100.

Material data: f ′c = 6 ksi, ρp = 0.3 percent, fpu = 270 ksi,  
fpe = 140 ksi.

For the section under consideration, several points of the axial 
load versus moment interaction diagram are presented in Table B1. 
The table also gives the eccentricity and the Sectional EI for each 
point and was used to develop Figs. 3 and 4. 

EXAMPLE 1: Shows How Concentric Critical Load is Computed 
for a Typical Slender PC Column

For this case of zero eccentricity, the required EI given by Eq. 
(22a) is EItan computed as follows:

(a) From Eq. (28), the strain at maximum stress of concrete, ε0, is 
calculated to be:

ε0 	= 0.001648 + 0.0001146 × 6 

Appendix B — Numerical Design Examples

Table B1. Sample data for a typical column from Examples 1 to 5.

			           From sectional analysis	                    Slender column L/r = 100
		  Eq. (15)	 Eq. (14)	 Eq. (18)	 Eq. (19)	 PBe	 Eq. (23)
	 c	 Mn	 Pn	 EI/EcIg	 e/h	 MB	 PB

	 –	 0.00	 314.61	 –	 0.00	 0.00	 215.32
	 8.00	 255.18	 225.47	 0.486	 0.14	 114.21	 100.91
	 7.49	 284.40	 209.18	 0.507	 0.17	 120.53	 88.65
	 7.31	 292.82	 203.74	 0.510	 0.18	 121.97	 84.86
	 7.14	 300.58	 198.28	 0.512	 0.19	 123.08	 81.19
	 6.97	 307.67	 192.82	 0.511	 0.20	 126.06	 79.00
	 5.77	 338.97	 154.20	 0.466	 0.27	 139.71	 63.56
	 5.09	 342.56	 131.75	 0.415	 0.33	 140.36	 53.98
	 4.91	 341.85	 126.08	 0.400	 0.34	 139.84	 51.57
	 4.74	 340.51	 120.38	 0.385	 0.35	 139.11	 49.18
	 3.89	 324.31	 91.35	 0.300	 0.44	 132.31	 37.27
	 3.71	 319.18	 85.43	 0.283	 0.47	 130.44	 34.91
	 3.54	 313.41	 79.45	 0.265	 0.49	 128.46	 32.57
	 3.03	 292.13	 61.28	 0.211	 0.60	 122.16	 25.63
	 2.86	 283.61	 55.16	 0.193	 0.64	 120.06	 23.35
	 2.69	 274.30	 49.02	 0.176	 0.70	 117.93	 21.08
	 2.00	 228.90	 25.06	 0.109	 1.14	 112.06	 12.27
	 1.31	 164.77	 0.09	 0.052	 99.00	 164.77	 0.00

	 = 2.332 × 10-3

(b) Substituting the values of L, r and ε0 into Eq. 
(30), the strain at critical load, ε, is found to be:
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6

(c) Substituting the values of ε, ε0, and f ′c into Eq. 
(27), gives the value of the tangent modulus of elas-
ticity of concrete, Etc, at concentric critical load: 

Etc = ×
×

− ×
×







=

−

−

−
2 6

2 33 10
1

786 10

2 33 10

3410

3

6

3. .
  

 ksi (23.5 GPa) 

                

(d) Substituting the values of Etc, and the moment 
of inertia of the cross section, Ig, into Eq. (21), gives 

the flexural rigidity, EI, as:

EItan	= Etc × Ig 
	 = 3410 × 84/12 
	 = 1163855.7 kip-in.2 (3341 kN-m2)

(e) The required concentric critical load, Pcr, is 
obtained by substituting the values of EI and L into 
Eq. (2), that is:

Pcr = ×

=

π 2

2

1163855 7

231
215 3

.

.  kips (958 kN) 

                

EXAMPLE 2: Shows How the Maximum Flexural 
Rigidity, EIpeak, is Obtained for a Typical PC 
Column Section 

(a) Using Eq. (20) and substituting for the value 
of h = 8 in., and β1 = 0.75, gives:

cpeak = ×
×

=

2 8

3 0 75
7 11

.
.  in. (181 mm)

                

(b) For c = 7.11 in., the nominal moment and axial 
load (Mn and Pn) associated with cpeak are given by 
Eqs. (14) and (15) leading to Mn = 302 kip-in., Pn = 
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197.3 kips.

(c) From Eq. (18), the maximum flexural rigidity is: 

EIpeak = ×

=

302 7 11

0 003

715 740

.

.

,  kip - in.  (2054 kN - m )

                

2 2

(d) The corresponding eccentricity is given by Eq. (19) as: 

epeak	= 302/197.3 
	 = 1.53 in. (39 mm)

EXAMPLE 3: Checking the Adequacy of Column 
Strength (Case 1)

Assume that the above column is subjected to a load-
ing represented by Point A in Fig. 6 with PA = 85 kips and 
MA = 116 kip-in. Using the proposed method, compute the 
moment at Point A1 and check if the column can carry the 
loading.

(a) Compute the eccentricity for the given loading: 

ea 	= 116/85 
	 = 1.365 in. (35 mm)

(b) Because the applied eccentricity is lower than epeak, 
use the linear EI relationship given by Eq. (22a):

EI = − −



 ×

=

1163856
1163856 715740

1 53
1 365

764 066

  
  

 kip - in.  (2193 kN - m ) 

                

2 2

.
.

,
	 = 764,066 kip-in.2 (2193 kN-m2)

(c) Based on the computed value of EI, the critical load at 
this eccentricity is calculated by Eq. (2):

Pcr = ×

=

π 2

2

764066

231
141 3.  kips (629 kN)

(d) The magnified moment is given by Eq. (10):

MA1

116

1
85

141 3
291

=
−

=

  

 kip - in. (32.9 kN - m)
.

This moment is less than the sectional moment of 319 
kip-in. at a load of 85 kips, indicating that the column can 
indeed carry the applied load.

EXAMPLE 4: Checking the Adequacy of Column 
Strength (Case 2)

Assume that the above column is subjected to a loading 

represented by Point A in Fig. 6 with PA = 55 kips and MA 
= 149 kip-in. Using the proposed method, compute the mo-
ment at Point A1 and check if the column can carry the load.

(a) Compute the eccentricity of the given loading: 

ea 	 = 149/55 
	 = 2.71 in. (69 mm)

(b) Because the eccentricity of the loading is higher than 
the peak eccentricity, the flexural rigidity is obtained from 
Eq. (22b). For such an eccentricity, sectional analysis pro-
vided Mn = 341.85 kip-in. and Pn = 126.08 kips, at a neutral 
axis, c = 4.91 in. Thus, Eq. (22b), gives:

EI = ×

=

341 85 4 91

0 003

559 495

. .

.

,  kip - in.  (1606 kN - m )2 2

(c) The critical load at this eccentricity is given by Eq. (2):

Pcr = ×

=

π 2

2

559495

231
103 5.  kips (460 kN)

(d) The magnified moment is given by Eq. (10): 

MA1

149

1
55

103 5
318

=
−

=

  

 kip - in. (35.9 kN - m)
.

This moment is outside the section interaction diagram; 
hence, the column is not capable of carrying this load.

EXAMPLE 5: Development of a Typical Point on the 
Interaction Diagram

For the above column, locate Point B in Fig. 6 on the 
slender interaction diagram given Point D with MD = 341.85 
kip-in. and PD = 126.08 kips as shown in Table B1.

(a) The eccentricity for this loading is e = 341.85/126.08 
= 2.71 in.; it is higher than the eccentricity at the peak (epeak 

= 1.53 in.). Accordingly, EI is obtained from Eq. (22b) as 
illustrated in Example 4 (EI = 559495), and the associated 
critical load is Pcr = 103.5 kips (460 kN).

(b) The first estimate of the load is obtained by using Eq. 
(23): 

PB =
+ ×

=

103 5

1
103 5 2 71

341 85
56 85

.
. .

.
.

  

 kips (253 kN)
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(c) The second estimate is obtained by substituting the 
moment from the sectional interaction diagram that cor-
responds to the axial load PB = 56.85 kips, which is deter-
mined in this case by interpolation leading to 286.0 kip-in. 
Solving Eq. (23) yields: 

PB =
+ ×

=

103 5

1
103 5 2 71

286 0
52 25

.
. .

.
.

  

 kips (232 kN)

(d) Step (c) may be repeated until the variation in PB is 
of negligible magnitude. The correct answer for this case is 
PB  = 51.57 kips, which is close to the second trial shown in 
Step (c).

(e) The corresponding moment for the slender column is 
MB = 51.57 × 2.71 = 139.7 kip-in. (15.8 kN-m).

Ac	 =	 cross-sectional area (sq in.)
Ap	 =	 cross-sectional area of prestressing steel (sq in.)
Ag	 =	 area of gross cross section (sq in.)
b	 =	 width of rectangular cross section (in.)
c	 =	 neutral axis depth measured from compressive 

face of section (in.)
Cc	 =	 concrete compressive resultant force (kips)
cpeak	 =	 neutral axis depth that gives maximum sectional 

EI (in.)  

Appendix C — Notation

dpi 	 =	 depth of steel layer, i, from compression face of 
section (in.)

E	 =	 modulus of elasticity (ksi)
Ec	 =	 modulus of elasticity of concrete (ksi)
EIpeak 	=	 maximum flexural rigidity from sectional analy-

sis (kip-in.2) 
EItan	 =	 tangent flexural rigidity of slender column under 

concentric loading (kip-in.2)
epeak	 =	 eccentricity at which sectional flexural rigidity 

becomes maximum (in.)
Es	 =	 modulus of elasticity of reinforcing bar (ksi)
Esc	 =	 secant modulus of concrete (ksi)
Esp	 =	 secant modulus of  prestressing steel (ksi)
Etc	 =	 tangent modulus of concrete (ksi)
Etp	 =	 tangent modulus of prestressing steel (ksi)
f ′c 	 =	 specified compressive strength of concrete (ksi)
fpi 	 =	 prestressing steel stress in typical layer (ksi)
Fpi 	 =	 prestressing steel force in typical layer (kips)
h	 =	 height of rectangular cross section (in.)
I	 =	 moment of inertia of column cross section (in.4)
Ic	 =	 moment of inertia of cross-sectional area of con-

crete (in.4)
Ip	 =	 moment of inertia of cross-sectional area of pre-

stressing steel (in.4)
Ig	 =	 gross moment of inertia of column cross section 

(in.4)
Ise	 =	 second moment of area of reinforcing bars in 

section (in.4)
L 	 =	 column length (in.)  
M0 	 =	 nominal flexural moment capacity of the section 

at zero axial load (kip-in.)
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