Ahmed I. Osman

Ahmed I. Osman
Queen's University Belfast | QUB · School of Chemistry and Chemical Engineering

PhD in Chemistry and Chemical Engineering
Biomass Valorisation, Biofuel production, Environmental Catalysis, Recycling and Climate Change

About

120
Publications
183,060
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,404
Citations
Introduction
I received my PhD degree in Chemistry and Chemical Engineering from Queen’s University Belfast, the UK in 2018 and is currently a Research Fellow at Queen’s University Belfast, UK). I am working in the field of energy storage, environmental catalysis, biomass utilisation and solar energy.
Additional affiliations
December 2015 - December 2015
Harbin Institute of Technology
Position
  • Researcher
November 2015 - December 2015
Beijing Institute of Technology
Position
  • Researcher
August 2013 - February 2016
Queen's University Belfast
Position
  • PhD Student
Education
August 2013 - September 2017
Queen's University Belfast
Field of study
  • Chemistry and Chemical Engineering

Publications

Publications (120)
Chapter
The increasing global energy demand alongside the depletion of finite fossil-based fuels are driving our need for finding an alternative renewable source of energy on our way to the zero-carbon economy. Therefore, biomass is considered one of the most promising renewable feedstocks for energy generation or as a starting material in producing value-...
Article
Full-text available
Plastic and biomass waste pose a serious environmental risk; thus, herein, we mixed biomass waste with plastic bottle waste (PET) to produce char composite materials for producing a magnetic char composite for better separation when used in water treatment applications. This study also calculated the life cycle environmental impacts of the preparat...
Article
Full-text available
This study investigated the performance of supported Ni catalysts in the utilization of greenhouse gases like CO2 and CH4 via dry reforming. The support SBA-15 was impregnated first with Sc at different loadings (0.5, 1, and 3 wt.%) and then with Ni (5 wt.%). The catalysts were first tested up to 8 h on stream with stoichiometric feed as well as me...
Article
Full-text available
It is critical to develop carbon removal projects that are both effective and financially viable. Herein, we investigated the carbon removal potential of an industrial biochar system in Spain. This study is the first to assess the techno-economic-environmental impact of large-scale olive tree pruning residue pyrolysis for atmospheric carbon removal...
Article
Metal–organic frameworks are porous polymeric materials formed by linking metal ions with organic bridging ligands. Metal–organic frameworks are used as sensors, catalysts for organic transformations, biomass conversion, photovoltaics, electrochemical applications, gas storage and separation, and photocatalysis. Nonetheless, many actual metal–org...
Article
Full-text available
Metal-organic frameworks are porous polymeric materials formed by linking metal ions with organic bridging ligands. Metal-organic frameworks are used as sensors, catalysts for organic transformations, biomass conversion, photovoltaics, electrochemical applications, gas storage and separation, and photocatalysis. Nonetheless, many actual metal-organ...
Article
Full-text available
Biochar (BC) was prepared by carbonizing sludge from agricultural lignocellulosic waste fermentation and then used to adsorb lambda‐cyhalothrin (LM), malathion (MA), and oxamyl (OX) as potential pesticides in agrochemical industrial wastewater. Additionally, the photodegradation performance of ZnO and ZnO/Fe was evaluated using various catalyst dos...
Article
Full-text available
Global industrialization and excessive dependence on nonrenewable energy sources have led to an increase in solid waste and climate change, calling for strategies to implement a circular economy in all sectors to reduce carbon emissions by 45% by 2030, and to achieve carbon neutrality by 2050. Here we review circular economy strategies with focus o...
Article
Full-text available
Catalyst community requires a low-cost, high-performance catalyst immediately for cost-effective H2 production through dry reforming of methane. Herein, cost-effective 1–9 wt% tungsten oxide-alumina supported Ni catalysts were prepared, examined and characterized by x-ray diffraction, ²⁷Al solid-state nuclear magnetic resonance, X-ray photoelectron...
Article
Full-text available
Climate change and the unsustainability of fossil fuels are calling for cleaner energies such as methanol as a fuel. Methanol is one of the simplest molecules for energy storage and is utilized to generate a wide range of products. Since methanol can be produced from biomass, numerous countries could produce and utilize biomethanol. Here, we review...
Article
Full-text available
Biodiesel is regarded as an environmentally friendly alternative fuel. The current research synthesises novel heterogeneous catalysts derived from waste (lab glassware and eggshells) and utilised for biodiesel production. Beef fat, abundantly available worldwide, is used as an oil feedstock and then converted into biodiesel, an environmentally frie...
Article
Full-text available
Solid wastes from domestic, industrial and agricultural sectors cause acute economic and environmental problems. These issues can be partly solved by anaerobic digestion of wastes, yet this process is incomplete and generates abundant byproducts as digestate. Therefore, cultivating mixotrophic algae on anaerobic digestate appears as a promising sol...
Article
Full-text available
The rising occurrence of emerging contaminants in sludges both inhibits the anaerobic digestion of sludges and induces health issues when sludges are recycled in agriculture, calling for methods to remove contaminants. Here we review emerging pollutants in wastewater treatment plants, before and after anaerobic digestion. We present their inhibitor...
Article
Full-text available
The Ukraine conflict has put critical pressure on gas supplies and increased the price of fertilisers. As a consequence, biogas has gained remarkable attention as a local source of both gas for energy and biofertiliser for agriculture. Moreover, climate change-related damage incentivises all sectors to decarbonise and integrate sustainable practice...
Article
Full-text available
The world is experiencing an energy crisis and environmental issues due to the depletion of fossil fuels and the continuous increase in carbon dioxide concentrations. Microalgal biofuels are produced using sunlight, water, and simple salt minerals. Their high growth rate, photosynthesis, and carbon dioxide sequestration capacity make them one of...
Article
Full-text available
The rapid urbanization and industrialization is causing worldwide water pollution, calling for advanced cleaning methods. For instance, pollutant adsorption on magnetic oxides is efcient and very practical due to the easy separation from solutions by an magnetic feld. Here we review the synthesis and performance of magnetic oxides such as iron oxid...
Article
Full-text available
In the context of climate change and the circular economy, biochar has recently found many applications in various sectors as a versatile and recycled material. Here, we review application of biochar-based for carbon sink, covering agronomy, animal farming, anaerobic digestion, composting, environmental remediation, construction, and energy storage...
Article
Full-text available
The increasing global industrialization and over-exploitation of fossil fuels has induced the release of greenhouse gases, leading to an increase in global temperature and causing environmental issues. There is therefore an urgent necessity to reach net-zero carbon emissions. Only 4.5% of countries have achieved carbon neutrality, and most countrie...
Article
Full-text available
Herein we demonstrate the preparation and characterization of nanocrystalline ZnO, either pure or promoted with 1–10 wt.% K2O. All catalysts calcined at 400°C were in the nano-crystallite scale as confirmed by X-ray powder diffraction analysis in the 22.9–28.0 nm range. According to the CO2-temperature-programmed desorption study using thermogravim...
Article
Full-text available
Measuring the Lewis‐acidic surface sites in catalysis is problematic when the material‘s surface area is very low (SBET ≤1 m2 ⋅ g−1). For the first time, a quantitative assessment of total acidic surface sites of very small surface area catalysts (MoO3 as pure and mixed with 5–30 % CdO (wt/wt), as well as CdO for comparison) was performed using a s...
Article
Full-text available
Herein, the aim was to develop an in-depth understanding of the kinetic behaviour of olive tree pruning residue (OTPR), an abundant agricultural waste, during pyrolysis. Thermal analysis at 1, 2, 4, 6 and 10 °C.min⁻¹ was performed using TGA-thermogravimetric analysis, with the results subsequently used to determine the OTPR's kinetic thermal breakd...
Article
Full-text available
Conventional methods to clean wastewater actually lead to incomplete treatments, calling for advanced technologies to degrade recalcitrant pollutants. Herein we review solar photo-oxidation to degrade the recalcitrant contaminants in industrial wastewater, with focus on photocatalysts, reactor design and the photo-Fenton process. We discuss limitat...
Article
Prunus Armeniaca seed (PAS) oil was utilised as a waste biomass feedstock for biodiesel production via a novel catalytic system (SrO–La2O3) based on different stoichiometric ratios. The catalysts have been characterised and followed by a parametric analysis to optimise catalyst results. The catalyst with a stoichiometric ratio of Sr: La-8 (Sr–La–C)...
Article
Full-text available
Herein, we designed a cost-effective preparation method of nanocomposite γ-Al2O3 derived from Al-waste. The produced material has a feather-like morphology, and its adsorption of some chlorinated volatile organic compounds (Cl-VOC's) such as benzyl chloride, chloroform and carbon tetrachloride (C7H7Cl, CHCl3 and CCl4) was investigated due to their...
Article
Full-text available
Integrated carbon capture and utilization (ICCU) presents an ideal solution to address anthropogenic carbon dioxide (CO2) emissions from industry and energy sectors, facilitating CO2 capture and subsequent utilization through conversion into high-value chemicals, as opposed to current release into the atmosphere. Herein, we report the synergistic c...
Article
Full-text available
Hydrogen production through methane dry reforming holds the promise of lowering greenhouse gases, that is CO2 and CH4, concentrations. Herein, Ca-, Cr-, Ga- and Gd-promoted lanthana-zirconia–supported Ni catalysts are investigated and characterized by X-ray diffraction, Raman, infrared and UV-vis spectroscopy, CH4-temperature programmed surface rea...
Article
Full-text available
Magnetic spinel ferrite nanoparticles (SFNPs) attract high scientific attention from researchers due to their broad area for biomedicine applications, comprising cancer magnetic hyperthermia and targeted drug delivery. Uniquely, its excellent performance, namely, tuning size and surface morphology, excellent magnetism, extraordinary magnetically he...
Article
Full-text available
Magnetic spinel ferrite nanoparticles (SF NPs) attract high scientific attention from researchers due to their broad area for biomedicine applications, comprising cancer magnetic hyperthermia and targeted drug delivery. Uniquely, its excellent performance, namely, tuning size and surface morphology, excellent magnetism, extraordinary magnetically h...
Article
Full-text available
The increasing significance of biomass in attaining ultimate sustainability in a multitude of vectors demands a deeper understanding of its underlying components. The pyrolytic breakdown of cellulose, a major biomass component, has been a subject of intense research since the 1950s, and despite significant research carried out and published thus fa...
Article
Full-text available
Sesbania sesban, a promising short rotation woody crop, was first evaluated in order to assess its physicochemical attributes as a feedstock material in biochar manufacturing. Additionally, thermogravimetric analysis (TGA), performed at 0.5, 1, 4 and 8°C.min⁻¹, was utilized to conduct thermal analysis, with the results being used to analyze the fee...
Article
Full-text available
The rapid urbanization and industrialization is causing worldwide water pollution, calling for advanced cleaning methods. For instance, pollutant adsorption on magnetic oxides is efficient and very practical due to the easy separation from solutions by an magnetic field. Here we review the synthesis and performance of magnetic oxides such as iron o...
Article
Full-text available
Dihydrogen (H 2 ), commonly named ‘hydrogen’, is increasingly recognised as a clean and reliable energy vector for decarbonisation and defossilisation by various sectors. The global hydrogen demand is projected to increase from 70 million tonnes in 2019 to 120 million tonnes by 2024. Hydrogen development should also meet the seventh goal of ‘afford...
Article
Rising demand for energy resources alongside climate emergency concerns has attracted the urgent attention of researchers towards the preparation and utilization of biofuels. This review will investigate the different generations of biofuels and more particularly, the developmental and production processes for creating liquid biofuels. Initially, t...
Article
Full-text available
As the global cumulative installation of solar photovoltaic (PV) devices grows every year, a proportionate number of waste PV modules arises because of their limited lifespan. It is estimated that by 2050, there will be approximately 60–78 million tonnes of PV waste (Farrell, C.; Osman, A. I.; Zhang, X. et al. Sci Rep.2019, 9, 5267). These modules...
Article
Full-text available
Herein, we investigated and analysed the performance and characteristics of a compression ignition engine on methanol/diesel blends and the impact of engine loads on tailpipe emissions and engine performance. Four combinations of blended methanol were tested and compared with pure diesel. Engine characteristics, such as: brake thermal efficiency, b...
Article
Full-text available
Herein, cotton stalk biomass was initially characterized to understand its physicochemical properties as a raw material for biochar production. Furthermore, thermal analysis was conducted using thermogravimetric analysis (TGA), and the results were further utilized to evaluate the cotton stalk's kinetic behavior under thermal decomposition in an in...
Article
Full-text available
The global energy demand is projected to rise by almost 28% by 2040 compared to current levels. Biomass is a promising energy source for producing either solid or liquid fuels. Biofuels are alternatives to fossil fuels to reduce anthropogenic greenhouse gas emissions. Nonetheless, policy decisions for biofuels should be based on evidence that biofu...
Article
Full-text available
The world is currently facing critical water and energy issues due to the growing population and industrialization, calling for methods to obtain potable water, e.g., by photocatalysis, and to convert solar energy into fuels such as chemical or electrical energy, then storing this energy. Energy storage has been recently improved by using electroch...
Article
Full-text available
Dimethyl ether (DME) is a synthetically produced alternative fuel to diesel-based fuel and could be used in ignition diesel engines due to increasing energy demand. DME is considered extremely clean transportation and green fuel because it has a high cetane number (around 60), low boiling point (−25 °C), and high oxygen amount (35 wt%) which allow...
Article
Full-text available
A pot experiment was carried out to study the ameliorative role of foliar application of an extract of the halophyte Arthrocnemum macrostachyum (A. macrostachyum) on soybean (Glycin max L.) plants grown under salinity stress (0, 75, and 150 mM NaCl). Growth traits, content of photosynthetic pigments, osmolytes, ascorbic acid and total phenol, oxida...
Article
Herein, we utilised Loquat seed oil as a waste resource to produce biodiesel over a novel bifunctional catalyst system based on CaO loaded on a ceria oxide support. The catalysts were characterised using XRD, SEM-EDX, SBET STEM, and TPD analyses, followed by parametric analysis to optimise the catalyst performance. The XPS analysis showed a strong...
Article
Full-text available
In the context of climate change, there is an urgent need for rapid and efficient methods to capture and sequester carbon from the atmosphere. For instance, production, use and storage of biochar are highly carbon negative, resulting in an estimated sequestration of 0.3–2 Gt CO 2 year ⁻¹ by 2050. Yet, biochar production requires more knowledge on f...
Article
Hydrogen production from dry reforming of methane (DRM) over chief Ni-based catalyst is cutting edge research area due to environmental consciousness about reducing global warming gases (CH4 and CO2) and greener route of synthesis. Herein, ceria promoted lanthanum-zirconia supported Ni catalyst system (5NixCe/LaZr; x = 0, 1, 1.5, 2, 2.5, 3, 5 wt.%)...
Article
The utilisation of waste biomass in biodiesel production as a sustainable energy source can lead to the incorporation of circular bioeconomy principles in the current economic systems. Herein, we synthesised a magnetically recyclable solid acid catalyst for the esterification of waste date seed oil. The catalysts possessed superparamagnetic behavio...
Article
The increasing alarm of global warming always draws interest in reactions like dry reforming of methane (DRM) where both global warming gases (CO2 and CH4) are converted into value-added chemical building blocks, such as syngas. Nickel catalyst active sites along with support acid-base profiles play a key role in DRM. Herein, xLa2O3+(100-x) Al2O3 (...
Article
Full-text available
Herein, mesoporous nanocrystalline NiO catalyst has been prepared as pure and modified with different wt% F‐ions or K 2 O and used to produce Methyl ethyl ketone (MEK) as a potential fuel/solvent. XRD analysis of the promoted catalysts confirmed the formation of Ni‐metal covered by the host oxide, compared with pure NiO, especially the promoted cat...
Article
Full-text available
Herein, we utilized waste triglycerides “cooking oil” as an abundant source for biodiesel (methyl esters) production via transesterification over a novel synthesized heterogeneous catalyst (Zn-MgO-ZrO2). The catalyst was prepared by the co-precipitation technique and analyzed by using X-ray diffraction, Scanning Electron Microscope, temperature des...
Article
Herein Handal oil extraction from waste biomass is investigated for biodiesel production via esterification and transesterification processes. Furthermore, the physicochemical characteristics of Handal biodiesel (density, kinematic viscosity, specific gravity, pour point, flash point, and cloud point) was performed along with testing the fuel quali...
Article
Full-text available
Human activities have led to a massive increase in CO2 emissions as a primary greenhouse gas that is contributing to climate change with higher than 1∘C global warming than that of the pre-industrial level. We evaluate the three major technologies that are utilised for carbon capture: pre-combustion, post-combustion and oxyfuel combustion. We revie...
Article
Full-text available
Herein waste biomass (blackberry pomace) was physicochemically characterized along with its thermochemical products. This is coupled with the evaluation of the kinetic triplet (activation energy, pre-exponential constant, and the rate of reaction) and thermal predictions for the combustion process for the first time via the AKTS thermokinetics pack...
Article
The distance between catalytic sites (Ni) and sorbents (CaO) on the performance of integrated CO 2 capture and utilization (ICCU) process is crucial important because the sorbents demonstrate a dramatic volume increase during carbonation reaction (1 st stage of ICCU) and sequentially cover the catalytic sites and retard the CO 2 conversion (2 nd st...
Article
Full-text available
Food waste is a major constituent in municipal solid wastes and its accumulation or disposal of in landfills is problematic, causing environmental issues. Herein, a techno-economic study is carried out on the potential of biogas production from different types of food waste generated locally. The biogas production tests were at two-time sets; 24-h...
Article
Full-text available
The extensive use of petroleum-based synthetic and non-biodegradable materials for packaging applications has caused severe environmental damage. The rising demand for sustainable packaging materials has encouraged scientists to explore abundant unconventional materials. For instance, cellulose, extracted from lignocellulosic biomass, has gained at...
Article
Anaerobic digestion (AD) has become an effective waste management method in the agri-food sector to dispose of livestock and food wastes. As AD becomes more widely used new challenges emerge, such as the disposal of digestate by-products. Currently, the principal method for handling solid digestate (SD) is direct application to land as an organic f...
Article
Full-text available
Background: Recycling the ever-increasing plastic waste has become an urgent global concern. One of the most convenient methods for plastic recycling is pyrolysis, owing to its environmentally friendly nature and its intrinsic properties. Understanding the pyrolysis process and the degradation mechanism is crucial for scale-up and reactor design. T...