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Abstract 

Thiosemicarbazide is a promising corrosion inhibitor due to its excellent inhibitive properties, 

low toxicity, and cost-effectiveness. This mini-review highlights the chemical structure, 

properties, and corrosion inhibition mechanism of thiosemicarbazide. Various experimental 

studies have been carried out to investigate the corrosion inhibition performance of 

thiosemicarbazide on different metal surfaces, such as carbon steel, aluminum, and copper, in 

different corrosive environments, including acidic, alkaline, and saline solutions. The review 

also discusses the effect of different parameters, such as concentration, immersion time, 

temperature, and pH, on the corrosion inhibition efficiency of thiosemicarbazide. Overall, the 

results show that thiosemicarbazide is a highly effective corrosion inhibitor, and its inhibition 

performance is comparable to other well-known inhibitors. Finally, the review concludes by 

highlighting the future research directions in the field of thiosemicarbazide-based corrosion 

inhibitors. 
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1. Introduction 

Corrosion is a significant issue in many industrial applications and can lead to severe damage 

and economic losses (Figure 1). Corrosion inhibitors have been extensively used to mitigate 

corrosion in various environments. Among these inhibitors, thiosemicarbazide has recently 

received considerable attention due to its excellent inhibiting properties. Thiosemicarbazide 
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is a nitrogen-sulfur compound that has been studied as a potential inhibitor for various 

metals, including iron, aluminum, copper, and zinc [1–5]. The use of thiosemicarbazide as 

a corrosion inhibitor has gained interest due to its low toxicity, high stability, and 

compatibility with other inhibitors. Thiosemicarbazide has also shown excellent inhibitory 

properties in both acidic and alkaline solutions. In addition, thiosemicarbazide can act as a 

mixed-type inhibitor, inhibiting both the anodic and cathodic reactions of the metal [6–10]. 

The mechanisms of corrosion inhibition and the factors affecting the inhibitory properties of 

thiosemicarbazide will also be discussed [11–15]. This mini-review aims to summarize 

recent developments in the use of thiosemicarbazide as a corrosion inhibitor. It will discuss 

the inhibitory properties of thiosemicarbazide on various metals, including iron, aluminum, 

copper, and zinc, in different environments, including acidic and alkaline solutions. 

 
Figure 1. Corrosion of metal. 

Several studies have shown that TSC is an effective corrosion inhibitor for various 

metals and alloys. For instance, Poornima and colleagues investigated the corrosion 

inhibition properties of 4-(N,N-diethylamino)benzaldehyde thiosemicarbazone (DEABT) 

on the corrosion of aged 18 Ni 250 grade maraging steel in phosphoric acid solution. The 

results showed that DEABT exhibited a maximum inhibition efficiency of 95.13% at a 

concentration of 1.2 mM. The addition of DEABT reduces the corrosion of aged maraging 

steel in 0.67 M phosphoric acid. The inhibitor’s effectiveness increases with concentration 

and decreases with temperature. DEABT acts as a mixed inhibitor, affecting both anodic and 
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cathodic reaction rates. The energy of activation increases in the presence of DEABT, and 

its adsorption on the steel surface follows Langmuir’s adsorption isotherm model [16]. 

Similarly, Badr studied the corrosion inhibition by TSCs (1-ethyl-4(2,4-

dinitrophenyl)thiosemicarbazide (I), 1,4-diphenylthiosemicarbazide (II), 1-ethyl-4-

phenylthiosemicarbazide (III)) on carbon steel in a 2 M HCl solution using various 

techniques. Potentiodynamic polarization and electrochemical impedance spectroscopy 

were used, and results showed that the inhibitors act as mixed-type inhibitors. The inhibition 

efficiency increased with the inhibitor concentration, and the adsorption of the compounds 

followed Temkin’s adsorption isotherm. The study concludes that the investigated 

thiosemicarbazide derivatives have inhibiting properties for carbon steel in 2 M HCl, and 

the %IE at all concentrations followed the order: I (75%) > II (73%) > III (70%). The %IE 

obtained from weight loss, polarization, and ac impedance are in good agreement [17]. In a 

study by Yadav et al., the inhibitory effect of TSC on the corrosion of mild steel in 

hydrochloric acid was investigated using various electrochemical techniques. Results 

showed that TSC effectively reduced the corrosion rate of mild steel by forming a protective 

film on the metal surface [18]. Another study by Eddy and Ebenso investigated the inhibitory 

effect of TSC on the corrosion of aluminum in a hydrochloric acid solution. Results showed 

that TSC was an effective inhibitor for aluminum corrosion, with a high inhibition efficiency 

of 96% [19]. In a study by Solmaz et al., the inhibitory effect of TSC on the corrosion of 

copper in nitric acid was investigated using various electrochemical techniques. Results 

showed that TSC was an effective inhibitor for copper corrosion, with a high inhibition 

efficiency of 94% [20]. Another study by Quraishi et al. investigated the inhibitory effect of 

TSC on the corrosion of carbon steel in a 3.5% NaCl solution. Results showed that TSC 

effectively reduced the corrosion rate of carbon steel by forming a protective film on the 

metal surface [21]. In a study by Abdallah et al., the inhibitory effect of TSC on the corrosion 

of nickel in hydrochloric acid was investigated using various electrochemical techniques. 

Results showed that TSC was an effective inhibitor for nickel corrosion, with a high 

inhibition efficiency of 90% [22]. 

These studies demonstrate the effectiveness of TSC (thiourea-2-sulfonic acid) as a 

corrosion inhibitor for various metals and alloys. In the first study conducted by Mahmoud 

et al., TSC was found to be an effective corrosion inhibitor for carbon steel in a hydrochloric 

acid solution. The study concluded that TSC exhibited excellent inhibitory properties with 

an inhibition efficiency of 99.8% at a concentration of 0.5 mM [23]. Another study by Al-

Mobarak et al. investigated the inhibitory effect of TSC on the corrosion of mild steel in a 

sodium chloride solution. The results showed that TSC had a significant inhibitory effect on 

the corrosion of mild steel with an inhibition efficiency of up to 85% at a concentration of 

0.5 mM [24]. A study by El-Awady et al. [25] investigated the inhibitory effect of TSC on 

the corrosion of copper in a nitric acid solution. The results showed that TSC had a 

significant inhibitory effect on the corrosion of copper with an inhibition efficiency of up to 

92% at a concentration of 0.5 mM. In a study by El-Rabiee et al. [26], the inhibitory effect 

of TSC on the corrosion of aluminum in a hydrochloric acid solution was investigated. The 
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results showed that TSC had a significant inhibitory effect on the corrosion of aluminum 

with an inhibition efficiency of up to 96% at a concentration of 0.5 mM. Finally, a study by 

Al-Mobarak et al. [27] investigated the inhibitory effect of TSC on the corrosion of brass in 

acidic solution. The results showed that TSC had a significant inhibitory effect on the 

corrosion of brass with an inhibition efficiency of up to 94% at a concentration of 0.5 mM. 

2. Chemical Structure and Properties 

Thiosemicarbazide exhibits a wide range of biological activities and has been extensively 

studied for its pharmacological properties. It has been shown to possess antitumor, 

antibacterial, antifungal, and antiviral activities, among others. Thiosemicarbazide also has 

potential applications in fields such as agriculture, where it can be used as a herbicide and 

insecticide [28, 29]. One of the most important properties of thiosemicarbazide is its ability 

to chelate metal ions. This makes it useful in the field of analytical chemistry, where it can 

be used as a reagent for the determination of metal ions in solution. Thiosemicarbazide has 

also been studied for its potential use in the treatment of metal poisoning, as it can form 

stable complexes with toxic metal ions [30]. In addition to its biological and analytical 

properties, thiosemicarbazide also exhibits interesting physical and chemical properties. For 

example, it has been shown to undergo various chemical transformations, such as oxidation, 

reduction, and condensation reactions. Thiosemicarbazide is also sensitive to changes in pH, 

and its properties can be modulated by adjusting the pH of the surrounding environment 

[30]. In conclusion, thiosemicarbazide is a versatile and fascinating compound that exhibits 

a range of interesting properties. Its unique chemical structure makes it useful in a variety of 

fields, including pharmacology, agriculture, and analytical chemistry. Further research into 

the properties and applications of thiosemicarbazide is likely to yield exciting new insights 

and applications. Figure 2, demonstrate the chemical structure of TSC. 

 

 

a b 

Figure 2. The (a) chemical and (b) optimized molecular structures of TSC. 

One of its most important applications is as a corrosion inhibitor, which has been 

extensively studied over the years. Corrosion is a serious issue that can cause significant 

damage to metals and alloys, leading to safety concerns and economic losses. The use of 
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TSC as a corrosion inhibitor can help mitigate these issues by forming a protective film on 

the metal surface, preventing further corrosion [31]. The effectiveness of TSC as a corrosion 

inhibitor is closely related to its chemical structure, which determines its properties and 

behavior in the corrosive environment. TSC contains a thioamide (–NH–C=S–) group, 

which is a key functional group responsible for its inhibition properties. The thioamide group 

can coordinate with the metal surface, forming a stable complex and preventing further 

corrosion. Additionally, the presence of the hydrazine (–NH–NH2) group in TSC enhances 

its inhibition performance by providing additional adsorption sites on the metal surface [32]. 

Moreover, the substituent groups attached to the TSC molecule can significantly influence 

its inhibition efficiency. For instance, the presence of electron-withdrawing groups (EWGs) 

such as nitro (–NO2), chloro (–Cl), and bromo (–Br) on the TSC molecule enhances its 

inhibition performance by increasing the electron density on the thioamide group, making it 

more reactive towards the metal surface. Conversely, the presence of electron-donating 

groups (EDGs) such as amino (–NH2), hydroxy (–OH), and methoxy (–OCH3) reduces the 

inhibition performance by decreasing the electron density on the thioamide group [33]. In 

summary, the chemical structure of TSC plays a crucial role in determining its inhibition 

properties and effectiveness as a corrosion inhibitor. Understanding the relationship between 

the chemical structure and inhibition performance of TSC can help in the rational design of 

more efficient corrosion inhibitors based on this compound. 

3. Corrosion Inhibition Mechanism 

The use of corrosion inhibitors has been a common approach to protect metallic structures 

from corrosion. Among the different types of corrosion inhibitors, thiosemicarbazide has 

been extensively studied due to its excellent inhibitive properties. Thiosemicarbazide is a 

nitrogen and sulfur-containing compound with the chemical formula H2N–NH–CS–NH2. It 

has been shown to be an effective corrosion inhibitor for various metals, such as iron, copper, 

and aluminum. The inhibitive action of thiosemicarbazide is attributed to its ability to adsorb 

onto the metal surface, forming a protective layer that prevents corrosive species from 

coming into contact with the metal [34]. The mechanism of 1-(2,4-

dimethoxybenzylidene)thiosemicarbazide as a corrosion inhibitor involves the formation of 

a complex with the metal surface (Figure 3). This complexation is based on the donation of 

nitrogen atoms from thiosemicarbazide to the metal surface. This leads to the formation of a 

coordination bond between the metal and the nitrogen atoms of thiosemicarbazide. The 

sulfur atom of thiosemicarbazide also plays an important role in the inhibitive action by 

coordinating with the metal surface, forming a strong adsorption layer [35]. Furthermore, 

thiosemicarbazide can act as a mixed inhibitor by inhibiting both anodic and cathodic 

reactions of corrosion. The inhibition of anodic reaction involves the formation of a 

protective film on the metal surface, which decreases the rate of metal dissolution. On the 

other hand, the inhibition of cathodic reaction involves the reduction of the cathodic reaction 

rate, which results in the reduction of the amount of hydrogen produced during the corrosion 

process [36]. 
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Figure 3. Proposed action of the 1-(2,4-dimethoxybenzylidene)thiosemicarbazide molecule 

mechanism as a corrosion inhibitor 

In conclusion, thiosemicarbazide is an effective corrosion inhibitor due to its ability to 

form a protective layer on the metal surface by coordinating with the metal surface through 

nitrogen and sulfur atoms. Its inhibitive action is attributed to its ability to inhibit both anodic 

and cathodic reactions of corrosion. Therefore, thiosemicarbazide has great potential for 

applications in various industrial sectors to prevent corrosion of metallic structures. 

3.1. Examples 

The mechanism of corrosion inhibition by thiosemicarbazide has been investigated by 

several researchers. Here are some examples of studies that have explored this mechanism: 

In a study by Ahamad et al., the authors investigated the corrosion inhibition 

mechanism of thiosemicarbazide on mild steel in hydrochloric acid solution. The authors 

used electrochemical techniques such as potentiodynamic polarization and electrochemical 

impedance spectroscopy to study the inhibition mechanism. The results showed that 

thiosemicarbazide acts as a mixed-type inhibitor, inhibiting both anodic and cathodic 

reactions. The authors proposed that thiosemicarbazide adsorbs onto the metal surface 

through its sulfur atom, and forms a protective layer that inhibits the corrosion process [37]. 

In another study by Okafor et al., the authors investigated the corrosion inhibition 

mechanism of thiosemicarbazide on aluminum in acidic media. The authors used weight loss 

measurements and electrochemical techniques such as potentiodynamic polarization and 

electrochemical impedance spectroscopy to study the inhibition mechanism. The results 

showed that thiosemicarbazide acts as a cathodic inhibitor, inhibiting the reduction of 

dissolved oxygen on the metal surface. The authors proposed that thiosemicarbazide adsorbs 

onto the metal surface through its nitrogen atom, and forms a protective layer that inhibits 

the cathodic reaction [38]. In a study by Boudries et al., the authors investigated the 

corrosion inhibition mechanism of thiosemicarbazide on carbon steel in hydrochloric acid 

solution. The authors used weight loss measurements, potentiodynamic polarization, and 

scanning electron microscopy to study the inhibition mechanism. The results showed that 
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thiosemicarbazide acts as a mixed-type inhibitor, inhibiting both anodic and cathodic 

reactions. The authors proposed that thiosemicarbazide adsorbs onto the metal surface 

through its sulfur atom, and forms a protective layer that inhibits the corrosion process. In 

addition, the authors suggested that the presence of thiosemicarbazide leads to the formation 

of a more compact and uniform surface film, which enhances the corrosion inhibition 

efficiency [39]. 

TSC was found to form a protective film on the mild steel surface, which acts as a 

barrier to the corrosive environment. The adsorption of TSC on the steel surface was found 

to follow a Langmuir adsorption isotherm, suggesting monolayer coverage. The inhibition 

efficiency of TSC increased with increasing concentration and was attributed to the presence 

of the thiol group, which can interact with the metal surface and form a stable film [40]. TSC 

was found to form a protective film on the copper surface, which reduces the corrosion rate. 

The adsorption of TSC on the copper surface was found to follow a Temkin adsorption 

isotherm, suggesting a heterogeneous surface. The presence of thiol group in TSC was found 

to increase its inhibition efficiency on both copper and aluminum surfaces, as it can interact 

with the respective surfaces and form a stable protective film [41, 42]. The adsorption 

behavior of TSC on aluminum surface was observed to follow a Langmuir adsorption 

isotherm, indicating monolayer coverage. The inhibition efficiency of TSC on aluminum 

was also found to increase with increasing concentration, further supporting the role of thiol 

group in forming a stable film on the surface. 

3.2. Comparison 

One study by Liu et al. (2020) found that TSC adsorbed on the steel surface through the 

formation of a chelate with iron ions, which resulted in the formation of a protective film. 

The study also showed that the adsorption of TSC was dependent on pH and temperature 

[43]. Another study by Rashwan et al. (2019) investigated the inhibition mechanism of TSC 

on copper corrosion in acidic solution. The study found that TSC adsorbed on the copper 

surface through a mixed adsorption mechanism, involving both physisorption and 

chemisorption. The chemisorption was attributed to the formation of a TSC–Cu complex, 

while the physisorption was due to the van der Waals forces between TSC and the copper 

surface [44]. In contrast, a study by El-Deab, investigated the corrosion inhibition 

mechanism of TSC on mild steel in a neutral environment. The study found that TSC 

adsorbed on the steel surface through physical adsorption, which was attributed to the 

formation of van der Waals forces between TSC and the steel surface [45]. In summary, the 

corrosion inhibition mechanism of TSC varies depending on the metal surface and the 

environment. The adsorption mechanism can involve chelation, complex formation, van der 

Waals forces. Overall, TSC has proven to be an effective corrosion inhibitor in various 

industrial applications. Table 1, represents the mechanism types of corrosion inhibition of 

TSC. 
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Table 1. Mechanism of TSC inhibition. 

Mechanism Explanation Ref. 

Adsorption 
Thiosemicarbazide (TSC) molecules adsorb onto the metal surface and 

form a protective film. 
[46–48] 

Film Formation 
TSC molecules can react with metal ions to form insoluble metal–TSC 

complexes which act as a barrier. 
[49–51] 

Passivation 
TSC forms a passive layer on the metal surface that limits the diffusion 

of corrosive species. 
[52–54] 

Redox 

Reactions 

TSC can act as a reducing agent, scavenging corrosive species such as 

oxygen and preventing oxidation. 
[55–57] 

Synergistic 

Inhibition 

TSC can enhance the effectiveness of other inhibitors, such as halides or 

surfactants. 
[58–60] 

4. Experimental Studies 

The inhibition efficiency of thiosemicarbazide varies with concentration, temperature, and 

pH, and the optimal conditions for corrosion inhibition depend on the specific metal and 

corrosive environment. Here are a few examples of experimental studies investigating the 

effectiveness of thiosemicarbazide as a corrosion inhibitor: 

In the study “Corrosion inhibition of mild steel in hydrochloric acid solution by 

thiosemicarbazide”, the researchers investigated the effectiveness of thiosemicarbazide as a 

corrosion inhibitor for mild steel in hydrochloric acid solution. They found that 

thiosemicarbazide exhibited good inhibition efficiency and that the optimal concentration of 

thiosemicarbazide was 2 mM. The researchers also found that the inhibition efficiency 

increased with increasing temperature, but decreased with increasing acid concentration 

[61]. In the study “Corrosion inhibition of copper in acidic media by thiosemicarbazide: 

electrochemical and surface analysis studies”, the researchers investigated the effectiveness 

of thiosemicarbazide as a corrosion inhibitor for copper in acidic media. They found that 

thiosemicarbazide exhibited good inhibition efficiency and that the optimal concentration of 

thiosemicarbazide was 5 mM. The researchers also found that the inhibition efficiency 

decreased with increasing temperature and increased with decreasing acid concentration 

[62]. In this study, the researchers investigated the effectiveness of thiosemicarbazide as a 

corrosion inhibitor for carbon steel in alkaline solution. They found that thiosemicarbazide 

exhibited good inhibition efficiency and that the optimal concentration of thiosemicarbazide 

was 10 mM. The researchers also found that the inhibition efficiency increased with 

decreasing pH and increased with increasing temperature [63].  

Thiosemicarbazide is a promising corrosion inhibitor due to its unique chemical 

properties and ability to inhibit corrosion in various corrosive environments. Further studies 

are needed to optimize the use of thiosemicarbazide as a corrosion inhibitor and to 

investigate its long-term effectiveness in practical applications. However, thiosemicarbazide 
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shows great potential for use as a cost-effective and environmentally friendly corrosion 

inhibitor. A study entitled “Inhibition of Corrosion of Mild Steel in Acidic Solution by 

Thiosemicarbazide” by Kumar and others, the effectiveness of thiosemicarbazide as a 

corrosion inhibitor for mild steel in acidic solution was investigated. The inhibition 

efficiency was evaluated by weight loss measurements, electrochemical impedance 

spectroscopy (EIS), and polarization studies. The results showed that thiosemicarbazide 

effectively inhibited corrosion in the acidic solution, with an inhibition efficiency of up to 

92% at a concentration of 200 ppm. The inhibition efficiency increased with increasing 

concentration and decreased with increasing temperature. The optimal pH range for 

corrosion inhibition was found to be 4–5 [64]. 

For another study by Bashir and others, the effectiveness of thiosemicarbazide as a 

corrosion inhibitor for carbon steel in 1 M HCl solution was investigated. The inhibition 

efficiency was evaluated using weight loss measurements, potentiodynamic polarization, 

and electrochemical impedance spectroscopy. The results showed that thiosemicarbazide 

effectively inhibited corrosion in the acidic solution, with an inhibition efficiency of up to 

94.8% at a concentration of 200 ppm. The inhibition efficiency increased with increasing 

concentration and decreased with increasing temperature. The optimal pH range for 

corrosion inhibition was found to be 4–5 [65]. Also a study by Zhao, the effectiveness of 

thiosemicarbazide as a corrosion inhibitor for copper in neutral and alkaline solutions was 

investigated. The inhibition efficiency was evaluated by weight loss measurements, 

potentiodynamic polarization, and electrochemical impedance spectroscopy. The results 

showed that thiosemicarbazide effectively inhibited corrosion in both neutral and alkaline 

solutions, with an inhibition efficiency of up to 98% at a concentration of 200 ppm. The 

inhibition efficiency increased with increasing concentration and decreased with increasing 

temperature. The optimal pH range for corrosion inhibition was found to be 8–10 [66]. 

Another study aimed to investigate the effectiveness of thiosemicarbazide as a corrosion 

inhibitor for mild steel in hydrochloric acid solution. Electrochemical techniques were used 

to evaluate the inhibition efficiency of thiosemicarbazide at different concentrations and 

temperatures. The results showed that thiosemicarbazide can effectively inhibit corrosion, 

with the inhibition efficiency increasing with increasing concentration and decreasing 

temperature. Theoretical calculations were also performed to understand the mechanism of 

inhibition and confirmed the experimental results [67]. 

A study was conducted to investigate the effectiveness of thiosemicarbazide as a 

corrosion inhibitor for copper in neutral and alkaline solutions [68]. Electrochemical 

techniques were used to evaluate the inhibition efficiency of thiosemicarbazide at different 

concentrations, temperatures, and pH values. The results showed that thiosemicarbazide can 

effectively inhibit corrosion, with the inhibition efficiency increasing with increasing 

concentration and decreasing temperature. The optimal pH for inhibition was found to be 8. 

The study concluded that thiosemicarbazide is a promising eco-friendly corrosion inhibitor 

for copper in neutral and alkaline solutions [68]. Another study aimed to investigate the 

effectiveness of thiosemicarbazide as a corrosion inhibitor for aluminum in hydrochloric 
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acid solution. Weight loss and electrochemical techniques were used to evaluate the 

inhibition efficiency of thiosemicarbazide at different concentrations and temperatures. The 

results showed that thiosemicarbazide can effectively inhibit corrosion, with the inhibition 

efficiency increasing with increasing concentration and decreasing temperature. The optimal 

concentration for inhibition was found to be 1 mM. The study concluded that 

thiosemicarbazide is a promising corrosion inhibitor for aluminum in hydrochloric acid 

solution [69]. Another study investigated the effectiveness of thiosemicarbazide as a 

corrosion inhibitor for carbon steel in acidic medium. Electrochemical techniques were used 

to evaluate the inhibition efficiency of thiosemicarbazide at different concentrations and 

temperatures. The results showed that thiosemicarbazide can effectively inhibit corrosion, 

with the inhibition efficiency increasing with increasing concentration and decreasing 

temperature. The optimal pH for inhibition was found to be 3. The study concluded that 

thiosemicarbazide is a promising corrosion inhibitor for carbon steel in acidic medium [70]. 

5. A Comparison Study 

 
Figure 3. Comparison between several synthesized organic corrosion inhibitors. 

A comparison study was conducted to compare the inhibitory efficiency of published [71–

102] synthesized organic corrosion inhibitors based on their inhibition efficiencies, as shown 

in Figure 3. The inhibitors are labeled on the x-axis, and the y-axis represents the inhibition 

efficiency percentage. The comparison shows which synthesized organic corrosion inhibitor 

is the most effective at inhibiting corrosion. This information can be useful for selecting the 

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c03545/suppl_file/ao2c03545_si_001.pdf
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best inhibitor for specific applications, such as in the petroleum, chemical, or manufacturing 

industries. Additionally, the study may provide insight into the mechanisms of corrosion 

inhibition and inform future research and development of corrosion inhibitors. Organic 

inhibitors are chemical compounds that can be used to prevent or reduce the corrosion of 

metals.  

6. Organic Corrosion Inhibitors 

Organic corrosion inhibitors play an important role in protecting metallic surfaces from 

corrosion. Organic corrosion inhibitors can be added to a wide range of industrial systems, 

including pipelines, tanks, boilers, and cooling systems, among others. They can be used in 

different environments, such as aqueous solutions, oil and gas, and high-temperature and 

high-pressure systems. Organic inhibitors are effective in protecting various metals, 

including iron, copper, aluminum, and alloys, among others [103]. One of the advantages of 

organic corrosion inhibitors is their ability to provide long-term protection against corrosion. 

They can be designed to provide continuous protection, even under harsh conditions. 

Moreover, they can be tailored to specific applications and environmental conditions, which 

can improve their effectiveness and efficiency [104]. Organic corrosion inhibitors can also 

be more environmentally friendly than traditional corrosion inhibitors. Some traditional 

inhibitors, such as chromates, are toxic and can pose a risk to human health and the 

environment. Organic inhibitors are generally less toxic and can be biodegradable, which 

can reduce their impact on the environment [105]. In conclusion, organic corrosion inhibitors 

are an essential tool for industries that rely on metallic equipment and structures. They can 

help prevent and mitigate corrosion, extend the lifespan of assets, and improve safety and 

reliability. The use of organic corrosion inhibitors can also contribute to more sustainable 

and environmentally friendly industrial practices [106]. Thiosemicarbazide is a low-cost and 

environmentally friendly compound, which makes it a promising candidate for corrosion 

inhibition in various industries, such as oil and gas, marine, and automotive. However, 

further studies are needed to optimize its performance and understand its mechanism of 

action [107, 108]. Table 2 presents a comparison of thiosemicarbazide derivatives. 

Table 2. Comparison study. 

Inhibitor Advantages IE% Sol. Metal Limitations Application Ref. 

Thiosemicarbazide 

(TSC) 

Effective 

corrosion 

inhibition 

properties 

74 NaCl Copper 

Limited 

solubility in 

water 

Industrial 

sectors such as 

oil and gas, 

chemical and 

petrochemical, 

and power 

generation 

[109] 
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Inhibitor Advantages IE% Sol. Metal Limitations Application Ref. 

N(1)-pentyl isatin-

N(4)-methyl-N(4)-

phenyl 

thiosemicarbazone 

(PITSc) 

Higher 

inhibition 

efficiency 

than TSC 

73.6 HCl 
Mild 

steel 

Expensive 

synthesis 

process 

Oil and gas 

industries 
[110] 

5-Amino-1,3,4-

thiadiazole-2-thiol 

Excellent 

inhibition 

efficiency in 

acidic 

environments 

87 NaCl Steel 

High 

toxicity and 

low 

solubility in 

water 

Basic industrial 

environments 
[111] 

2[5-(2-Pyridyl)-

1,2,4- triazol-3-yl] 

phenol (PPT) 

High 

inhibition 

efficiency and 

compatibility 

with various 

metals 

81.9 HCl 
Mild 

steel 

Moderate 

effectivenes

s in acidic 

environmen

ts 

Corrosion 

inhibition in 

various 

industrial 

sectors 

[112] 

4-Trifluoromethyl-

benzylidene-[1,2,4] 

triazol-4-yl-amine 

(TMBT), 

High 

inhibition 

efficiency and 

low toxicity 

 HCl 
Mild 

steel 

Relatively 

expensive 

and low 

stability 

Water treatment, 

oil and gas 

industries 

[113] 

(3-Bromo4-fluoro-

benzylidene)-

[1,2,4]triazol-4-yl-

amine (BFBT) 

High 

inhibition 

efficiency and 

compatibility 

with various 

metals 

 HCl 
Mild 

steel 

Limited 

research on 

its corrosion 

inhibition 

properties 

Oil and gas 

industries 
[114] 

Whereas Table 3, summarizing the performance of various thiosemicarbazide 

derivatives as corrosion inhibitors. 

Table 3. TSC derivatives inhibition efficiencies [116–121]. 

Thiosemicarbazide 

Derivative 
Conc. IE% Solution 

Type of 

Metal 
Test Method Ref. 

2-(1-methyl-4-((E)-(2-

methylbenzylidene)amino)-2-

phenyl-1H-pyrazol-3(2H)-

ylidene)-

hydrazineecarbothioamide 

(HCB)  

0.5 mM 96.5 HCl Mild steel 

Electrochemical 

impedance 

spectroscopy 

[115] 
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Thiosemicarbazide 

Derivative 
Conc. IE% Solution 

Type of 

Metal 
Test Method Ref. 

2-Acetylpyridine-(4-

phenylthiosemicarbazone) 

(2AP4PTSC) 

1 mM 80.6 HCl Mild steel 

Electrochemical 

impedance 

spectroscopy 

[116] 

Phenylthiosemicarbazide 1 mM 93.7 HCl Steel Weight loss [117] 

Pyridoxal-(4)-

methylthisemicarbazone) 
0.5 mM 89 HCl Steel Weight loss [118] 

(3-Nitrobenzaldehyde)-4-

phenylthiosemicarbazone 
0.5 mM 89.6 HCl Mild steel Weight loss [119] 

4-Methylthiosemicarbazide 

(4MTS) 
0.5 mM 78 HCl 

Carbon 

steel 
Weight loss [120] 

Zn(II)-pyridoxal-(4-

methylthiosemicarbazone) 
0.5 mM 95 HCl Steel Weight loss [121] 

Overall, thiosemicarbazide derivatives have shown promising results as corrosion 

inhibitors for various metals, particularly mild steel and carbon steel. The inhibition 

efficiency varies depending on the type of thiosemicarbazide derivative and the test method 

used. Electrochemical impedance spectroscopy has been commonly used to evaluate the 

inhibition efficiency of thiosemicarbazide derivatives. 

7. Conclusion 

In conclusion, this mini-review provides a comprehensive overview of the potential of 

thiosemicarbazide as an effective corrosion inhibitor. The paper discusses the chemical 

structure and properties of thiosemicarbazide, as well as its mechanism of corrosion 

inhibition. The experimental studies outlined in the review demonstrate that 

thiosemicarbazide has high corrosion inhibition efficiency in various corrosive 

environments. Based on the literature reviewed, it is clear that thiosemicarbazide has 

significant potential as a corrosion inhibitor in various industries, such as oil and gas, marine, 

and automotive. Its low cost, high effectiveness, and eco-friendly nature make it an attractive 

alternative to traditional corrosion inhibitors. Further research is needed to optimize the use 

of thiosemicarbazide as a corrosion inhibitor, including exploring its performance in 

different environments and assessing its long-term effects on materials. Overall, this mini-

review provides a valuable resource for researchers and engineers interested in the use of 

thiosemicarbazide as a promising corrosion inhibitor. 
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