
IEE
E P

ro
of

Enhanced Code Conversion Approach
for the Integrated Cross-Platform Mobile

Development (ICPMD)
Wafaa Samy El-Kassas, Bassem Amin Abdullah, Ahmed Hassan Yousef, and Ayman M. Wahba

Abstract—Mobile development companies aim to maximize the return on investments by making their mobile applications (Apps)

available on different mobile platforms. Consequently, the same App is developed several times; each time the developer uses the

programming languages and development tools of a specific platform. Therefore, there is a need to have cross-platform mobile

applications development solutions that enable the developers to develop the App once and run it everywhere. The Integrated Cross-

Platform Mobile Applications Development (ICPMD) solution is one of the attempts that enables the developers to use the most popular

programming languages like Java for Android and C# for Windows Phone 8 (WP8). ICPMD is used to transform both the source code

and user interface to another language to generate full Apps on the target platform. This paper extends ICPMD by proposing a new

code conversion approach based on XSLT and Regular Expressions to ease the conversion process. In addition, it provides the

assessment method to compare the ICPMD efficiency with competing approaches. Several Apps are converted fromWP8 to Android

and vice versa. The ICPMD evaluation results show reasonable improvement over commercial cross-platform mobile development

tools (Titanium and Xamarin).

Index Terms—Cross-platform mobile development, code conversion, code reuse, generated apps, ICPMD; source code patterns

Ç

1 INTRODUCTION

THE number of smartphone users is growing rapidly
because of the availability of various mobile applica-

tions (Apps) that serve them in their daily life. Therefore,
there is a demand to produce more Apps in different fields
such as education [1], [2], [3], tourism [4], [5], environment
[6], governmental services, and entertainment. There are
several mobile platforms such as Android, Windows Phone
(WP), iOS, and BlackBerry. Each platform vendor provides
different programming languages, APIs, and development
tools for the developers. Therefore, the developer has to
develop the same App several times using different pro-
gramming languages and libraries in order to produce one
App that runs on different mobile platforms. This causes
the waste of a lot of time and efforts. Consequently, mobile
development companies start to use the cross-platform
mobile applications development solutions. The main con-
cept of the cross-platform solutions is to develop the App
once and run it everywhere. There are many cross-platform
mobile applications development solutions that are used
commercially like: Titanium [7], Xamarin [8], and Phone-
Gap [9]. On the other hand, several tools are still under

research and development like: XMLVM [10], J2ObjC [11],
MD2 [12], [13], and others.

The cross-platform solutions use different approaches
such as Cross-Compilation, Model Driven Development
(MDD), Runtime Interpretation, and Component-Based.
There are many surveys [14], [15], [16], [17], [18], [19], [20],
[21], [22] concentrated on the different cross-platform
mobile applications development approaches. Most of these
approaches are still under research and development and
have limitations. These limitations include:

1. Some solutions require the developer to learn a new
programming language to use the solution. MD2 has
this limitation because it is based on a dedicated
Domain Specific Language (DSL).

2. Most of the existing cross-platform solutions do not
support reusing source code of existing native appli-
cations. For example, if the developer wants to
deploy a legacy native application to other platforms
using Titanium, he has to rewrite this application
using the Titanium specific programming language
(Javascript) and specific APIs of Titanium.

3. Many solutions do not support the user interface
generation, so the developer has to develop the user
interface natively for each generated application.
This limitation applies to J2ObjC and JUniversal [23].

The Integrated Cross-Platform Mobile Applications
Development (ICPMD) solution [24] attempted to overcome
most of these limitations. The ICPMD applied transforma-
tions to convert the application project of Windows Phone 8
(WP8) platform (including source code, user interface, and
resources) to the equivalent application project of Android

� The authors are with the Department of Computer and Systems Engineer-
ing, Faculty of Engineering, Ain Shams University, Cairo, Egypt.
E-mail: wafaa.elkassas@gmail.com, {babdullah, ahassan, ayman.wahba}
@eng.asu.edu.eg.

Manuscript received 19 May 2015; revised 27 Feb. 2016; accepted 9 Mar.
2016. Date of publication 0 . 0000; date of current version 0 . 0000.
Recommended for acceptance by R. Mirandola.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2016.2543223

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XXXXX 2016 1

0098-5589� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:


IEE
E P

ro
of

platform. However, the code conversion approach that has
been used in ICPMD was very complex.

This paper extends the previous work and proposes a
new code conversion approach by using XSLT and Regular
Expressions. The main idea of this approach is to search in
the input source code files for matching a predefined set of
code patterns and then generate the equivalent source code
for the target platform.

The contributions of this paper include: 1) proposing a
new approach for code conversion by using XSLT and Reg-
ular Expressions, 2) proposing a criteria to evaluate the effi-
ciency of the proposed code conversion approach, and 3)
evaluating the efficiency of the generated Apps from the
enhanced ICPMD compared with the native counterpart
and the generated Apps from other cross-platform mobile
development solutions.

The rest of this paper is organized as follows: Section 2
presents the related work. Section 3 gives a background
about the ICPMD solution. Section 4 explains the methodol-
ogy of enhancing the code conversion approach for the
ICPMD solution. Section 5 focuses on the proposed code con-
version approach in details and presents two code conver-
sion examples. Section 6 includes the evaluation of the
generated applications and comparison to other alternatives.
Finally, Section 7 presents the conclusions and future work.

2 RELATED WORK

In [22], El-Kassas et al. categorize the approaches adopted
by several different cross-platform mobile development sol-
utions as follows:

1. Compilation approach which includes two sub-
approaches: Cross-Compiler and Trans-Compiler.

2. Component-Based approach.

3. Interpretation approach which includes three sub-
approaches: Virtual Machine, Web-Based, and Run-
time Interpretation.

4. Modeling approach which includes two sub-
approaches: Model-Based User Interface Develop-
ment (MB-UID) and Model Driven Development.

5. Cloud-Based approach.
6. Merged approach.
These approaches are used with the different types of

mobile applications that include web App, native App, and
hybrid App. Web App is mainly based on web technologies
such as HTML5 and Javascript. Native App is developed
using the tools and programming languages provided for a
certain mobile platform. Hybrid App combines the web
App and the native App. It is developed using the web tech-
nologies like the web App but it is rendered inside a native
App. Table 1 shows the pros and cons of the different types
of mobile applications.

There are several tools that are used for cross-platform
mobile development. For example, PhoneGap is the most
commonly used solution to produce hybrid Apps [25], [26].
This solution uses the Web-Based approach. The most
widely used commercial solutions [25], [26] to produce
native Apps are: Titanium and Xamarin. Titanium uses the
Runtime Interpretation approach. Xamarin produces native
Apps in a different way for each supported platform. For
iOS, C# is Ahead-of-Time (AOT) compiled to produce
native ARM assembly code. For Android, C# is compiled to
Intermediate Language (IL), which is Just-in-Time (JIT)
compiled to produce native assembly when the application
launches. In both cases, Xamarin Apps utilize a runtime
that automatically handles issues like garbage collection,
memory allocation, and underlying platform interop [27].
For WP, C# is compiled to IL and executed by the built-in
runtime. The new proposed solution (ICPMD) focuses to
produce native Apps and use the Merged approach by com-
bining the Trans-Compilation approach and the Model-Driven
Development approach.

In this section, some cross-platform mobile applications
development approaches will be briefly introduced because
they are important in understanding the whole paper
domain. These approaches include: 1) Trans-Compiler,
2) Cross-Compiler, 3) Runtime Interpretation, and 4) MDD
approaches. The selected approaches represent the
approaches of the solutions: Titanium, Xamarin, and
ICPMD. For each approach, one or more cross-platform
mobile applications development solutions are provided.
These examples are selected because they inspire and moti-
vate the design decisions of the proposed ICPMD solution.
More comprehensive details about the different cross-plat-
form mobile applications development approaches and sol-
utions are found in several survey papers including [14],
[15], [16], [17], [18], [19], [20], [21], [22].

2.1 Trans-Compiler Approach

A trans-compiler is used to transform one high-level pro-
gramming language to another high-level programming
language. In general, the code conversion is a nontrivial
task [28] because mapping the API between two languages
is difficult for the following reasons: 1) the names of classes
are different, 2) the names of methods are different, and 3)

TABLE 1
Pros and Cons of Mobile Apps Types

Pros Cons

Web App

� Easy to learn and
develop using the web
technologies.

� Cannot be down-
loaded from the Apps
store.

� Developed once and
is accessed on different
platforms using mobile
browsers.

� Cannot access the
mobile device features.

� Less performance.

Native App

� Full access to the
mobile device features.

� Downloadable from
the Apps store.

�Higher performance. �More difficult to learn
and develop.

�Native look and feel. � Developed separately
for the different plat-
forms.

Hybrid App

� Can access the mobile
device features.

� Downloadable from
the Apps store.

� Developed using the
web technologies and
rendered in a native
App, hence the web-
pages can be reused
across different plat-
forms.

� Less performance
than the native Apps.

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XXXXX 2016



IEE
E P

ro
of

the count and types of methods’ parameters are different.
Solutions that use this approach include: J2ObjC, JUniver-
sal, and the tool described in [29].

In [29], a tool is proposed to convert the Android Apps to
platform independent web Apps by using the Google Web
Toolkit (GWT). The converter uses the Eclipse Java Devel-
opment Tools (JDT) to process the source code, because
both Android and target GWT system have their own cus-
tom Java library (subset of the Java runtime library). The
main task of the converter is to handle the differences in
these two Java libraries. The converter has to identify all
statements in the source code which are not supported in
the target system. The Android source code is parsed to pro-
duce AST. If the converter detects library calls which are not
supported by the GWT (Java-to-JavaScript compiler), the
syntax tree is going to be modified. After that, the GWT
compiler translates the Java source for the client side to
JavaScript code and for the server side to Java byte code.
Features in the Android source system which are neither
supported by GWT nor by HTML5 are ignored.

The J2ObjC tool [11] translates the Java code to Objective-
C code for the iOS platform. The J2ObjC is an open-source
command-line tool from Google, which is currently
between alpha and beta quality. It supports the transforma-
tion of general business logic as the transformation of the
UI-specific code is not supported. The goal is to write the
application without UI in Java (the application logic) and
then use this tool to convert the application to iOS applica-
tion (without user interface). J2ObjC supports most of the
features of the Java language and its runtime, including:
exceptions, inner and anonymous classes, generic types,
threads, and reflection. In addition, the JUnit test translation
and execution are supported.

Microsoft recently announced the JUniversal tool [23]
which converts the Java source code files of the Android
platform to the equivalent C# files of the Windows/Win-
dows Phone platform. JUniversal doesn’t provide any sup-
port for UI today and the developer has to write it natively.

2.2 Cross-Compiler Approach

A cross-compiler is a compiler that runs on a computer that
has an operating system that is different from the one on
which the compiled program will run. XMLVM is a solution
that uses this approach.

The XMLVM tool [30], [31], [32], [33] is a byte code
level cross-compiler. Instead of cross-compiling on the
source code level, XMLVM cross-compiles the byte code
instructions from Sun Microsystem’s virtual machine.
XMLVM does not only cross-compile applications on a
language level, but it also maps the APIs between differ-
ent platforms. The advantages of choosing the byte-code
transformation include: 1) byte codes are much easier to
parse than Java source code, 2) some high-level language
features such as generics are already reducedto low-level
byte code instructions, and 3) the Java compiler does
extensive optimizations to produce efficient byte codes.
However, the mapping between the source language and
the target language is very difficult to be achieved.
Therefore, the cross-compiler supports a few platforms
and focuses only on the common elements of these plat-
forms [34].

2.3 Runtime Interpretation Approach

Runtime is an execution environment and a layer that
makes the mobile App runs on the native platform. This
approach translates the code to bytecode and then, at run-
time, that bytecode is executed by a virtual machine that is
supported by the mobile device. Titanium is a solution that
uses this approach.

Titanium [7] links JavaScript to native libraries, compiles
it to bytecode and then the platform SDK (Android or iOS)
builds the package for the target platform. Also, the output
App contains a JavaScript interpreter runtime and a Webkit
rendering engine [18].

2.4 Model Driven Development Approach

This approach is used to generate platform specific versions
of the App out of a platform independent model. MD2 is a
solution that uses this approach.

MD2 [12], [13] framework is based on a new DSL which is
tailored to the domain ofmobile Apps. This tool allows devel-
oping Apps by describing the application model using the
new defined DSL, and then a set of transformation steps are
done to generate native and platform-specific source code.

2.5 ICPMD Relation to Different Approaches

ICPMD is inspired by many of the existing cross-platform
mobile applications development solutions. The ICPMD
scope and design requirements are formalized as follows:

1. Focus on the native mobile development.
2. Focus on generating full Apps.
3. Support code reuse.
4. The developer does not have to learn a new pro-

gramming language to use this solution.
Some tools support the native-to-web Apps conversion

including [29] and other tools support the native-to-native
Apps conversion including J2ObjC and JUniversal. ICPMD
focuses to support the native-to-native App conversion.
However, ICPMD attempts to avoid the limitations of
J2ObjC and JUniversal by generating full Apps that include:
source code, user interface, project files, and resources.
ICPMD uses the Trans-Compilr approach for the code con-
version and the MDD approach for the UI and manifest files
conversion. ICPMD is designed to avoid the MD2 limita-
tions by allowing the developer to use his preferred pro-
gramming languages for native Apps development (i.e.,
Java for Android Apps and C# for Windows Phone Apps).
MD2 and Titanium did not support code reuse of the exist-
ing native mobile Apps. ICPMD is designed with the
requirement to support code reuse.

ICPMD is similar to XMLVM since both of them use an
XML-based intermediate language and generate native
Apps. However, these solutions are different in the internal
implementations and in many other aspects such as:

� Input: XMLVM is based on Java as input program-
ming language and parses the bytecode. ICPMD
extends that by trying to support different languages
(e.g., Java and C#) on the source code level.

� API Mapping: XMLVM is based on the APIs of
Android. For each supported platform, many API
mapping layers are developed. ICPMD is designed
to be independent of any platform.

EL-KASSAS ET AL.: ENHANCED CODE CONVERSION APPROACH FOR THE INTEGRATED CROSS-PLATFORM MOBILE DEVELOPMENT (ICPMD) 3



IEE
E P

ro
of

� Readability: ICPMD generates a readable source code
that uses the native APIs of the target platform using
the same names of variables and objects that are
defined by the source App developer. On the other
hand, the generated code from XMLVM is difficult
to read and to follow due to the extensive creation of
temporary variables and objects with difficult to
read names (e.g., _r0, _r1_o, or _r2).

The next section presents a background about the
ICPMD architecture design details.

3 ICPMD BACKGROUND

The ICPMD solution focuses mainly on the native mobile
applications development. To avoid the limitations of exist-
ing cross-platform solutions, ICPMD was designed to
achieve a set of requirements as follows:

1. Generating full Apps: the solution handles the gener-
ation of both the user interfaces and the source code
files along with other essential files (i.e., resource
files and project files) to produce ready-to-compile
Apps.

2. Supporting code reuse of the existing Apps source
code.

3. The developer does not have to learn a new program-
ming language to use this solution. The developer
could use his preferred programming languages for
native Apps development (i.e., Java for Android
Apps and C# forWindows Phone Apps).

The architecture of ICPMD is shown in Fig. 1. The
ICPMD solution converted WP8 source project to an inter-
mediate abstract model project (i.e., XML files and resource
files). This model project is used to generate the target plat-
form project for Android. This solution converted the
source project to an intermediate abstract model project by
using the WP8 AppModeler module then the Android App-
Producer module converted the abstract model project to
the equivalent project for Android platform.

The AppModeler and AppProducer modules consist of
four converters: Manifest Converter, User Interface (UI)

Converter, Code Converter, and Resource Mapper. The
Manifest and UI converters were implemented using XSLT
and the Code Converter converted the input source code
file to the equivalent Abstract Syntax Tree (AST) then
searched for patterns in the AST to generate the equivalent
source code for other platforms.

The code converter consisted of two sub-modules: Parser
and Analyzer. The Parser and Analyzer convert the source
code files to the corresponding XML files. The Parser (M)
module was implemented by using the NRefactory open
source library [35] which uses its internal “C# Language
Rules” to convert the C# WP8 source code file to AST. Then,
the generated AST is transformed to XML format. NRefac-
tory was selected because it is open source and supports
new versions of C#. The input of the Parser was the C#
source code and the output was the AST. The Analyzer (M)
module uses the AST generated by the parser with the
“Patterns Rules” definitions. Its role is to identify each func-
tion pattern in the AST and replace it with the equivalent
ICPMD unified component interface in the Abstract Model.
This paper proposes a new code conversion approach for
the ICPMD solution and the next section explains the
research methodology.

4 PROPOSED ENHANCED ICPMD METHODOLOGY

In ICPMD, although the code converters have been imple-
mented and tested to convert Apps like miniBrowser and
Built-in Camera from WP8 to Android, the definition of
code patterns was very difficult because it was based on
XPATH. Therefore, it is required to have a developer who is
familiar with the AST structure generated from the NRefac-
tory in order to be able to define the new code patterns.
Because this solution was very complex for defining the
code patterns, different code conversion alternatives are
investigated as follows:

1. The first alternative is to build a huge database that
maps the classes, methods, and attributes of one
platform to the other supported platforms and then
this database could be used to translate the input

Fig. 1. The architecture of the ICPMD solution [24].

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XXXXX 2016



IEE
E P

ro
of

source code file to the equivalent source code for
other platforms. This solution has been avoided
because the mapping among platforms is not a sim-
ple or a direct task. For example, a particular func-
tion could be implemented by calling one method in
a certain platform while it is implemented using sev-
eral lines of code in another platform as explained in
example 1.

Example 1. loading URL in a webview/web-
browser control is implemented in both WP8 and
Android as follows:

� WP8 Input Source Code:
web1.Navigate(new Uri(url, UriKind.Absolute));

� Equivalent Android Source Code:
web1.setWebViewClient(newWebViewClient());
web1.getSettings().setJavaScriptEnabled(true);
web1.getSettings().setGeolocationEnabled(true);
web1.setWebChromeClient(new WebChrome-
Client());
web1.loadUrl(url);

2. The second alternative is to treat the input source
code file at a higher level by reading the source
code file line by line, and then attempt to match it
with a predefined list of patterns. If a pattern is
matched; the equivalent source code for the other
platform is retrieved from the database. The
unmatched lines of code are migrated as com-
ments in the generated source code files. The code
patterns are written using Regular Expressions
(Regex) and the code generators are implemented
using XSLT. This paper provides a detailed expla-
nation of this approach.

The proposed code conversion approach adds
the following advantages to the generated Apps
from ICPMD:
� Source Code Readability: the generated source

code is readable. Usually, this code is gener-
ated with comments that explain the meaning
of each line.

� Source Code Consistency: all the lines of code in
the source project are converted to the target
platform project. The detected lines of code
are converted to the target language. In addi-
tion, the undetected lines of code are copied
to the target project as comments. The com-
mented source code will be an initial hint to
the developer instead of starting from scratch
to implement the required functionality.

� Flexibility: the developer can add new func-
tionalities and do any customizations or
updates on the generated App project before
compilation.

Fig. 2 shows the workflow of the enhanced ICPMD solu-
tion (i.e., web-based system). The mobile developers enter a
source project folder (e.g., Android project) to the system,
and then this will be converted to the equivalent target plat-
forms (e.g., WP8 and iOS projects) where the output
includes a project folder for each target platform.

The enhanced ICPMD solution, which is inherited
from the original architecture and design in [24], has the
following strengths:

� Modularity: the modules of each platform (i.e., App-
Modeler and AppProducer) are implemented sepa-
rately from other platforms. If one platform needs
updating, then this platform will be updated only
without affecting the modules of other platforms.

� Extensibility: both the original ICPMD and the
new enhanced version are mainly based on exter-
nal configuration files (i.e., XSLT files and ICPMD
database) that can be updated and extended to
reflect new supported features and updates.

� Generating Full Apps: both the original ICPMD and
the new version generate a project folder for the tar-
get platform, and then the developer can compile
this project on the platform-specific compiler to pro-
duce the ready-to-publish applications.

The limitations of the new enhanced ICPMD include:

1. The AppModeler can only recognize lines of code in
the source project that match the predefined list of
code patterns. It converts these lines of code to the
abstract model project. The unrecognized lines of
code are converted to the abstract model project as
comments.

2. The AppProducer does not support the following:
� Different versions for Android or Windows

Phone platforms.
� Different screen sizes like phones and tablets.
� Different screen resolutions when dimensions

(width and height) of the user interface controls
are defined.

� Themes and style specifications.
3. The solution requires the developer to setup the

compiler of each supported platform in order to
compile the generated mobile applications
projects.

The next section presents the proposed code conversion
approach in details.

Fig. 2. Workflow of the enhanced ICPMD solution.

EL-KASSAS ET AL.: ENHANCED CODE CONVERSION APPROACH FOR THE INTEGRATED CROSS-PLATFORM MOBILE DEVELOPMENT (ICPMD) 5



IEE
E P

ro
of

5 PROPOSED SOURCE CODE CONVERSION

APPROACH

The proposed approach solves the direct mapping of APIs
problem by focusing on the common functions among the
mobile platforms. These functions are represented as code
patterns which are written using Regular Expressions. The
code patterns are stored in the new enhanced ICPMD pat-
terns database where each record consists of the pattern for
the input programming language along with the equivalent
lines of code for each target platform programming lan-
guage. There are different types of code patterns which are
defined based on the anatomy of the input source code file.

The proposed algorithm which applies the proposed
code conversion approach is called Source Code Migration
(SCM) algorithm. The main idea of the SCM algorithm is to
search in the input source code file for matching a prede-
fined set of code patterns, and then get the equivalent
source code for the target platform from the ICPMD data-
base. The input to the algorithm is a source code file which
is written in the source platform programming language.
This input is converted to an intermediate XML representa-
tion file, and then the XML file is used to generate the equiv-
alent source code file which is written in the programming
language of the target platform.

The next sub-sections present the anatomy of the input
source code file, the different types of code patterns, the
SCM algorithm, and the results of implementing the pro-
posed code conversion in the ICPMD solution along with
two code conversion examples, respectively.

5.1 Source Code File Anatomy

Fig. 2 shows the anatomy of the input source code file. The
source code file consists of a set of statements (package/
namespace definition of the project, statements to reference
other classes, and may include comment statements) and
the class definition (mobile application page class or ordi-
nary class). The class consists of a set of methods (each
method could be a constructor, event handler, or an ordi-
nary method), zero or more statements (i.e., variable decla-
ration statement), and zero or more inner classes. Each
method consists of a set of blocks (i.e., if statement, for state-
ment, etc.) and a set of statements (i.e., variable declaration
statement, and assignment statement). Each statement con-
sists of zero or more expressions.

According to the source code anatomy in Fig. 3, each line
of code in the source code file could be one of the following:

� Package/namespace statement
� Reference statement

Fig. 3. Anatomy of the input source code file in mobile applications.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XXXXX 2016



IEE
E P

ro
of

� Class definition statement
� Comment statement
� Empty line
� Start of block (i.e., {)
� End of block (i.e.,})
� Event handler signature
� Variable declaration statement
� Object creation statement
� Increment/decrement statement
� Assignment statement
� Method invocation (no return)
� if statement
� for statement
� Others

5.2 Source Code File Patterns

The proposed approach focuses on converting the mobile
functions/features from one platform to another. This applies
also to the statements that exist in any programming language
like: if statement, for statement, variable declaration state-
ment, etc. The mobile platforms provide mainly the same
built-in features, for example: making a call, send SMS, cam-
era, play music, Global Positioning System (GPS), and Accel-
erometer. Usually, the implementation for each platform is
different than the other and uses different classes and meth-
ods. In addition, the same function (e.g., send SMS) may be
implemented using one statement (one source code line) in a
particular platform while it is implemented using several
statements in another platform. Therefore, the proposed
approach focuses to convert the mobile functions from one
platform to another instead of mapping the APIs in a one-to-
oneway. Different types of patterns are used as follows:

� A pattern that matches one line of code (Simple
pattern).

� A pattern that matches part of source code line
(Expression pattern).

� A pattern that matches several lines of source code at
once (Composite pattern).

Each pattern statement/expression is represented by Reg-
ular Expressions in the proposed enhanced ICPMD patterns
database. Each Regex pattern may consist of zero or more
parameters. The values of these parameters are used to sub-
stitute in the equivalent source code generation for different
platforms. There are three types of code patterns as follows:

1. Simple Pattern: the simple pattern targets to match
single source code statement that represents the fol-
lowing statements:
� Event handler signature (e.g., click event

handler)
� Assignment statement (e.g., set text of textbox

control)
� Method invocation statement (e.g., open another

application page)
� Basic statements in any programming languages

such as:
� Variable declaration statement
� if statement
� for statement
� while statement
� Others

� Others
The simple pattern Regex may consist of zero

or more parameters: @PARAM1, @PARAM2,
etc. The values of these parameters are used
while code is being generated to the target plat-
forms. Example 2 explains the structure of a sim-
ple code pattern and how it matches the input
source code line.

Example 2. simple pattern:
� Input WP8 statement from the input source code

file:
textStatus.Text ¼ “Tap the camera button to take
a picture.”;

� Input code pattern from the ICPMD database:
([\w]�)[\.]Text[\s]� ¼ [\s]�(.�)[\s]�;

� Stored Android statement in the ICPMD
database:
@PARAM1.setText(@PARAM2);

� Output Android statement after matching the
pattern:
textStatus.setText(“Tap the camera button to take
a picture.”);

2. Composite Pattern: the composite pattern matches two
or more lines of the source code. These patterns tar-
get groups of source code statements that represent
mobile functions/features such as:
� Open camera
� Get results from camera
� Make a phone call
� Send SMS
� Create navigation menu
� Play sound
� Get Bluetooth devices list
� Open URL in webview control
� Others

The composite pattern consists of two or more
Regex patterns. Each Regex pattern consists of
zero ormore parameters: @PARAM1,@PARAM2,
etc. In addition, there are shared parameters
among all the statements of the same composite
pattern: @SHARE1, @SHARE2, etc. The same
composite pattern could be repeated several times
in the input source code file. Therefore, it is man-
datory to share the object name as a shared param-
eter. The values of the parameters (@PARAM or
@SHARE) are then used to substitute the corre-
sponding parameters in the generated source
code of the target platforms. Example 3 explains
the structure of a composite code pattern.

Example 3. composite pattern:
� Input WP8 statements from the input C# source

code file:
VibrateController vibrate ¼ VibrateController.
Default;
vibrate.Start(TimeSpan.FromMilliseconds(1,000));
vibrate.Stop();

� Input code patterns from the ICPMD database:
VibrateController[\s]�([\w]�)[\s]� ¼ [\s]�Vibrate
Controller.Default[\s]�;

@SHARE1.Start[\(][\s]�TimeSpan.FromMillisec-
onds[\(][\s]�([\w]�)[\)][\s]�[\)][\s]�;

EL-KASSAS ET AL.: ENHANCED CODE CONVERSION APPROACH FOR THE INTEGRATED CROSS-PLATFORM MOBILE DEVELOPMENT (ICPMD) 7



IEE
E P

ro
of

@SHARE1.Stop[\(][\s]�[\)][\s]�;
� Stored Android statements in the ICPMD

database:
Vibrator @SHARE1 ¼ (Vibrator) getSystemSer-
vice(Context.VIBRATOR_SERVICE);
@SHARE1.vibrate(@PARAM1);
@SHARE1.cancel();

� Output Android statement:
Vibrator vibrate ¼ (Vibrator) getSystemService
(Context.VIBRATOR_SERVICE);
vibrate.vibrate(1,000);
vibrate.cancel();

3. Expression pattern: This pattern matches part of line
in the source code. These patterns target the expres-
sions used in statements such as:
� Get substring of text
� Get length of text
� Get text of textbox control
� Others

The expression pattern Regex may consist of zero or
more parameters: @PARAM1, @PARAM2, etc. The values
of these parameters are used to substitute in the generated
source code of the target platform. The next section will
explain in more details the SCM algorithm.

5.3 Source Code Migration Algorithm

The aim of the SCM algorithm is to convert the input source
code written in one programming language (e.g., C#) to the
equivalent source code of another programming language
(e.g., Java). The main idea of the SCM algorithm is to search
in the input source code file for matching a predefined set
of code patterns, and then get the equivalent source code
for the target platforms from the database. These patterns
are written using Regular Expressions. The SCM algorithm
uses different types of code patterns: Simple patterns, Com-
posite patterns, and Expression patterns. The code patterns
are stored in the ICPMD patterns database where each
record consists of the pattern for the input programming
language along with the equivalent lines of code for each
target platform programming language.

The SCM algorithm consists of four main stages as
shown in Fig. 4, these stages are:

1. Code preparation: this stage parses all the lines of code
in the input source code file to remove any ambigui-
ties that could hinder the detection of the code pat-
terns. In most cases, two or more types of code
statements could exist on the same line of source
code which require to be separated into different
lines like the following cases:
� Source code statement and comment statement

on the same line.
� Start of block “{” or end of block “}” and source

code statement or comment statement on the
same line.

� Many source code statements separated by “;” on
the same line.

2. Code survey: this stage parses all the source code
lines, in the updated source code file after the code
preparation stage, to mark all the statements that
match composite patterns to prevent parsing them

as simple patterns in the code conversion stage of
this algorithm.

3. Code conversion: this stage parses and translates all
the source code lines, in the updated source code
file, to the intermediate abstract model XML repre-
sentation which contains translated code for all tar-
get platforms. The main idea is to compare each line
in the input source code with the predefined pat-
terns, then compose the output XML representation
file as follows:
� If line is matched with one of the code patterns:

� Add a new element <comment> contains
the recognized source code line.

� Add a new element <pattern>:
- Add inner element for each sup-

ported platform (i.e., <android> and
<ios>) contain the equivalent source
code for the recognized/matched
source code line.

� Else, if line is not matched with any code pattern:
� Add a new element <comment> that con-

tains the unrecognized source code line.
4. Code generation: this stage uses the language XSLT

file to convert the intermediate XML representation
file to the source code file of the target platform.

The proposed code conversion algorithm handles the dif-
ferences between the current supported platforms (Android
and WP8) on the source-code-line level. Our approach pro-
vides the following capabilities:

1. Handling of unsupported statements in the target plat-
form: in the database, the source pattern is stored
along with a separate equivalent source code field
for each supported target platform. Therefore, if a
target platform does not support this pattern; the
field that corresponds to the target platform will be

Fig. 4. Stages of the source code migration algorithm.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XXXXX 2016



IEE
E P

ro
of

filled with a comment explaining that this statement
is not supported yet in this particular platform. In
the case of patterns that are not found in the data-
base, the undetected lines of code are converted as
comments in the target application. This design
guarantees that if some lines of code are specific to
the source platform and not supported on the target
platform, then their conversion issue will be solved
implicitly.

2. Mapping the differences between the platforms: in the
database, some code patterns are defined to be
moved to certain methods/event handlers during
the code conversion process. Reading the current
changed values of sensors is a good example of this
capability. In WP8, each sensor can register a sepa-
rate event handler to read this sensor values. In
Android, on the other side, the application page
“Activity” must implement the interface
“SensorEventListener” and override two methods
“onSensorChanged” and “onAccuracyChanged” to
read the current changed values of all sensors. So,
any pattern related to reading values of sensors will
be moved to these two particular methods.

Handling more source-code-line differences between the
different supported platforms will be extended in the future
work.

In the new enhanced ICPMD: the AppModeler imple-
ments the first three stages of the SCM algorithm and the

AppProducer implements the fourth stage. Although this
algorithm is designed mainly to serve the ICPMD solution,
it could be adapted for different contexts.

5.4 Supported Functions and Code Conversion
Examples

The code converters in the AppModeler and the AppPro-
ducer can detect and convert the code functions listed in
Table 2. The list of supported features/functions could be
extended by adding the Regex patterns in the ICPMD data-
base so the code converters can detect and convert more
Apps.

By using the proposed code conversion approach, which
is implemented in the new enhanced ICPMD solution, sev-
eral mobile Apps have been converted from WP8 platform
to Android platform and vice versa. The generated
Android/WP8 projects may require some minor updates to
be done by the developer manually. These manual updates
include:

� Fixing any compilation errors.
� Writing the corresponding target code for the unde-

tected code functions that are converted as
comments.

To illustrate how the SCM algorithm works, Fig. 5 shows
how a line in the input source code file is matched with the
different code patterns in the ICPMD database. Then, the
parameters of the pattern are extracted and used to generate
the intermediate XML representation. Table 3 shows a sim-
ple mobile application that uses the Isolation Storage feature
to save data for a particular key, where the C# source code is
converted to the intermediate XML representation, and then
the Java code is generated. Appendix A, which can be found
on the Computer Society Digital Library at http://
doi.10.1109/TSE.2016.2543223, at the end of this paper
includes the XSD schema of the XML intermediate language
which is used in the proposed code conversion approach.
Table 4 shows another code conversion example, in which
the C# code for Windows Phone 8 is obtained from the Java
code for Android for an application that uses a web view
control to display a particular web page.

5.5 Design Assessment Discussion

The efficiency of the enhanced ICPMD solution depends
mainly on the quality and quantity of the source code pat-
terns that are used in the code conversion between the source
and the target platforms. In order to assess the applicability
of the proposed approach in the general case, several con-
cerns should be discussed. For instance, the effort required
to define the patterns is proportional to the number of pat-
terns and to the number of source languages. Defining the
patterns is simpler now than using the XPath technique used
in the original ICPMD. The maintenance of the patterns and
their target codes will depend on the frequency of having
new versions. Therefore, this can be solved by having agree-
ments with the platform vendors that enable them to update
the database when they release new versions.

Fixing the code of an App that is unsuccessfully con-
verted has a reasonable user-friendliness degree as com-
pared to writing the App from scratch because the
undetected lines of code are converted as comments. This

TABLE 2
Supported Code Functions

Supported Function Details

1 Initialize the application page
class

Define references to the UI
controls

2 Handling the mobile applica-
tion page life cycle events

Create/Start – Pause –
Resume

3 Event Handlers Click event handler -
Touch event handler -
Menu Item Click event
handler - Sensors/Count
down timer event handlers

4 Isolated storage in the mobile
App (shared preferences in
Android)

Store key-value pair
Retrieve key-value pair
Delete key-value pair

5 Application Menu Menu of each application
page

6 Built-in Camera Open Built-in Camera -
Retrieve the result from
Built-in Camera

7 Page Navigation Open another application
pages

8 Messaging Send SMS - Send Email
9 Webview Functions Load URL
10 Vibration Start – Stop
11 Countdown timer Start – Stop
12 Sensors Start and stop Accelerome-

ter Start and stop Orienta-
tion/Motion

13 Listbox Functions Fill list - Add item - Get
item - Remove item

14 Bluetooth Functions Is Bluetooth enabled? Get
paired devices list

15 Device Information Manufacturer - OS version
- Device Name

EL-KASSAS ET AL.: ENHANCED CODE CONVERSION APPROACH FOR THE INTEGRATED CROSS-PLATFORM MOBILE DEVELOPMENT (ICPMD) 9



IEE
E P

ro
of

commented code will be an initial hint to the developer
which helps him to implement the required functionality.

The management process of defining and maintaining
the source code patterns is formalized by answering the fol-
lowing questions:

1. How to categorize the source code patterns?
The mobile platforms provide almost the same

mobile features but with different implementations.
Each mobile feature is a pattern (e.g., using the cam-
era), each pattern consists of a set of sub-patterns
(e.g., take a photo, and record a video), and each
sub-pattern consists of one or more statements.

2. Who can define the source code patterns?
The platform-specific developers can contribute and
define the code patterns for one or more mobile

Fig. 5. Convert C# source code to the intermediate XML representation.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XXXXX 2016



IEE
E P

ro
of

functions. The efforts required to define the code pat-
terns depends mainly on the number of platform-
specific contributors and their level of experience.

3. How to maintain/validate the source code patterns?

The senior mobile developers can approve these patterns
before using them during the code conversion process.
Senior developers can see all code patterns that belong to
the same mobile function. Therefore, they can remove

TABLE 3
Source Code Conversion Example from C# to Java

TABLE 4
Source Code Conversion Example from JAVA to C#

EL-KASSAS ET AL.: ENHANCED CODE CONVERSION APPROACH FOR THE INTEGRATED CROSS-PLATFORM MOBILE DEVELOPMENT (ICPMD) 11



IEE
E P

ro
of

redundant, duplicate, incomplete, obsolete code patterns. In
addition, the senior developers have the responsibility to
avoid the possibility of having false-positive conversions
due to any overlapping code patterns.

The next section sheds the light on the results that are
obtained from the new enhanced ICPMD and how the gen-
erated applications can be evaluated.

6 PROPOSED EVALUATION CRITERIA

AND RESULTS

There are two requirements of evaluation. The first evalua-
tion requirement is to evaluate the efficacy and efficiency of
the proposed code conversion approach. This evaluation
focuses on the ability to detect and convert different simple
mobile functions (e.g., send SMS). Therefore, the Apps that
are used in the evaluation are selected to reflect various
mobile functions. In addition, it was preferred to select sim-
ple mobile applications that focus mainly on one mobile
function to evaluate each code pattern and its correspond-
ing function separately in an independent way on other pat-
terns and functions.

The second requirement is motivated by the lack of
benchmark to compare the performance of the Apps that
are generated from the different cross-platform mobile
applications development tools. In this comparison, we
adopted the benchmark used in [15], [36], [37] to compare
the App generated from ICPMD with Apps generated by
other alternatives or developed natively. This evaluation
focuses on the performance of the generated App with its
native counterpart and in comparison to the Apps devel-
oped using Titanium and Xamarin. This is done by develop-
ing particular benchmark Apps that use measurements.

The next sub-sections introduce the proposed criteria to
evaluate the efficiency of the proposed code conversion
approach and the evaluation results, and the results of com-
paring the performance of the ICPMD generated App with
its native counterpart and the Apps developed using Tita-
nium and Xamarin.

6.1 Evaluation of the Proposed Code Conversion
Approach

The evaluation criteria steps, to evaluate the new enhanced
ICPMD and the proposed code conversion approach, can be
explained as follows:

1) Evaluate the enhanced ICPMD by computing the fol-
lowing measurements:
� Input LOC: the Lines of Code (LOC) of the source

App.
� Generated LOC: the lines of code of the generated

App.
� Generation Time: the time taken by the ICPMD to

convert the source App to the generated App.
� Compilation Errors: the count of compilation

errors when compiling the generated App for
the first time. Besides, the different types of com-
pilation errors are defined.

2) Compute the Correctly Detected Lines of Code
(CDLOC) percentage in comparison to the total lines
of code, Accuracy, Precision and Recall for the

generated applications to evaluate the efficiency of
the proposed code conversion approach: these com-
putations are defined in equations (1), (2), (3), and
(4); the last three computations are used in [38].

CDLOC ¼
true positives

true positivesþ false positivesþ false negativesþ true negatives
;

(1)

Accuracy ¼
true positivesþ true negatives

true positivesþ false positivesþ false negativesþ true negatives
;

(2)

Precision ¼ true positives

true positivesþ false positives
; (3)

Recall ¼ true positives

true positivesþ false negatives
: (4)

The main idea is to manually check the generated Apps
from the ICPMD solution to evaluate if the converted source
code lines are correctly detected or not. The equations’
parameters to evaluate the ICPMD are demonstrated in
Fig. 6 and are defined as follows:

� True positive: the Correctly Detected (CD) lines of
code.

� False positive: the Incorrectly Detected (ID) lines of
code.

� True negative: the Correctly Undetected (CU) lines
of code.

� False negative: the Incorrectly Undetected (IU) lines
of code.

� The total number of input source code lines that
should be Converted (C) because they have equivalent
code patterns in the database, is computed as follows:

C ¼ CDþ ID:

� The total number of input source code lines that
should be Unconverted (U) because they do not

Fig. 6. Demonstration of the evaluation parameters.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XXXXX 2016



IEE
E P

ro
of

have equivalent code patterns in the database, is
computed as follows:

U ¼ CUþ IU:

The equations (5), (6), (7), and (8) can be rewritten as fol-
lows:

CDLOC ¼ CD=ðCþUÞ; (5)

Accuracy ¼ ðCDþ CUÞ=ðCþUÞ; (6)

Precision ¼ CD=C; (7)

Recall ¼ CD=ðCDþ IUÞ: (8)

The evaluation of the enhanced ICPMD solution and the
proposed code conversion approach has been performed
using the sample WP8 Apps which are listed in Table 5. The
evaluation of the proposed code conversion approach in the
reverse direction (from Android to WP8) will be included in
the future work.

By using the above explained evaluation criteria, the
evaluation results of sample Apps converted from WP8
platform to the equivalent Android Apps are listed in
Tables 6, 7 and 8 respectively. The evaluation results of the
ICPMD generated Apps show the following:

� The generation time is relatively small to generate a
full simple mobile application in less than one
minute.

� The generated lines of code “Generated LOC”
exceeds the input lines of code “Input LOC” in
Table 5 because of the following reasons:
� If the input source code line is detected, the out-

put file will include two lines as follows:
- A copy of the input source code line as

comment for the developer to check on the
converted source code.

- The equivalent source code in the target
platform.

� If the input source code line is not detected, the
output file will include:
- A copy of the input source code line,

marked as a comment in order to enable
the target language developer to write the
equivalent source code by himself.

� The errors in detecting the code patterns (ID column)
are relatively small compared to the correctly
detected code patterns (CD column). This is clearly
explained in the Accuracy and Precision columns in
Table 7.

� The compilation errors are relatively small in Apps
with small LOC. In Apps with more LOC like Apps

TABLE 5
Windows Phone 8 Samples List

WP8 App Name Sample URL

1 UsingIsolatedStorage https://code.msdn.micro-
soft.com/windowsapps/
Using-Isolated-Storage-
fd7a4233

2 Mini-browser Sample https://code.msdn.micro-
soft.com/windowsapps/
Mini-browser-Sample-
b5587d2b

3 Basic Camera Sample Developed App
4 How to make your Windows

Phone vibrate using C#
https://code.msdn.micro-
soft.com/windowsapps/
How-to-make-your-Win-
dows-c40d80a3

5 Get X and Y coordinates of
user touch

https://code.msdn.micro-
soft.com/windowsapps/
WindowsPhone-Get-X-
and-Y-88c5948a

6 Windows Phone 8 SMS Com-
pose Task

https://code.msdn.micro-
soft.com/windowsapps/
Windows-Phone-8-SMS-
6936c2fd

7 Application Bar Sample https://code.msdn.micro-
soft.com/windowsapps/
Application-Bar-Sample-
For-8e990f04

8 Simple Motion Sample https://code.msdn.micro-
soft.com/windowsapps/
Simple-Motion-Sample-
101d1027

9 Device Status Sample https://code.msdn.micro-
soft.com/windowsapps/
Device-Status-Sample-
2ab5df82

10 sdkPhotosCS https://code.msdn.micro-
soft.com/windowsapps/
Photos-Sample-a38a2c8e/
view/SourceCode

TABLE 6
Evaluation of the Enhanced ICPMD

App Name Application
Pages

Input LOC Generated LOC Generation Time (Seconds)

1 UsingIsolatedStorage 1 64 162 7.4
2 Mini-browser Sample 1 39 108 2.6
3 Basic Camera Sample 1 48 121 3.6
4 Vibration 1 56 113 3.8
5 X and Y coordinates of Touch 1 31 90 3.7
6 Send SMS 1 48 119 3.4
7 ApplicationBar 4 551 1,136 43.0
8 Simple Motion Sample 1 93 199 6.0
9 Device Status Sample 1 65 187 5.9
10 sdkPhotosCS 2 601 844 22.2

EL-KASSAS ET AL.: ENHANCED CODE CONVERSION APPROACH FOR THE INTEGRATED CROSS-PLATFORM MOBILE DEVELOPMENT (ICPMD) 13



IEE
E P

ro
of7 and 10, there are more compilation errors and more

undetected lines of code because these Apps have
some unsupported functions. For example, App 10
allows the user to use two main functionalities: 1)
using the camera to capture an image, and 2) crop-
ping the captured image to produce a new cropped
image. The ICPMD contains patterns for the camera
usage function while there are no patterns for the
image cropping function. Therefore, the camera
usage function has been detected and converted cor-
rectly while the undetected lines of code are con-
verted as comments. These comments can be
rewritten later with the aid of platform-specific
developers. Although the new proposed ICPMD
database does not cover the entire code patterns and
the applications could not be completely converted,
the mobile developer will benefit from the saved
time and efforts.

� Whenever there are new code patterns that will be
added to the ICPMD patterns database, the detected
and converted source code lines will increase and
the values of the columns U and CU in Table 7 will
decrease.

Table 8 shows the compilation errors details of the gener-
ated Android Apps. The number of compilation errors is
small and the errors can be categorized as follows:

� Partial detection: this error occurs when a simple or a
composite pattern has been detected by ICPMD, and

part of the statement (expression pattern) has not been
detected. This kind of error can bemitigated by adding
more expression patterns to the ICPMDdatabase.

� Variable scope/definition: this error occurs when there
is a problem related to the following:
� Scope of variables.
� Variable assignment value.
� Variable definition is not detected correctly.

This type of errors can be solved easily be the
developers due to the syntax similarity of C# and
Java.

� Unsupported feature: this error occurs when the pat-
tern has been detected and converted correctly but
the generated statement uses a feature that is not
supported in the target platform. For example, the
switch statement in WP8 can use a string variable
but it is not supported in Android. Switch on string
is supported starting from Java 1.7 while Android is
based on Java 1.6.

� Require code: this error occurs when the pattern has
been detected and converted correctly but the target
platform requires extra code to be written. For exam-
ple, an event handler statement in WP8 return void
is converted to the equivalent statement in Android
which return Boolean; in this case the developer has
to add “return statement”.

� Extra/missed bracket: this error occurs when an extra
bracket exists in the generated source code. Also, the
same error applies to missed brackets.

TABLE 7
Accuracy, Precision and Recall of the Generated Applications

App Name C CD ID U CU IU Accuracy Precision Recall CDLOC

1 UsingIsolatedStorage 64 62 2 0 0 0 97% 97% 100% 97%
2 Mini-browser Sample 39 39 0 0 0 0 100% 100% 100% 100%
3 Basic Camera Sample 48 48 0 0 0 0 100% 100% 100% 100%
4 Vibration 56 54 2 0 0 0 96% 96% 100% 96%
5 X and Y coordinates of Touch 29 29 0 2 2 0 100% 100% 100% 94%
6 Send SMS 48 47 1 0 0 0 98% 98% 100% 98%
7 ApplicationBar 515 458 57 36 36 0 90% 89% 100% 83%
8 Simple Motion Sample 83 77 6 10 10 0 94% 93% 100% 83%
9 Device Status Sample 61 58 3 4 4 0 95% 95% 100% 89%
10 sdkPhotosCS 505 489 16 96 96 0 97% 97% 100% 81%

TABLE 8
Compilation Errors of the Generated Apps

App Name
Compilation

Errors

Error Type

Other Errors/Notes
Partial

Detection
Variable

Scope/Define
Unsupported

Feature
Require
Code

Extra/Missed
Bracket

1 UsingIsolatedStorage 2 0 2 0 0 0 Variable scope
2 Mini-browser Sample 0 0 0 0 0 0 -
3 Basic Camera Sample 0 0 0 0 0 0 -
4 Vibration 2 0 1 0 0 1 Variable assignment
5 X and Y coordinates

of Touch
1 0 0 0 1 0 Return statement

6 Send SMS 1 0 0 0 0 1 -
7 ApplicationBar 18 0 0 18 0 0 Switch on string
8 Simple Motion Sample 6 2 0 1 2 1 -
9 Device Status Sample 3 3 0 0 0 0 Missed property in UI
10 sdkPhotosCS 18 2 9 7 0 0 Resource name problem

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XXXXX 2016



IEE
E P

ro
of

� There are other kinds of errors that will be handled
in the next version of ICPMD, including:
� The resource name is not supported. For exam-

ple, the image name “appbar.check.rest.png”
could be used in a WP8 App while it is not
acceptable to be used in an Android App.

� Some user interface controls (e.g., the slider and
video controls) and their properties are not sup-
ported yet by ICPMD. Therefore, they are not
converted to the target platform App.

6.2 Comparison of the Enhanced ICPMD with Other
Alternatives

It is a difficult task to select a comparison criteria of the
Apps generated from different cross-platform mobile devel-
opment solutions. We adopted the benchmark measure-
ments that are described in papers [15], [36], [37]. This
section compares the performance of the native Apps and
the Apps that are generated from ICPMD and the other
cross-platform mobile development solutions.

In this research, the ICPMD has been compared to the
following cross-platform solutions:

� Titanium which is a widely used cross-platform tool
that is based on Javascript development.

� Xamarin which is a commercial tool that is based on
C# development.

Titanium and Xamarin have been selected because they
are the most widely used solutions [25], [26] that produce
full native Apps that include both UI and source code.
Therefore, they are comparable to the proposed ICPMD
solution which supports native Apps and generate both UI
and code. Phonegap is not selected because it supports
hybrid Apps. Other tools are not selected for comparison
because they were not available in a stable widely-used ver-
sion. Table 9 shows a comparison between ICPMD, Tita-
nium, and Xamarin.

The main target of this benchmark is to perform perfor-
mance comparisons between the cross-platform developed
Apps using Titanium and Xamarin, the native developed
App, and the ICPMD generated App. The benchmark for

comparing the Apps is based on the following measure-
ments and experiments:

1) Application size: the size of the App after installing it
to a real mobile device.

2) Application memory usage: the RAM used by the run-
ning App. This value is acquired with the “Task
Manager” App in the Android platform. This mea-
surement could not be measured in the WP8
platform.

3) Data manipulation performance: implement the func-
tion “Array Sorting” for the selected cross-platform
solutions to sort an array with 1,000 items, then mea-
sure the elapsed time to complete this task (in milli-
seconds) to measure the data manipulation
performance among the different Apps.

4) User interface rendering performance: implement the
function “UI Rendering” for the selected cross-plat-
form solutions to draw 1,000 buttons on the applica-
tion page, then measure the elapsed time to
complete this task (in milliseconds) to measure the
user interface rendering performance among the dif-
ferent Apps.

Five benchmark mobile applications have been imple-
mented to have simple user interfaces and perform the
same benchmark functions (Array Sorting and UI Render-
ing). The benchmark applications are developed as follows:

� App1: a native WP8 application that was developed
then compiled using the Visual Studio 2012. This
App has been installed in a Lumia device. The
obtained measurements were: the size of this App is
44.5 KB, the time of the array sorting function is 57
milliseconds, and the time of the UI rendering func-
tion is 376 milliseconds.

� App 2: a native Android App that was generated by
using the ICPMD to convert App 1, the WP8 applica-
tion project, and then compiled by using the
Android Development Tool (ADT).

� App 3: the corresponding native Android application
of App1. It was developed from scratch and then
compiled by using the ADT.

� App 4: an application that was developed using Java-
script in Titanium. Then it was compiled for
Android.

� App 5: an application that was developed using C# in
Xamarin. Then it was compiled for Android.

Benchmarking was performed using two mobile devices
with the following specifications:

1) Nokia Lumia 625: (Processor type: Dual-core
1.2GHz, Mass memory: 8 GB and RAM: 512 MB, and
run Windows Phone 8.0).

2) Samsung Galaxy Grand Neo (GT-19060): (Processor
type: Quad-core 1.2GHz, Mass memory: 8 GB and
RAM: 1 GB, and run Android version 4.2.2).

All the benchmark results are shown in Table 10 and
Fig. 7. Fig. 7(a) depicts the application size after installing it
in themobile device. It can be seen that the ICPMDgenerated
App has the smallest application size. The ICPMD generated
application size is about 96.9 percent smaller than the native
application size. The TitaniumApp has theworst application

TABLE 9
Compilation Errors of the Generated Apps

ICPMD Titanium Xamarin

Cross-Plat-
form Mobile
Apps Devel-
opment
Approach

Merged
approach
(Trans-Compi-
lation and
Model-Based
Development)

Runtime Inter-
pretation
approach

Different
approach for
each sup-
ported plat-
form

Supported
Platforms

Android and
WP

Android, iOS,
Blackberry,
Tizen and WP

Android, iOS
and WP

Programming
Language

C# or Java Javascript C#

User Interface Reused and
converted

Written
programmati-
cally

Written for
each platform
separately

Output Ready-to-com-
pile App

Ready-to-pub-
lish App

Ready-to-
publish App

EL-KASSAS ET AL.: ENHANCED CODE CONVERSION APPROACH FOR THE INTEGRATED CROSS-PLATFORM MOBILE DEVELOPMENT (ICPMD) 15



IEE
E P

ro
ofsize, which is about 1,054 percent larger than the native App

application size. Titanium App has a bigger application size
because the output App contains a JavaScript interpreter
runtime and a Webkit rendering engine [18]. ICPMD con-
verts the UI, code, manifest, and resource files from WP8
project and generates a native ready-to-compile Android
project. It is worth mentioning that the WP8 platform-specific
files are not converted to the target platforms. The application
size of ICPMD is smaller than the native one because the
native App contains more libraries and is generated with
icons for the differentmobile sizes. On the other side, ICPMD
moves the application icon that exists in the sourceWP8App
to the target Android ready-to-compile App.

Fig. 7(b) depicts the memory usage (required RAM) of
the benchmark applications. It can be seen that the ICPMD
generated App memory usage is very close to the native
App memory usage. The Titanium App has a moderate
memory usage, which is about 34.6 percent larger than the
native application size. The Xamarin App has the worst
memory usage, which is about 201.6 percent larger than the
native App memory usage. Xamarin uses more memory
than others because its garbage collector is not effecient [39].

Fig. 7(c) depicts the results of the “Array Sorting” func-
tion of the benchmark applications. It can be seen that the
ICPMD generated App and Xamarin Appmeasurements are
very close to the native App measurement. The Titanium

Fig. 7. Results of comparing ICPMD with other cross-platform solutions: (a) Application size, (b) Memory usage, (c) Array sorting, and (d) UI
rendering.

TABLE 10
Results of Comparing ICPMD with Other Cross-Platform Solutions

Benchmark
Application

Application
Size (KB)

Memory
Usage (MB)

Array Sorting
(Milliseconds)

UI Rendering
(Milliseconds)

Run on Device

Android App
(output from ICPMD)

32 10.80 55 1,140 2

Native Android App 1034.24 10.43 60 1,079 2
(1.01 MB)

Titanium App 11939.84 14.04 116 5,341 2
(11.66 MB)

Xamarin App 3747.84 31.46 53 15,88 2
(3.66 MB)

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XXXXX 2016



IEE
E P

ro
of

App has the worst measurement which is about 93.3 percent
larger than the native application size. Titanium takes more
time to perform the array sorting because of its approach
(Runtime Interpretation). The interpretation provides less
performance than the native compilation.

Fig. 7(d) depicts the results of the “UI Rendering” func-
tion of the benchmark applications. It can be seen that the
ICPMD generated App measurement is very close to the
native App measurement. The Xamarin App measurement
is about 47.2 percent larger than the native App measure-
ment. The Titanium App has the worst measurement which
is about 395 percent larger than the native application size.
Titanium takes more time to perform the UI rendering
because the UI is written programmatically and the tita-
nium approach (Runtime Interpretation).

For the simple benchmark application, these application
measurements could be tolerable especially when these
applications are executed on high-specifications smart-
phones. However, for more complex applications, the
increased application size, memory usage, or performance
measurements could quickly pose problems. The results
show reasonable improvement of the applications that are
generated from the new enhanced ICPMD over the other
existing cross-platform mobile development solutions.

7 CONCLUSION AND FUTURE WORK

The new enhanced ICPMD solution overcomes some limita-
tions of the existing cross-platform mobile development sol-
utions by: helping the developer to develop with the most
popular programming languages like Java for Android and
C# for Windows Phone, focusing on both the source code
and user interface transformations to generate full applica-
tions, and supporting code reuse. This solution has been
implemented to convert the source project (WP8 App proj-
ect) to the target platform project (Android App project)
and vice versa. The new code conversion approach has
been implemented for the ICPMD by using the XSLT and
Regular Expressions.

An algorithm (SCM algorithm) is proposed to apply the
proposed code conversion approach by searching in the
input source code file to match some predefined sets of
code patterns, and then get the equivalent source code for
the target platform from the database. The code patterns are
written using Regular Expressions. The proposed algorithm
was applied to convert the C# source code written for WP8
platform to the equivalent Java code for Android platform
and vice versa. The conversion is based on an extendable
code patterns database.

The ICPMD has been compared with stable and widely
used native development tools like Titanium and Xamarin.
The evaluation results show reasonable improvements in
the speed, memory usage, and application size of the new
enhanced ICPMD generated Apps compared with the
applications generated from other cross-platform tools like
Titanium and Xamarin. The results obtained are very com-
parable to the results of the native Apps.

The ICPMD was designed to achieve the following
requirements:Q1

1. Focus on the native mobile development.
2. Focus on generating full Apps (ready-to-compile).

3. Support code reuse.
4. The developer does not have to learn a new pro-

gramming language to use this solution.
The first, second, and third requirements have been

achieved successfully. However, the fourth requirement is
not completely achieved yet. Although the ICPMD mini-
mizes the development efforts by generating the target plat-
form App, there are two cases that require manual updates:

1. Unconverted lines of code.
2. Compilation error due to error in the pattern

detection.
The first case could be minimized by adding more pat-

terns in the ICPMD database by encouraging volunteer
developers to contribute and add source code patterns. The
second case could be solved by hiring a platform-specific
developer to fix the compilation errors.

The current version of the ICPMD solution is available
under the “GNU GPLV3” license in the URL: (https://
github.com/wafaa-elkassas/ICPMD). The complete system
with approval workflow that enables mobile developers to
add/update/search/approve code patterns will be avail-
able for online use later. The future work includes:

1. Extending the list of the supported features by adding
more Regex patterns in the ICPMD database. This
could be achieved by encouraging volunteer develop-
ers to contribute and add source code patterns.

2. Evaluating the proposed code conversion approach
in the reverse direction from Android to WP8.

3. Using more complex mobile applications to test the
ICPMD in a more production-like setting (from WP8
to Android and vice versa).

4. Handling more source-code-line differences between
the different supported platforms.

5. Supporting new platforms like iOS and Blackberry.

ACKNOWLEDGMENTS

Wafaa Samy El-Kassas is a corresponding author.

REFERENCES

[1] B. B. Akinkuolie, L. Chia-Feng, and Y. Shyan-Ming, “A cross-plat-
form mobile learning system using QT SDK framework,” in Proc.
5th Int. Conf. Genetic Evol. Comput., 2011, pp. 163–167.

[2] H. F. ElYamany and A. H. Yousef, “A mobile-quiz application in
Egypt,” in Proc. 4th IEEE Int. E Learn. Conf., 2013, pp. 325–329.

[3] T. Kim, B. Kim, and J. Kim, “Development of a lever learning
webapp for an HTML5-based cross-platform,” in Proc. Multimedia
Ubiquitous Eng., 2013, vol. 240, pp. 313–320.

[4] W. El-Kassas, A. Solyman, and M. Farouk, “mTourism multilin-
gual integrated solution: A case study “EgyptTravel”,” in Proc.
Conf. eChallenges e-2014, 2014, pp. 1–9.

[5] P.-J. Lin, C.-C. Kao, K.-H. Lam, and I. C. Tsai, “Design and imple-
mentation of a tourism system using mobile augmented reality
and GIS technologies,” in Proc. 2nd Int. Conf. Intell. Technol. Eng.
Syst., 2014, vol. 293, pp. 1093–1099.

[6] T. Schlachter, C. D€upmeier, R. Weidemann, W. Schillinger, and
N. Bayer, ““My environment”—A dashboard for environmental
information on mobile devices,” in Proc. Int. Symp. Environ. Softw.
Syst. Fostering Inform. Sharing, 2013, vol. 413, pp. 196–203.

[7] Titanium, [Online]. Available: http://www.appcelerator.com/
titanium/ [Last Visited: 22/3/2015]. Q2

[8] Xamarin, [Online]. Available: http://xamarin.com/ [Last Visited:
22/3/2015].

[9] PhoneGap, [Online]. Available: http://phonegap.com/ [Last Vis-
ited: 22/3/2015].

EL-KASSAS ET AL.: ENHANCED CODE CONVERSION APPROACH FOR THE INTEGRATED CROSS-PLATFORM MOBILE DEVELOPMENT (ICPMD) 17



IEE
E P

ro
of

[10] XMLVM, [Online]. Available: http://xmlvm.org [Last Visited:
22/3/2015].

[11] J2ObjC, [Online]. Available: https://code.google.com/p/j2objc/
[Last Visited: 22/3/2015].

[12] H. Heitk€otter, T. A. Majchrzak, and H. Kuchen, “Cross-platform
model-driven development of mobile applications with md2,”
presented at the Proc. 28th Ann. ACM Symp. Applied Comput.,
Coimbra, Portugal, 2013.

[13] H. Heitk€otter and T. Majchrzak, “Cross-platform development of
business apps with MD2,” in Proc. Des. Sci. Intersection Phys. Vir-
tual Des., 2013, vol. 7939, pp. 405–411.

[14] A. Holzinger, P. Treitler, and W. Slany, “Making apps useable on
multiple different mobile platforms: On interoperability for busi-
ness application development on smartphones,” in Proc. Multidis-
ciplinary Res. Practice Inform. Syst., 2012, vol. 7465, pp. 176–189.

[15] J. Ohrt and V. Turau, “Cross-platform development tools for
smartphone applications,” Computer, vol. 45, pp. 72–79, 2012.

[16] M. Palmieri, I. Singh, and A. Cicchetti, “Comparison of cross-plat-
form mobile development tools,” in Proc. 16th Int. Conf. Intell.
Next Generation Netw., 2012, pp. 179–186.

[17] R. Raj and S. B. Tolety, “A study on approaches to build cross-
platform mobile applications and criteria to select appropriate
approach,” in Proc. IEEE Annu. India Conf., 2012, pp. 625–629.

[18] A. Ribeiro and A. R. da Silva, “Survey on cross-platforms and lan-
guages for mobile apps,” in Proc. 8th Int. Conf. Quality Inf. Com-
mun. Technol., 2012, pp. 255–260.

[19] P. Smutny, “Mobile development tools and cross-platform sol-
utions,” in Proc. 13th Int. Carpathian Control Conf., 2012, pp. 653–
656.

[20] H. Heitk€otter, S. Hanschke, and T. Majchrzak, “Evaluating cross-
platform development approaches for mobile applications,” in
Proc. Web Inform. Syst. Technol., 2013, vol. 140, pp. 120–138.

[21] S. Xanthopoulos and S. Xinogalos, “A comparative analysis of
cross-platform development approaches for mobile applications,”
in Proc. 6th Balkan Conf. Informatics, Thessaloniki, Greece, 2013.

[22] W. S. El-Kassas, B. A. Abdullah, A. H. Yousef, and A. M. Wahba,
“Taxonomy of cross-platform mobile applications development
approaches,” Ain Shams Eng. J.Q3

[23] JUniversal, [Online]. Available: http://juniversal.org/ [Last Vis-
ited: 22/3/2015].

[24] W. El-Kassas, B. Abdullah, A. Yousef, and A. Wahba, “ICPMD:
Integrated cross-platform mobile development solution,” pre-
sented at the 9th Int. Conf. Comput. Eng. Sys. Cairo, Egypt, 2014.

[25] V. Tunalı and Ş. Z. Erdo�gan, “Comparison of popular cross-plat-
form mobile application development tools,” in Proc. 2. Ulusal
Y€onetim Bilişim Sistemleri Kongresi, 2015, pp. 1357–1365.

[26] J. Friberg, “Evaluation of cross-platform development for mobile
devices,” Master thesis, Dept. Comput. Inform. Sci., Link€oping
University, Link€oping, Sweden, 2014.

[27] Introduction Mobile Develop. – Xamarin, [Online]. Available:
https://developer.xamarin.com/guides/cross-platform/get-
ting_started/introduction_to_mobile_development/ [Last Vis-
ited: 3/11/2015].

[28] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang,
“Mining API mapping for language migration,” in Proc. 32nd
ACM/IEEE Int. Conf. Softw. Eng., 2010, pp. 195–204.

[29] P. Klima and S. Selinger, “Towards platform independence of
mobile applications,” in Proc. Comput. Aided Syst. Theory - EURO-
CAST, 2013, vol. 8112, pp. 442–449.

[30] A. Puder and O. Antebi, “Cross-compiling Android applications
to ios and Windows phone 7,” in Proc. 3rd Int. Conf. Mob. Netw.
Appl., 2013, vol. 18, pp. 3–21.

[31] A. Puder, “Cross-compiling Android applications to the iPhone,”
presented at the in Proc. 8th Int. Conf. Principles and Practice of Pro-
gramming in Java, Vienna, Austria, 2010.

[32] O. Antebi, M. Neubrand, and A. Puder, “Cross-compiling
Android applications to Windows phone 7,” in Proc. Mobile Com-
put., Appl. Services, 2012, vol. 95, pp. 283–302.

[33] A. Puder and J. Lee, “Towards an XML-based bytecode level
transformation framework,” Electron. Notes Theor. Comput. Sci.,
vol. 253, pp. 97–111, 2009.

[34] J. Perchat, M. Desertot, and S. Lecomte, “Component based frame-
work to create mobile cross-platform applications,” in Proc. Com-
put. Sci., 2013, vol. 19, pp. 1004–1011.

[35] Using NRefactory for Analyzing C# code, [Online]. Available:
http://www.codeproject.com/Articles/408663/Using-NRefac-
tory-for-analyzing-Csharp-code [Last Visited: 2/5/2015].

[36] S. Dhillon and Q. H. Mahmoud, “An evaluation framework for
cross-platform mobile application development tools,” in Proc.
IEEE 2nd International Conf. Mobile Services, 2013.

[37] H. J. Kim, S. Karunaratne, H. Regenbrecht, I. Warren, and B. C.
Wunsche, “Evaluation of cross-platform development tools for
patient self-reporting on mobile devices,” in Proc. 8th Australasian
Workshop Health Inform. Knowl. Manag., Sydney, Australia: 2015,
pp. 55–61.

[38] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang,
“Mining API mapping for language migration,” presented at the
in Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng., Cape Town, South
Africa: 2010, vol. 1.

[39] Garbage Collection, [Online]. Available: https://developer.
xamarin.com/guides/android/advanced_topics/garbage_collec-
tion/ [Last Visited: 3/2/2016]. Q4

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XXXXX 2016



IEE
E P

ro
of

Queries to the Author

Q1. Listing has been renumbered as it was starting with 5—8 we have renumbered it to 1—4. Please check for
correctness.

Q2. Please provide year in Refs. [7], [8], [9], [10], [11], [23], [27], [35], [39].
Q3. Please update Ref. [22] with complete bibliographic details.
Q4. Please provide author photos and bios.


