Analyzing the Evolution of Testing Library Usage
in Open Source Java Projects

Ahmed Zerouali
Software Engineering Lab
University of Mons, Belgium
Email: ahmed.zerouali@umons.ac.be

Abstract—Software development projects frequently rely on
testing-related libraries to test the functionality of the software
product automatically and efficiently. Many such libraries are
available for Java, and developers face a hard time deciding which
libraries are most appropriate for their project, or when to mi-
grate to a competing library. We empirically analysed the usage of
eight testing-related libraries in 4,532 open source Java projects
hosted on GitHub. We studied how frequently specific (pairs of)
libraries are used over time. We also identified if and when library
usages are replaced by competing ones during a project’s lifetime.
We found that some libraries are considerably more popular than
their competitors, while some libraries become more popular
over time. We observed that many projects tend to use multiple
libraries together. We also observed permanent and temporary
migrations between competing libraries. These findings may pave
the way for recommendation tools that allow project developers
to choose the most appropriate library for their needs, and to be
informed of better alternatives.

Index Terms—Software Evolution; Library Usage; Library
Migration; Empirical Analysis; Java; Open Source; Testing

I. INTRODUCTION

Software systems are commonly implemented on top of
frameworks and rely on external libraries to reuse complex
functionality and increase productivity [1]. Such software
libraries typically come with a well-documented API.

In order to decide whether or not to use a particular library,
software developers can rely on how the library has been used
in other projects, how the library evolves over time, and when
and why other projects have upgraded to a new library version
or migrated to a competing library. To aid in such decisions,
historical evidence of library usage in a large corpus of software
projects is needed, which is the aim of the current paper.

According to a blog post [2], testing libraries (including,
JUnit, TestNG and the Spring testing library), matching libraries
(Hamcrest and the more recent AssertJ) and to a lesser
extent mocking libraries (e.g., Mockito, EasyMock and their
PowerMock extension) are among the most popular Java
libraries on GitHub.

Because of the importance of testing in software develop-
ment, and because of the availability of multiple competing
libraries, it is relevant to study the evolution of how these
libraries are used, as well as migrations from using one library
to another one. This is the focus of our empirical study, in
which we analyse the evolution of the usage of the eight

978-1-5090-5501-2/17/$31.00 © 2017 IEEE

503

Tom Mens
Software Engineering Lab
University of Mons, Belgium
Email: tom.mens@umons.ac.be

aforementioned testing-related libraries in 4,532 open source
Java projects hosted on GitHub.

II. RELATED WORK

Many researchers analysed the evolution of library and API
usage. Teyton et al. [3], [4] determined sets of similar libraries,
including testing-related ones, in a large corpus of software
projects. The results can be used for suggesting alternative
libraries to developers. They analysed how and why library
migrations occur, and found migrations to be relatively rare,
with few projects being subject to more than one migration. Our
research provides more specific details about testing-related
library usage.

Lammel et al. [5] carried out AST-based API usage analysis
on a large corpus of open source Java projects. They studied the
usage of a list of APIs extracted from built projects, reference
projects and unbuilt projects. De Roover et al. [6] explored
library popularity in terms of source-level usage patterns.

Suhas et al. [7] manually analysed the Jira issues to identify
logging library migrations within Apache Software Foundation
projects. They found that 33 out of 223 projects underwent
at least one logging library migration and that flexibility,
performance improvement, code maintenance, functionality and
dependency are the main drivers for logging library migration.

Businge et al. [8] investigated the reasons behind the internal
interfaces used by developers. They detected cases where
developers do not read documentation or guidelines, and
where they use internal interfaces to benefit from advanced
functionalities.

Goeminne et al. [9], [10] empirically analysed the evolution
of Java database access libraries. This paper follows a similar
approach for testing-related Java libraries.

III. METHODOLOGY

We studied open source projects extracted from GitHub.
We selected Java projects because Java is the most popular
programming language according to the TIOBE index!. We
selected GitHub as a data source because we need full access to
the source code history in order to carry out our analysis, and
because it’s the largest host of Java source code (containing
over 900K Java projects).

Thttp://www.tiobe.com/tiobe-index/ (November 2016)

SANER 2017, Klagenfurt, Austria



We decided to study the most popular testing libraries based
on their number of usages in the Maven Central Repository?:
JUnit, TestNG, Spring test, Arquillian and Spock framework.
We added the Hamcrest and AssertJ libraries that are often used
as matcher frameworks to facilitate writing more complex tests.
We also considered the most used mocking libraries in Maven®:
Mockito, EasyMock, PowerMock, JMock and JMockit. Libraries
for non-functional testing (such as UI testing, performance
testing, acceptance testing, load testing, etc.) were excluded,
but could be considered very easily in a follow-up study.

We began with the GitHub Java Corpus of 14,807 open
source Java projects extracted by Allamanis and Sutton [11]
and obtained from Github Archive*. We removed 1,748 projects
that are no longer available on GitHub. Based on popularity
measured by number of stars, we added 7,629 popular GitHub
projects satisfying the same filters as those applied by the
GitHub Java Corpus. More specifically, we ignored projects
that were never forked or that were forks of other projects. This
filtering reduces the risk of obtaining results statistically biased
by groups of strongly related individuals in the considered
project population.

This led us to 20,688 projects as potential candidates for
our empirical analysis. We created a local clone of the GitHub
repository for each of them. We further restricted ourselves to
those projects relying on Maven, in order to be able to identify
project dependencies defined in Project Object Model files
(pom.xml). We also restricted ourselves to projects with an
active lifetime of at least two years, which seems an acceptable
minimal duration for detecting potential migrations of library
usage during the projects’ lifetimes. This lead us to 6,424
remaining projects.

Each month, we analysed the first snapshot of each consid-
ered project, by looking at the import statements in each Java
file of the project. We found 4,532 Java projects that used at
least one of the considered Java libraries. For these projects,
we analysed in total 125,580 commits, 10,033,726 Java source
code files and 31,264,586 import statements for the considered
libraries.

IV. EMPIRICAL EVALUATION

The research questions in this paper are similar to the ones in
[10], [12]. Our focus is on the evolution of testing-related Java
libraries. We present each question and its results by means
of tables, visualizations and statistical tests in the following
subsections.

RQ@Q, Which Are the Most Frequently Used Testing-Related
Libraries?

Figure 1 shows the relative usage frequency of each of
the 4,532 Java projects in our corpus that used at least one
of the considered libraries at least once during its lifetime
(i.e., at least one Java file in at least one commit imported
that library). We observe a high imbalance. JUnit was by

Zhttps://mvnrepository.com/open-source/testing- frameworks
3https://mvnrepository.com/open-source/mocking
“https://www.githubarchive.org/

far the most popular: off all considered libraries, projects are
very likely (97%) to use JUnit. In comparison, the competing
TestNG library is used in only 11.9% of the projects. Of the
considered mocking libraries, Mockito was by far the most
used library, being used by 31.3% of all projects. EasyMock
and PowerMock are considerably less popular, corresponding
to 9.3% and 4.7% of all projects, respectively. The matching
library Hamcrest (22.5%) is considerably more popular than
its competitor AssertJ, which can be explained by the fact that
AssertJ is much more recent. However, since its appearance in
March 2013 its popularity is increasing.

100 35 25
30
80 20
. 25
X
W 60 20 15
8
S 40 15 10
& 10
20 I 5
. =
, AAN._ | im_
£295T% £33 %% 3 2
g.g;ggc S 0 o0 o © 4 ]
253f3s jgiffi ¢ i
o <T = H 5 <

Fig. 1. Percentage of projects in which a given library is used at least once
during its lifetime. Testing libraries are shown in blue, matcher libraries in
green, and mocking libraries in red.

We decided to focus on those eight libraries that are used
by a sufficient number of projects in our corpus. Therefore, we
excluded the 5 least frequent libraries in Figure 1: Arquillian
and Spock, two testing frameworks for writing integration tests;
dbUnit, a unit testing framework for database-driven projects;
and two less popular mocking libraries JMock and JMockit.

RQs When Are Libraries Introduced in a Project’s Lifetime?

For each project, we analysed after how long each used
library got introduced (i.e., the time interval between the first
project commit and the first commit where at least one Java
project file imported the considered library). Figure 2 shows
that the considered libraries are introduced early, regardless of
their purpose. 56% of all projects started using at least one
of these libraries as early as their first commit on GitHub.
This could be explained by the fact that these projects were
already in development before coming to GitHub, or because
they follow a test-driven development process, implying that
tests are introduced very early in the project’s lifetime.

60

——— matching

50 —— mocking
X 40 —— testing
2
g 30
<
a 20

10

0

0 2 4 6 8 10 12 14 16

# months

Fig. 2. Number of months after the first commit before introduction of one
of the testing-related libraries.

504



Unsurprisingly, we observed that JUnit and TestNG are the
first libraries to be introduced in respectively 88% and 57% of
the projects in which they occur with other libraries. AssertJ
was never found to be introduced first, probably because it is
a much more recent library.

Table I compares the relative order of introduction of the
different library types. As expected, testing libraries tend to
be introduced before matching (71.6%) and before mocking
(57.9%) libraries. In 41.4% cases, mocking libraries are
introduced together with testing libraries, and in 50.3% cases
they are introduced before matching libraries.

TABLE I
INTRODUCTION ORDER OF TESTING-RELATED LIBRARY TYPES
A—B | #projects | Abefore B | AaftrB | A=B
testing—-matching | 983 71.6% 1.0% 27.4%
testing—mocking | 1443 57.9% 0.7% 41.4%
mocking—matching | 523 50.3% 21.8% 27.9%

RQs3 Which Libraries Are Used Over a Project’s Lifetime?

We analysed if projects use different libraries over their

lifetime. The results are shown using Venn diagrams in Figure 3.

JUnit occurs as the only testing library in 61.3% of all projects
(2,777 in total) and 97% of all considered projects have used
JUnit at least once. TestNG is used as the only testing library
much less frequently, in 2.3% (106) of all projects using at
least one of the considered libraries, while 11% of all projects
have used TestNG at least once in their lifetime. All projects
that used either Hamcrest, Spring or AssertJ also used at least
one other library during their lifetime. In the overwhelming
majority of the cases, Hamcrest and AssertJ are used in projects
that have used JUnit in their lifetime.

RQ4 Which Libraries Are Used Simultaneously in Projects?

Of all projects that used at least two of the considered
libraries during their lifetime, we computed which pairs of
libraries were actually being used simultaneously in a specific
project snapshot (not necessarily within the same Java files).
Table II shows the percentage of projects using a library A
that also used library B simultaneously at least once during
their lifetime.

Nearly all projects that use Hamcrest, Assert], Spring,
Mockito or PowerMock also use JUnit (values >94%). Those
that don’t, tend to use TestNG instead. Unsurprisingly, JUnit is
used much less frequently with its competitor TestNG: projects
that use JUnit rarely use TestNG (7%). However, more than 3
out of 5 projects that use TestNG also used JUnit simultaneously
at some point (64%). This may indicate that projects using
TestNG actually migrated away from JUnit somewhere during
their lifetime. RQg studies this library migration phenomenon
in more detail.

Projects using Hamcrest rarely use Assert] (7.36%). The
other way round, more than 2 out of 5 projects that use AssertJ
also use Hamcrest simultaneously (40.8%). This may be a sign
that many projects that use Hamcrest are in the process of
migrating to AssertJ.

EasyMock

Fig. 3. Number of projects using different testing-related libraries at least
once during their lifetime (not necessarily simultaneously).

For the mocking libraries, PowerMock is mostly used as
extension of Mockito (86.5%), and much less as an extension
of EasyMock (19.1%). As expected, projects that use Mockito
rarely use EasyMock (8.23%). However, more than one out of
four projects that use EasyMock also use Mockito (27.5%). This
is relatively a high percentage if we consider that EasyMock
and Mockito are competitors.

TABLE II
HEATMAP SHOWING THE PERCENTAGE OF PROJECTS USING LIBRARY A
(LINES) THAT ALSO USE LIBRARY B (COLUMNS) SIMULTANEOUSLY AT
LEAST ONCE DURING THEIR LIFETIME. (LIGHTER BACKGROUNDS
CORRESPOND TO HIGHER PROPORTIONS.)

JUnit TestNG
PRRTIA 7% 12% 23% 4%
TR 13% 18% 6%
2% 7% 8%
Hamerest o% 1% 7%EX 10%
16% 23% A% 1%
1% 19% 2% %I 8%
14% 2% 24% 5% 28%[JKIIRR

Powertiock o% 23%di% 13%BR 1%

RQs: How Frequently Are Libraries Used Over Time?

Figure 4 (top) shows the monthly evolution over time of
the usage of testing and matching libraries. The proportion

AssertJ

Mockito
32% 9%
33%

Spring Hamcrest EasyMock | PowerMock

TestNG

12%
18%

Spring

Assert)

Mockito

EasyMock

505



of projects using JUnit is decreasing (but remains very high),
while TestNG and Spring have a stable (but low) proportion of
projects using them. The proportional usage of Hamcrest and
AssertJ is increasing over time.

100

80
. —— AssertJ
» 60 —— JUnit
2 —— TestNG
S 40 Hamcrest
o Spring

20

2012 2013 2014 2015 2016

0
2009 2010 2011

25
—— Mockito
20 —— EasyMock
- —— PowerMock
>15
S
210
o
5

0
2009 2010 2011 2012 2013 2014 2015 2016

Fig. 4. Monthly evolution of the (proportion of) Java projects using testing-
related libraries.

For mocking libraries, Figure 4 (bottom) shows that the
proportional usage of Mockito and PowerMock has remarkably
increased, whereas the usage of EasyMock is slightly declining
over time.

RQ¢ How Frequently do Libraries Co-occur at File Level?

For projects using certain pairs of libraries simultaneously,
we explored if these libraries are also used together within the
same Java files belonging to the project. For the mocking
libraries we would expect Mockito and EasyMock to be
rarely used together, since they are competing libraries. For
PowerMock on the other hand, we would expect it to be used
frequently in the same files where Mockito and EasyMock
are used, given that PowerMock is an extension for these two
libraries.’

This intuition is confirmed by Figure 5 (top) that, for each
pair of libraries, shows a violin plot with the distribution across
projects of the ratio between the number of files that relate
to each or both libraries, and the total number of files that
relate to any of them. Because our data set is not normally
distributed, we used the nonparametric Kolmogorov-Smirnov
test to verify, for each library pair, if the distributions are similar
(null hypothesis Hy) or different (alternative hypothesis Hy).
Hj was rejected only for the pairs (Mockito,PowerMock) and
(EasyMock,PowerMock) with statistical significance (p < 0.001
and p < 0.002, respectively).

Since JUnit and TestNG are two competing testing libraries,
we do not expect Java project files to use both libraries
simultaneously. The same holds for Hamcrest and Assert
for the same reasons. This intuition is again confirmed by
Figure 5 (bottom). The Kolmogorov-Smirnov test for these
pairs of libraries did not allow us to reject Hy with statistical
significance (p > 0.01).

Shttps://github.com/jayway/powermock/wiki/GettingStarted

1.5

11144084

~0-5 Mockito  both EasyMock Mockito ~ both

15
1.0
0.5
0.0
-0.5

both

PowerMock  EasyMock both

1Ps

both

PowerMock

Junit TestNG Assert) Hamcrest

Fig. 5. Proportional distribution of Java files (in all projects) relating to pairs
of testing-related libraries.

RQ7 Do Projects Migrate to Competing Libraries?

We analysed all considered libraries used by each project’s
Java files once every month, to determine if a project p
permanently switches from library [ to library l5 during its
observed lifetime. We define a permanent library migration
from I to l5 in p, if 3 time ¢; where project p uses library [;
and does not use [o, while 3 to > ¢1 such that V ¢ > t5 project
p uses lo but does not use [;.

| Mockito |—3>| PowerMock|

JUnit |

63 ﬁ \f
3
EasyMock| | TestNG |«———— Spring
\_/p

10

| Hamcrest |

YZ

2

1( 37

Fig. 6. Number of migrations observed between testing libraries.

The migration graph of Figure 6 visualises all permanent
migrations for the considered libraries. We observed a high
number of permanent migrations (63) from JUnit to TestNG,
while only 34 projects permanently migrated from ZestNG to
JUnit. 50 out of these 97 projects didn’t involve a transition
phase (during which both libraries are used simultaneously)
for the migration.

We observed the highest number of permanent migrations
from Hamcrest to Assert (77) even if these two libraries
were used together in only 90 (i.e., 1.98%) of all considered
projects. No permanent migrations were observed from AssertJ
to Hamcrest, indicating the increasing use of Assert/ as a
competing library. For the mocking libraries, we observe most
migrations (37) from EasyMock to Mockito, most likely because
it offers more functionality.

We also found cases (not shown in the graph) of temporary
library migration. Nine projects temporarily migrated from

506



JUnit to TestNG and returned to JUnit after some time. Four
other projects performed the opposite temporary migration.
Four projects migrated from Hamcrest to AssertJ and returned
to using Hamcrest.

V. THREATS TO VALIDITY

Our research suffers from the same threats as other research
relying on GitHub [13]. Our results may not be generalisable to
non-Java projects or to closed-source industrial projects that are
typically subject to more restricted development rules. While
we studied the usage of eight testing-related Java libraries, the
proposed methodology is applicable to other types of libraries
as well. Our results may, however, be biased by the fact that
we have excluded projects with a lifetime of less than two
years, as well as projects that are no longer available in GitHub.
In our approach we assume that a library is being used by a
Java project if one of the project files contains specific import
statements pertaining to that library. This approach may lead
to false positives, since imported classes and interfaces are not
necessarily used in the source code.

VI. CONCLUSION AND FUTURE WORK

We studied the usage of eight popular testing, matching and
mocking libraries in a large corpus of GitHub-hosted Java
projects. We observed that many of these libraries are being
used simultaneously, with JUnit being the most prominent
testing library. Some libraries were found to complement or
reinforce one another (e.g., PowerMock which extends either
Mockito or EasyMock) while others are in competition (e.g.,
JUnit versus TestNG, Mockito versus EasyMock, Hamcrest
versus AssertJ).

We found that 5% of the considered projects to be subject to
library migrations, in which a project replaces one of its used
libraries by another. This migration was mainly permanent. For
example, projects tend to migrate from EasyMock to Mockito
and from Hamcrest to AssertJ, but not the other way round.
In a limited number of cases, the library migrations were
temporary, with the opposite migration being observed later on
in the project’s lifetime. We aim to study why such “inverse”
migrations happen.

Our findings about when, why and how projects perform
library migrations is promising, but requires a more in-depth
analysis. In future work we plan consider the effect of the spe-
cific library version on the migration phenomenon. Upgrading
to a new major library release may imply significant functional
changes, potentially leading to an increased migration towards
(or away from) this particular version. We observed cases like
this, e.g., the project livetribe-slp first used JUnit 3, then
migrated to TestNG, and then returned to using JUnit 4.

We aim to use and extend our preliminary results to
provide recommendation tools or dashboards that make it
easier for project developers to choose the most appropriate
library (version) for their needs, and to be informed of
competing (versions of) libraries to migrate to, accompanied
by a justification of why and when to perform this migration.

Building upon the work of De Roover et al. [6], we aim
to conduct fine-grained analyses of how frequently each of a
library’s functions (as provided by its public API) are used, how
this evolves over time, and whether certain combinations of
functionalities of different libraries are frequently used together.
Library developers can benefit from this analysis to better
understand how their major library versions are being used
in practice, in order to provide incentives to increase their
library’s adoption rate and to avoid its users to migrate to
competing libraries.

We also plan to analyse the effort of migrating between
different libraries, as well as the effort of upgrading to a new
major version of a library. Based on this effort analysis, we
aim to provide tools to reduce this effort and hence facilitate
support for upgrading to a different library version or migrating
to a different library.

ACKNOWLEDGMENT

This research is part of FRFC research projects T.0022.13
and J.0023.16 financed by F.R.S.-FNRS, Belgium. We thank
Alexandre Decan, Eleni Constantinou and Maelick Claes for
their useful feedback.

REFERENCES

[1] S. Moser and O. Nierstrasz, “The effect of object-oriented frameworks
on developer productivity,” Computer, vol. 29, no. 9, 1996.

[2] A. Zhitnitsky, “We analyzed 60,678 libraries on github - here are
the top 100,” Apr. 2015. [Online]. Available: http://blog.takipi.com/
we-analyzed-60678-libraries-on-github-here-are-the-top- 100/

[3] C. Teyton, J. Falleri, and X. Blanc, “Mining library migration graphs,”
in Working Conf. Reverse Engineering (WCRE), 2012, pp. 289-298.

[4] C. Teyton, J.-R. Falleri, M. Palyart, and X. Blanc, “A study of library
migrations in Java,” Journal of Software: Evolution and Process, vol. 26,
no. 11, pp. 1030-1052, 2014.

[5] R. Lammel, E. Pek, and J. Starek, “Large-scale, AST-based API-usage
analysis of open-source Java projects,” in ACM Symp. Applied Computing.
ACM , 2011, pp. 1317-1324.

[6] C. De Roover, R. Limmel, and E. Pek, “Multi-dimensional exploration
of API usage,” in Int’l Conf. Program Comprehension, May 2013, pp.
152-161.

[7]1 S. Kabinna, C.-P. Bezemer, W. Shang, and A. E. Hassan, “Logging
library migrations: A case study for the Apache software foundation
projects,” in Int’l Conf. Mining Software Repositories (MSR). ACM,
2016, pp. 154-164.

[8] J. Businge, A. Serebrenik, and M. van den Brand, “Analyzing the eclipse
API usage: Putting the developer in the loop,” in European Conf. Software
Maintenance and Reengineering, 2013, pp. 37-46.

[9] M. Goeminne and T. Mens, “Towards a survival analysis of database

framework usage in Java projects,” in Int’l Conf. Software Maintenance

and Evolution, Sep. 2015, pp. 551-555.

A. Decan, M. Goeminne, and T. Mens, “On the interaction

of relational database access technologies in open source java

projects,” in Postproceedings of SATToSE 2015 Seminar on Advanced

Techniques and Tools for Software Evolution, 2017. [Online]. Available:

https://arxiv.org/abs/1701.00416

M. Allamanis and C. Sutton, “Mining source code repositories at massive

scale using language modeling,” in Working Conf. Mining Software

Repositories. 1EEE, 2013, pp. 207-216.

M. Goeminne, A. Decan, and T. Mens, “Co-evolving code-related and

database-related changes in a data-intensive software system,” in CSMR-

WCRE, 2014, pp. 353-357.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. Germéan, and

D. Damian, “The promises and perils of mining GitHub,” in Working

Conf. Mining Software Repositories, 2014, pp. 92-101.

[10]

(11]

[12]

[13]

507



