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Abstract

The millimeter wave (mmWave) band, which is a prime candidate for 5G cellular networks, seems

attractive for wireless energy harvesting. This is because it will feature large antenna arrays as well

as extremely dense basestation deployments. The viability of mmWave for energy harvesting though

is unclear, due to the differences in propagation characteristics such as extreme sensitivity to building

blockages. This paper considers a scenario where low-power devices extract energy and/or information

from the incident mmWave signals. Leveraging tools from stochastic geometry, closed-form expressions

are derived to characterize the energy coverage probability, the average harvested power, and the overall

(energy-and-information) coverage probability at a typical wireless-powered device in terms of important

parameters, such as the cellular network density, the antenna geometry parameters, and the channel

parameters. Numerical results reveal several network and device level design insights. For example, at

the basestations, the antenna geometry parameters such as beamwidth can be optimized to maximize the

network-wide energy coverage for a given user population. At the device level, the overall performance

can be substantially improved by optimally splitting the received signal for energy and information

extraction, and by deploying multi-antenna arrays. For the latter, an efficient low-power multi-antenna

mmWave receiver architecture is proposed for simultaneous energy and information transfer. Overall,

simulation results suggest that mmWave energy harvesting generally provides a substantial performance

gain over lower frequency solutions.

I. INTRODUCTION

Millimeter wave (mmWave) communications is a key candidate technology for future 5G

cellular networks. This is mainly due to the availability of large spectrum resources at higher

frequencies, which leads to much higher data rates. Recent research suggests that mmWave
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systems will typically feature (i) large-dimensional antenna arrays with directional beamforming

at the transmitter/receiver—which is motivated by the small wavelength that allows packing

a large number of antenna elements into small form-factors; and (ii) a dense deployment of

basestations (BSs) to ensure comparable coverage to ultra high frequency (UHF) networks [1],

[2]. These mmWave design features are also attractive for RF (radio frequency) energy harvesting

where a harvesting device may extract energy from the incident RF signals [3]. This could

potentially power the massive number of low-power wireless devices in future paradigms such

as the Internet of Things [4]. The signal propagation at mmWave frequencies, however, suffers

from poor penetration and diffraction characteristics, making it sensitive to blockage by buildings

[2], [5]. It is, therefore, unclear if mmWave cellular networks will be more favorable for RF

energy harvesting compared to the conventional (below 6 GHz) frequencies. Further, the network

level design principles for mmWave energy harvesting systems are not well understood. This

motivates a network view on energy harvesting in a mmWave cellular network.

A. Contributions

In this paper, we provide a tractable framework to characterize the performance of wireless

energy and information transfer aided by a large-scale mmWave cellular network. Our analysis

accounts for the key distinguishing features of mmWave systems, namely the sensitivity to

blockage and the use of potentially large antenna arrays at the transmitter/receiver. We first

consider mmWave energy harvesting, where devices only extract energy from the incident

mmWave signals. Our analysis models two operating scenarios, one where devices have their

beams aligned to that of a mmWave BS, and the other where no such beam alignment is assumed.

For both operating modes, we derive simple analytical expressions for metrics such as the energy

coverage probability and the average harvested power using tools from stochastic geometry. We

then extend the analysis to characterize the overall (energy-and-information) coverage probability

for the general case where a device extracts both energy and information from the mmWave

signals.

To get design insights, we examine the network level performance trends in terms of key

parameters such as the mmWave network density and the antenna geometry parameters for

both operating modes of the energy harvesting devices. Numerical results suggest that narrower

antenna beams should be preferred when the users are aligned with a BS, whereas wider beams
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are favorable when no beam alignment is assumed. Our findings also suggest that there typically

exists an optimum transmit antenna beamwidth that maximizes the network-wide energy coverage

for a given user population. This implies that the mmWave BSs will need to adapt the antenna

beam patterns depending on the fraction of the users operating in each mode.

Similar to the BS-related parameters, we also investigate the role of device-related parameters

on system performance. For example, the overall (energy-and-information) coverage probability

can be substantially improved by optimizing over a design parameter (power splitting ratio) to

optimally portion the received signal between the energy harvesting and the information decoding

modules. Another important design feature at the user is the receive antenna array. Similar to the

BSs, the mmWave users can, in principle, benefit from using large antenna arrays. For low-power

energy harvesting devices, however, the associated antenna circuity could increase the power

consumption, offsetting the potential gains of large antenna arrays. To leverage multiple antennas

at the receiver without resorting to power-hungry circuit components, we propose a simple

switch-based receiver architecture for simultaneous energy and information transfer. Simulation

results reveal that the proposed low-power solution performs reasonably well compared to more

advanced but power-hungry receiver architectures.

B. Related Work

Wireless energy harvesting is becoming increasingly feasible due to the reduction in the

power consumption requirements of wireless sensors and the improvements in energy harvesting

technologies [6]–[9]. This has also led to considerable research in advancing the theoretical

understanding of wireless powered systems (see [3], [10] for a comprehensive overview). For

example, wireless energy and information transfer has been studied for different information-

theoretic setups such as a broadcast channel [11], a fading channel [12], and an interference

channel [13]. Many of these papers highlight the fundamental trade-off between energy and

information transfer efficiency and characterize the achievable rate-energy regions for different

practical receiver architectures [10].

Wireless energy and/or information transfer in large-scale networks has also been investigated

[14]–[19]. In [14], the performance of ambient RF energy harvesting was characterized using

tools from stochastic geometry. Using a repulsive point process to model RF transmitters, it was

shown that more repulsion helps improve the performance at an energy harvester for a given trans-
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mitter density. In [15], [16], cognitive radio networks were considered, and opportunistic wireless

energy harvesting was proposed and analyzed. In [17], a hybrid cellular network architecture was

proposed to enable wireless power transfer for mobiles. In particular, an uplink cellular network

was overlaid with power beacons and trade-offs between transmit power and deployment densities

were investigated under an outage constraint on the data links. A broadband wireless network

with transmit beamforming was considered in [18], where optimal power control algorithms were

devised for improving the throughput and power transfer efficiency. Simultaneous information

and energy transfer in a relay-aided network was considered in [19]. Under a random relay

selection strategy, the network-level performance was characterized in terms of the relay density

and the relay selection area.

Our work differs from the prior work in that we investigate wireless energy and information

transfer in a large-scale mmWave cellular network. Due to different physical characteristics

and design features at mmWave, prior work on energy/information transfer in lower frequency

networks does not directly apply to mmWave networks. In another line of work, the performance

of mmWave cellular networks in terms of signal-to-interference-and-noise ratio (SINR) coverage

and rate has also been analyzed using stochastic geometry [20], [21]. None of this work on

mmWave networks, however, provides a performance characterization from the perspective of

wireless energy and information transfer.

The paper is organized as follows. In Section II, we introduce the system model. Section

III presents the analytical results for mmWave energy harvesting. The case with simultaneous

information and energy transfer is treated in Section IV. We conclude the paper in Section V.

II. SYSTEM MODEL

In this section, we introduce the network and channel models, followed by a description of

the antenna model. The parameters defined in this section are summarized in Table I.

A. Network Model

We consider a large-scale cellular network consisting of mmWave BSs and a population of

wireless-powered devices (or users) that operate by extracting energy and/or information in

the mmWave band. The mmWave BSs are located according to a homogeneous Poisson point

process (PPP) Φ(λ) of density λ. The user population is drawn from another homogeneous PPP
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Φu(λu) of density λu, independently of Φ. In general, mmWave BSs and users may be located

outdoors or indoors. Empirical evidence suggests that mmWave signals exhibit high penetration

losses for many common building materials [5], [20]. Assuming the building blockages to be

impenetrable, we focus on the case where the BSs and users are located outdoors. We say that

a link is line-of-sight (LOS) or non-line-of-sight (NLOS) depending on whether or not it is

intersected by a building blockage. Channel measurement campaigns have reported markedly

different propagation characteristics for LOS/NLOS links [1], [5]. To model blockage due to

buildings, we leverage the results in [22] where the buildings are drawn from a boolean stochastic

point process. We define a line-of-sight (LOS) probability function p(r) = e−βr for a link of

length r, where β is a constant that depends on the geometry and density of the building blockage

process: a BS-receiver link of length r is declared LOS with a probability p(r), independently of

other links. While conducting stochastic geometry analysis, we will apply this result to split the

BS PPP into two independent but non-homogeneous PPPs consisting of LOS and NLOS BSs.

We allow the user population to consist of two types of users, namely connected and non-

connected. A connected user is assumed to be tagged with the BS, either LOS or NLOS, that

maximizes the average received power at that user. Moreover, for the connected case, we assume

perfect beam alignment between a BS and its tagged user, i.e., the BS and user point their beams

so as to have the maximum directivity gain. For a nonconnected user, we do not assume any

prior beam alignment with a BS. This allows us to model a wide range of scenarios. For instance,

due to limited resources, the mmWave network may (directly) serve only a fraction of the user

population as connected users, leaving the rest in the nonconnected mode. Another interpretation

could be that due to the challenges associated with channel acquisition, not all the users could

be simultaneously served in the connected mode. We let ε be the probability that a randomly

selected node is a connected user, independently of other nodes. With this assumption, we can

thin the user PPP Φu into two independent PPPs Φu,con and Φu,ncon, with respective densities ελu

and (1− ε)λu. Note that an arbitrary user, either connected or nonconnected, may experience an

energy outage if the received power falls short of a required threshold ψ. This threshold would

depend on the power consumption as well as the sensitivity requirements of the harvesting

circuit. We define Pcon (λ, ψ) to be the energy coverage probability given an outage threshold ψ

for a connected user, while Pncon (λ, ψ) denotes the same for the nonconnected case. With these
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definitions, we can define the overall energy coverage probability Λ(ε, λ, ψ) of the network as

Λ(ε, λ, ψ) = εPcon (λ, ψ) + (1− ε)Pncon (λ, ψ) (1)

where the energy coverage probability is a function of several parameters such as the BS

density, the channel propagation parameters, as well as the antenna beam patterns at the trans-

mitter/receiver. In the next section, we provide analytical expressions to compute the energy

coverage probability in a mmWave network.

B. Channel Model

We now describe the channel model for an arbitrary user without losing generality. Empirical

evidence suggests that mmWave frequencies exhibit different propagation characteristics for the

LOS/NLOS links [5]. While the LOS mmWave signals may propagate as if in free space, the

NLOS mmWave signals typically exhibit a higher path loss exponent. We let αL and αN be

the path loss exponents for the LOS and NLOS links respectively. We define the distance-

dependent path loss for a user located a distance r` from the `-th BS: g`(r`) = CLr
−αL
` when

the link is LOS, where CL is the path loss intercept; and g`(r`) = CNr
−αN
` for the NLOS case.

We similarly define h` to be the small-scale fading coefficient corresponding to a BS ` ∈ Φ.

Assuming independent Nakagami fading for each link, the small-scale fading power H` = |h`|2

can be modeled as a normalized Gamma random variable, i.e., H` ∼Γ (NL, 1/NL) when the link

is LOS and H` ∼Γ (NN, 1/NN) for the NLOS case, where the fading parameters NL and NN are

assumed to be integers for simplicity.

C. Antenna Model

To compensate for higher propagation loss, mmWave BSs will use large directional antennas

arrays. We assume that the BSs and users are equipped with Nt and Nr antenna elements each. To

simplify the analysis while capturing the key antenna characteristics, we use a sectored antenna

model of Fig. 1 (except for Section VI), similar to the one considered in [20], [23]. We use

AM,m,θ,θ̄(φ) to characterize the antenna beam pattern, where φ gives the angle from the boresight

direction, M denotes the directivity gain and θ the half power beamwidth for the main lobe, while

m and θ̄ give the corresponding parameters for the side lobe. With this notation, AMt,mt,θt,θ̄t(·)

denotes the antenna beam pattern at an arbitrary BS in Φ, and AMr,mr,θr,θ̄r(·) denotes the same
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Fig. 1. Sectored antenna model. The antenna beam pattern is parameterized by the directivity gains for the main lobe (M )
and side lobe (m), and the half power beamwidths for the main lobe (θ) and side lobe (θ̄).

for an energy harvesting user in Φu. We further define δ` = AMt,mt,θt,θ̄t(φ
`
t )AMr,mr,θr,θ̄r(φ

`
r), the

total directivity gain for the link between the `-th BS and the typical user; φ`t and φ`r give the

angle-of-arrival and angle-of-departure of the signal.

Without any further assumptions about the beam alignment, we model the directivity gain

δ` as a random variable. We assume the angles φ`t and φ`r are uniformly distributed in [0, 2π).

Due to the sectored antenna model, the random variable δ` = Di with a probability pi (i ∈

{1, 2, 3, 4, 5}), where Di ∈ {MtMr,Mtmr,mtMr,mtmr, 0} with corresponding probabilities pi ∈

{qtqr, qtq̄r, q̄tqr, q̄tq̄r, qo}; the constants qt = θt
2π

, q̄t = θ̄t
2π

, qr = θr
2π

, q̄r = θ̄r
2π

, and qo = 2 − qt −

q̄t − qr − q̄r. Note that D5 = 0 models the extreme case where the BS and user beams have no

alignment at all. Note that for the connected mode, since we assume perfect beam alignment

between the typical user and its serving BS (hereby denoted by subscript 0), the directivity gain

δ0 = MtMr due to the sectored antenna model.

III. MMWAVE WITH ENERGY HARVESTING

In this section, we assume that each user is equipped with an energy harvesting circuit, and

attempts to extract energy from the incident mmWave signals. No decoding of information is

considered in this section. The case with simultaneous information and power transfer is treated in

Section IV. We first provide analytical expressions to evaluate the energy coverage probabilities

for both connected and nonconnected users. We then validate the analytical model, and conclude

the section by providing network level design insights.

A. Stochastic Geometry Analysis

We first provide some lemmas before stating the main analytical results for this section.



8

TABLE I
MODEL PARAMETERS

Notation Description
Nt, Nr Antenna array size at the transmitter

(t) and receiver (r)
Mt, Mr

mt, mr

Main lobe directivity gain
Side lobe directivity gain

θt, θr

θ̄t, θ̄r

Main lobe half power beamwidth
Side lobe half power beamwidth

Φ(λ) BS PPP with density λ
Φu(λu) User PPP with density λu
ε Fraction of connected users
ψ Energy outage threshold
Λ(ε, λ, ψ) Energy coverage probability
p(r) LOS probability function
β Building blockage parameter
αL, αN LOS/NLOS path loss exponents
CL, CN LOS/NLOS path loss intercepts
NL, NN LOS/NLOS fading parameters
Pt Transmit power of BSs in Φ

Lemma 1 (From [22, Theorem 8]): The probability density function (PDF) of the distance

from an energy harvesting user to its nearest LOS BS, given that the user observes at least one

LOS BS, is given by

τL (x) = 2πλBL
−1xp(x)e−2πλ

∫ x
0 vp(v)dv, (2)

where x > 0 and BL = 1− e−2πλ
∫∞
0 vp(v)dv is the probability that the receiver observes at least

one LOS BS. Similarly, the distance distribution of the link between the user and its nearest

NLOS BS, given that the user observes at least one NLOS BS, is given by

τN (x) = 2πλBN
−1x(1− p(x))e−2πλ

∫ x
0 v(1−p(v))dv, (3)

where x > 0 and BN = 1− e−2πλ
∫∞
0 v(1−p(v))dv is the probability that the user observes at least

one NLOS BS.

Lemma 2 (From [20, Lemma 2]): Let %L and %N denote the probability that the energy har-
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vesting user is connected to a LOS and a NLOS BS respectively, then %L is given by

%L = BL

∫ ∞
0

e−2πλ
∫ ρL(x)
0 (1−p(v))vdvτL (x) dx, (4)

where ρL(x) =
(
CN

CL

) 1
αN x

αL
αN and %N = 1− %L.

Lemma 3 (From [20, Lemma 3]): Given that the energy harvesting user is connected to a

LOS mmWave BS, the PDF of the link distance is given by

τ̃L (x) =
BLτL (x)

%L

e−2πλ
∫ ρL(x)
0 (1−p(v))vdv, (5)

where x > 0. Given that the user is connected to a NLOS mmWave BS, the PDF of the link

distance is given by

τ̃N (x) =
BNτN (x)

%N

e−2πλ
∫ ρN(x)
0 p(v)vdv (6)

for x > 0 and ρN(x) =
(
CL

CN

) 1
αL x

αN
αL .

Leveraging Slivnyak’s theorem [24], we conduct the analysis at a typical energy harvesting user

located at the origin without losing generality. If the BSs transmit with power Pt, the energy

harvested at a typical receiver (in unit time) can be expressed as

γ = ξ

 ∑
`∈Φ(λ)

Ptδ`H`g`(r`) + σ2

 , (7)

where ξ ∈ (0, 1] is the rectifier efficiency, and σ2 = NoW gives the receiver noise power in

the mmWave band where W is the bandwidth, and No is the noise power spectral density. The

remaining parameters follow from Section II. Recall that given a BS ` ∈ Φ(λ), the corresponding

fading parameters will be distinct depending on whether the link is LOS or NLOS, which in

turn depends on the LOS probability function (Section II-A). Further note that for the connected

case, it follows from Section II-C that δ0 = MtMr for the link from serving BS (denoted by

subscript 0).

Connected case: The following theorem provides an analytical expression for the energy

coverage probability Pcon (λ, ψ) = Pr{γ > ψ} at a connected user, where the random variable γ

is given in (7) and ψ is the energy outage threshold. Note that Pcon (λ, ψ) can also be interpreted

as the complementary cumulative distribution function (CCDF) of the instantaneous harvested
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energy.

Theorem 1: In a mmWave network with density λ, the energy coverage probability Pcon (λ, ψ)

for the connected case given an energy outage threshold ψ can be evaluated as

Pcon (λ, ψ) = Pcon,L

(
λ, ψ̂

)
%L + Pcon,N

(
λ, ψ̂

)
%N, (8)

where ψ̂ = ψ
ξ
− σ2, %L = 1 − %N is given in Lemma 2, while Pcon,L (·) and Pcon,N (·) are the

conditional energy coverage probabilities given the serving BS is LOS or NLOS. These terms

can be tightly approximated as

Pcon,L (λ, ψ) ≈
N∑
k=0

(−1)k
(
N

k

) ∞∫
rg

ζL
k (r) e−Υk,1(λ,ψ,r)−Υk,2(λ,ψ,ρL(r))τ̃L (r) dr, (9)

where ζL
k (x) =

(
1 + akPtMtMrCL

ψNLx
αL

)−NL

, the approximation constant a = N(N !)−
1
N where N

denotes the number of terms in the approximation, while rg defines the minimum link distance

and is included to avoid unbounded path loss at the receiver. Similarly,

Pcon,N (λ, ψ) ≈
N∑
k=0

(−1)k
(
N

k

) ∞∫
rg

ζN
k (r) e−Υk,1(λ,ψ,ρN(r))−Υk,2(λ,ψ,r)τ̃N (r) dr, (10)

where ζN
k (x) =

(
1 + akPtMtMrCN

ψNNx
αN

)−NN

,

Υk,1 (λ, ψ, x) = 2πλ
4∑
i=1

pi

∞∫
x

(
1−

[
1 +

aPtkDiCL

ψNLtαL

]−NL

)
p(t)tdt, (11)

Υk,2 (λ, ψ, x) = 2πλ
4∑
i=1

pi

∞∫
x

(
1−

[
1 +

aPtkDiCN

ψNNtαN

]−NN

)
(1− p(t)) tdt, (12)

and the distance distributions τ̃L(·) and τ̃N(·) follow from Lemma 3.

Proof: See Appendix A.

Recall that p(t) = e−βt is the LOS probability function defined in Section II-A, and captures the

effect of building blockages. In (9), the term ζL
k (·) models the contribution from the LOS serving

link, Υk,1 (·) accounts for other LOS links, and Υk,2 (·) captures the effect of the NLOS links.

Similarly, ζN
k (·) in (10) models the case where the serving BS is NLOS. Note that these terms
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further depend on the channel propagation conditions (αL, αN, NL, NN, CL, CN), the network

density λ as well as the antenna geometry parameters (via Di, pi), which are summarized in

Table I. Furthermore, the outage threshold ψ may depend on the sensitivity of the harvesting

circuit, as well as the power requirements at a particular user. The following result provides an

analytical expression for the average harvested power at a connected user.

Proposition 1: The average harvested power for the connected case P̄con is given by

P̄con = ξ
(
%LP̄L + %NP̄N + σ2

)
, (13)

where

P̄L =

∞∫
rg

(
PtMtMrCLr

−αL + ΨL (r) + ΨN (ρL(r))
)
τ̃L (r) dr, (14)

P̄N =

∞∫
rg

(
PtMtMrCNr

−αN + ΨL (ρN(r)) + ΨN (r)
)
τ̃N (r) dr, (15)

ΨL (x) = κCL

4∑
i=1

Dipi

∫ ∞
x

t−(αL−1)p(t)dt, (16)

ΨN (x) = κCN

4∑
i=1

Dipi

(
x−(αN−2)

αN − 2
−
∫ ∞
x

t−(αN−1)p(t)dt
)
, (17)

and κ = 2πλPt.

Proof: See Appendix B.

Note that P̄L and P̄N denote the average harvested power given the user is tagged to an LOS

or a NLOS BS. Moreover, the average harvested power is independent of the small-scale fading

parameters.

Nonconnected case: Having discussed the connected case, we now consider the case where

a user operates in the nonconnected mode. The following theorem characterizes the energy

coverage probability at a typical user for the nonconnected case.

Theorem 2: In a mmWave network of density λ, the energy coverage probability for the
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nonconnected case Pncon (λ, ψ) given an outage threshold ψ can be evaluated using

Pncon (λ, ψ) ≈
N∑
k=0

(−1)k
(
N

k

)
e−Υk,1(λ,ψ̂,rg)−Υk,2(λ,ψ̂,rg), (18)

where Υk,1 (·) and Υk,2 (·) are given by (11) and (12) respectively, ψ̂ = ψ
ξ
− σ2, and rg is the

minimum link distance.

Proof: The proof follows from that of Theorem 1 and is therefore omitted.

Similar to the connected case, the energy coverage probability for this case is also a function

of the propagation conditions, network density and antenna geometry parameters. The following

proposition gives an analytical expression for the average harvested power for the nonconnected

case.

Proposition 2: The average harvested power P̄ncon for the non-connected case is given by

P̄ncon = ξ
(
ΨL (rg) + ΨN (rg) + σ2

)
, (19)

where ΨL (·) and ΨN (·) are given in (16) and (17) respectively.

Proof: The proof follows from that of Proposition 1 and is therefore omitted.

The average harvested power for the nonconnected case scales linearly with the transmit power

and network density. This follows from (19) since ΨL (·) and ΨN (·) scale linearly with κ =

2πλPt. This also suggests that increasing transmit power or density has the same effect on the

average harvested power.

B. Results and Design Insights

We first verify the accuracy of the analytical expressions provided in Section III-A using

simulations. We then study how key design parameters such as the antenna beam pattern affects

the energy coverage probability in purely connected (ε→ 1) and nonconnected (ε→ 0) networks.

We also compare the performance of mmWave energy harvesting with lower frequency solutions.

After developing key insights for purely connected/nonconnected scenarios, we provide energy

coverage results for the general case (0 < ε < 1), where the network serves both types of users.

Validation: In the following plots, the users are assumed to be equipped with a single

omnidirectional receive antenna, the mmWave carrier frequency is set to 28 GHz, the blockage

constant β = 0.0071 [20] and the rectifier efficiency ξ = 1. Fig. 2 and 3 plot the energy coverage
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probability for the connected case using different model parameters. The analytical results based

on Theorem 1 are obtained using N = 5 terms in the approximation. The simulation results are

generated using Monte Carlo simulations with 10,000 runs. Similarly, using Theorem 2, Fig.

5 and 6 plot the energy coverage probability for the nonconnected case. We observe a good

agreement between analytical and simulation results.

Connected case (ε→ 1): In Fig. 2, we plot the energy coverage probability with three distinct

transmit beam patterns for a given network density. The user is assumed to be equipped with

a single omnidirectional receive antenna. We observe that the energy harvesting performance

improves with narrower beams (i.e., smaller beamwidths and larger directivity gains). As the

beamwidth decreases, relatively fewer beams from the neighboring BSs would be incident on a

typical user. But the beams that do reach, will have larger directivity gains, which results in an

overall performance improvement. This is possible due to the use of potentially large antenna

arrays at the mmWave BSs. Note that this performance boost will possibly be limited due to

the ensuing EIRP (equivalent isotropically radiated power) or other safety regulations on future

mmWave systems [25].

For the purpose of comparison, we also plot the energy coverage probability for UHF energy

harvesting under realistic assumptions. Given the current state-of-the-art [1], [26], the UHF BSs

are assumed to have 8 transmit antennas each. Further, they are assumed to employ maximal

ratio transmit beamforming to serve a connected user. For the channel model, we assume an

IID Rayleigh fading environment and a path loss exponent of 3.6 (no blockage is considered).

The network density is set to 25 nodes/km2, which corresponds to an average distance of about

113m to the closest UHF BS. The carrier frequency is set to 2.1 GHz and the transmission

bandwidth is 100 MHz. As can be seen from Fig. 2, mmWave energy harvesting could provide

considerable performance gain over its lower frequency counterpart. Moreover, the anticipated

dense deployments of mmWave networks would further widen this gap. This effect is illustrated

in Fig. 3, where we plot the energy coverage probability for different mmWave network densities

for a given transmit antenna beam pattern. In Fig. 4, we use Proposition 1 to plot the average

harvested power at a typical mmWave user against the transmit array size. This figure confirms

our earlier intuition that mmWave energy harvesting can benefit from (i) potentially large antenna

arrays at the BSs, and (ii) high BS density, which would be the key ingredients of future mmWave

cellular systems.
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Fig. 2. Energy coverage probability Λ(ε, ψ, λ) for different transmit antenna beam patterns parameterized by [Mt,mt, θt, θ̄t]
in a purely connected network (ε = 1, λ = 100/km2). The performance improves with narrower beams for this case. Pt = 13
dB, W = 100 MHz, αL = 2, αN = 4, NL = 2, NN = 3, and rg = 1 m. There is a nice agreement between Monte Carlo
simulation (sim) results and the analytical (anlt) results obtained using Theorem 1 with N = 5 terms.

Nonconnected case (ε → 0): We now analyze the energy harvesting performance when the

harvesting devices operate in the nonconnected mode. In a stark contrast to the connected case,

Fig. 5 shows that for the nonconnected case, mmWave energy harvesting could benefit from using

wider beams. This is because BS connectivity is critical for the nonconnected case. With wider

beams, it is more likely that a mmWave BS gets aligned with a receiver, though sacrificing the

beamforming gains. Moreover, a comparison with UHF energy harvesting shows that mmWave

energy harvesting gives a comparable performance to UHF solutions. Similarly, Fig. 6 plots the

energy coverage probability for different deployment densities. We can observe that performance

can be further improved with denser deployments, which would be a key feature in future

mmWave cellular systems.

General case (0 < ε < 1): Having presented the energy coverage trends for the two extreme

network scenarios, we now consider the general case where the user population consists of both

connected and nonconnected users. We expect this to be the likely scenario for reasons explained

in the network model (Section II-A). As described in Section II-C, an antenna beam pattern can

be characterized by the half power beamwidth and directivity gain for both the main and side
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Fig. 3. Energy coverage probability Λ(1, ψ, λ) for different network densities for connected users. Transmit beam pattern is
fixed to [10,−10, 30◦, 330◦]. Other parameters are same as given in Fig. 2. There is a nice agreement between Monte Carlo
simulation (sim) results and the analytical (anlt) results obtained using Theorem 1 with N = 5 terms.

lobes. By tuning these parameters, the beam pattern can be particularized to a given antenna

array. As an example, we assume that uniform linear arrays (ULA) are deployed at the mmWave

BSs. We use the following relations to approximate the main and side lobe beamwidths as a

function of the transmit array size: θt ≈ 360
π

arcsin
(

0.892
Nt

)
and θ̄t ≈ 720

π

∣∣∣arcsin
(

2
Nt

)∣∣∣ [27].

Further, we use Mt = 10 log (Nt) and mt = Mt − 12 for the directivity gains of the main and

side lobes [27]. We further assume the resulting sectorized transmit beam pattern are normalized

over the parameter space, i.e., θt
2π
Mt + θ̄t

2π
mt = 1.

In Fig. 7, we plot the overall energy coverage probability Λ(ε, ψ, λ) against transmit array

size Nt for different values of parameter ε. We find that the optimal transmit array size depends

on the type of user population. For example, when ε is large, it is desirable to use large antenna

arrays at the BSs. When ε is small, it is favorable to use small antenna arrays to improve the

overall energy coverage probability. Depending on the network load (or the user population

mix) captured via ε, the energy coverage probability can be substantially improved by intelligent

antenna switching schemes. Since the parameter ε would typically vary over large time-scales,

such schemes would be practically feasible.

Having presented the energy coverage trends for mmWave energy harvesting, we now consider
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Fig. 4. The average harvested power in a connected mmWave network for different number of BS antennas Nt and deployment
densities λ. For comparison, a plot for a UHF system is also included. The analytical (anlt) results are based on Proposition 1.
Results based on Monte Carlo simulations (sim) are also included. The transmit antenna beam patterns are calculated using the
approximations used for obtaining Fig. 7. Other simulation parameters are same as used in Fig. 2.

the scenario where the user attempts to extract both power and information from the incident

mmWave signals.

IV. MMWAVE SIMULTANEOUS INFORMATION AND POWER TRANSFER

In this section, we consider the case where the energy harvesting device also attempts to decode

information from the received signals, in what is known as simultaneous wireless information and

power transfer (SWIPT). We now assume that the energy harvesting receiver is also equipped

with an information decoding circuit. We focus on the case where a given user is already

aligned with its serving BS, i.e., ε = 1 for this section. Further, we consider a power splitting

receiver architecture [10] where the received signal is split using factors
√
ν and

√
1− ν,

ν ∈ [0, 1]. A fraction
√

1− ν of received signal is available for energy harvesting, while the

remaining signal is used for information decoding. With this notation, the signal-to-interference-

plus-noise ratio (SINR) at a typical receiver can be expressed as SINR = νS
ν(I+σ2)+σ2

c
, where

S = PtMtMrH0g0(r0) denotes the useful signal power and I =
∑

`>0,`∈Φ(λ)\B(rg) Ptδ`H`g`(r`)

gives the aggregate interference power from the neighboring BSs. σ2 is the thermal noise power

before splitting, while σ2
c captures possible signal degradation after power splitting. Similarly,
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Fig. 5. Energy coverage probability Λ(ε, ψ, λ) for different transmit antenna beam patterns in a nonconnected network (ε = 0,
λ = 100/km2). The performance improves with wider beams for this case. Other simulation parameters are same as given in
Fig. 2. Monte Carlo simulation (sim) results validate the analytical (anlt) results obtained using Theorem 2 with N = 5 terms.

γ = (1− ν) (S + I + σ2) denotes the received signal power fed to the energy harvester. Note

that a user will be in outage if the harvested energy and/or the SINR fall below their respective

thresholds. We now define Psuc(λ, T, ψ, ν) = Pr [SINR > T, γ > ψ] to be the probability of

successful reception given the SINR outage threshold T , the energy outage threshold ψ, and the

power splitting ratio ν. Extending the results from the previous sections, we now provide an

analytical expression to characterize the system performance with SWIPT.

A. Stochastic Geometry Analysis

Before stating the main result of this section, we first provide a lemma for the SINR coverage

probability at a mmWave receiver [20].

Lemma 4 (From [20, Theorem 1]): In a mmWave network of density λ, the conditional SINR

coverage probability Pcov (λ, T, ν) at a SWIPT device that is not in energy outage, given an SINR

outage threshold T and a power splitting ratio ν, is given by

Pcov (λ, T, ν) = Pcov,L (λ, T, ν) %L + Pcov,N (λ, T, ν) %N, (20)

where %L = 1 − %N is defined in Lemma 2, and Pcov,L(·) gives the conditional SINR coverage
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Fig. 6. Energy coverage probability Λ(0, ψ, λ) for different network densities for nonconnected users. Transmit beam pattern
is fixed to [10,−10, 30◦, 330◦]. Other parameters are same as given in Fig. 2. Monte Carlo simulation (sim) results validate the
analytical (anlt) results obtained using Theorem 2 with N = 5 terms.

probability given the receiver is served by a LOS BS, and can be approximated as

Pcov,L (λ, T, ν) ≈
NL∑
k=1

(−1)k+1

(
NL

k

) ∞∫
rg

e
−
kcLr

αLT(σ2+ν−1σ2
c)

PCLMtMr e−∆k,1(T,r)−∆k,2(T,r)τ̃L (r) dr. (21)

Similarly, the conditional SINR coverage probability for the NLOS case Pcov,N(·) is given by

Pcov,N (λ, T, ν) ≈
NN∑
k=1

(−1)k+1

(
NN

k

) ∞∫
rg

e
−
kcNr

αNT(σ2+ν−1σ2
c)

PCNMtMr e−∆k,3(T,r)−∆k,4(T,r)τ̃N (r) dr, (22)

where

∆k,1 (T, x) = 2πλ
4∑
i=1

pi

∞∫
x

1−

[
1 +

cLkD̃iTx
αL

NLtαL

]−NL

 p(t)tdt, (23)

∆k,2 (T, x) = 2πλ
4∑
i=1

pi

∞∫
ρL(x)

1−

[
1 +

cLkD̃iCNTx
αL

NNCLtαN

]−NN

 (1− p(t)) tdt, (24)
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Fig. 7. The overall energy coverage probability Λ(ε, ψ, λ) for different values of ε. Depending on the fraction of users operating
in connected/nonconnnected modes, the transmit array size (which controls the beamforming beamwidth in this example) can
be optimized to maximize the network-wide energy coverage. This could translate into massive gains given that the number of
served devices would be potentially large. The users are assumed to be equipped with a single omnidirectional receive antenna.
The energy outage threshold ψ is −70 dB for Φu,con and −85 dB for Φu,ncon. Pt = 13 dB, λ = 200/km2. Channel parameters
are same as used in Fig. 2.

∆k,3 (T, x) = 2πλ
4∑
i=1

pi

∞∫
ρN(x)

1−

[
1 +

cNkD̃iCLTx
αN

NLCNtαL

]−NL

 p(t)tdt, (25)

∆k,4 (T, x) = 2πλ
4∑
i=1

pi

∞∫
x

1−

[
1 +

cNkD̃iTx
αN

NNtαN

]−NN

 (1− p(t)) tdt, (26)

D̃i = Di
MtMr

for i ∈ {1, 2, 3, 4, 5}, cL = NL (NL!)
− 1
NL and cN = NN (NN!)

− 1
NN .

The following theorem provides the main result of this section.

Theorem 3: In a mmWave network of density λ, the success probability Psuc(λ, T, ψ, ν) given

the SINR outage threshold T , the energy outage threshold ψ, and the power splitting ratio ν is

given by

Psuc (λ, T, ψ, ν) = Pcov (λ, T, ν) P̃con (λ, µ) + Pcon (λ, ϕ)
[
1− P̃con (λ, µ)

]
(27)

where the SINR coverage probability Pcov(·) can be evaluated using the expressions in Lemma
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4, while the energy coverage probability Pcon(·) follows from Theorem 1. We further define

P̃con(λ, µ) = P̃con,L(λ, µ)%L + P̃con,N(λ, µ)%N, where P̃con,L(·) and P̃ncon,N(·) can be specified by

(9) and (10) respectively with ζL
k (·) = ζN

k (·) = 1. Moreover, µ and ϕ are a function of several

parameters including the power splitting ratio ν, the SINR outage threshold T , the energy outage

threshold ψ, the rectifier efficiency ξ as well as the noise parameters, and are given by

µ =
ψ

ξ(1− ν)(1 + T )
− σ2 − σ2

c

ν(1 + 1
T

)
, (28)

and ϕ = ψ
ξ(1−ν)

.

Proof: See Appendix D.

Note that P̃con(λ, µ) in (27) is the interference CCDF evaluated at parameter µ. It plays a

key role in determining the operating mode of the system. Though the interference is harmful

for information decoding, it can be beneficial for energy harvesting. When the interference is

high, the SINR coverage probability will typically dominate the success probability. In the other

extreme, the energy coverage probability will play the dominating role. Also note that the success

probability can be optimized over the design paramter ν, given other parameters. Moreover, we

can recover the results in Theorem 1 and Lemma 4 from (27) by letting ψ → 0 and T → 0

respectively.

Note that, in principle, the success probability at a connected mmWave energy harvesting

or SWIPT device can be further improved by leveraging large antenna arrays at the receiver,

thanks to smaller wavelengths. Though our analytical model allows the users to have receive

antenna arrays, it implicitly assumes the presence of ideal RF combining circuitry consisting of

power-hungry components such as phase shifters, multiple RF chains, etc. When large antenna

arrays are used at the receiver, the power consumption due to additional antenna circuitry may

get prohibitively high, overshadowing the array gains. As SWIPT typically targets low-power

devices, we present a simple low-power receiver architecture in the next section. Note that the

analytical results based on Theorem 3 can be interpreted as an upper bound on performance

when the receiver consists of suboptimal components (as is the case in the following section).

B. Low-power Receiver Architecture

We now propose a novel architecture for a mmWave SWIPT receiver with multi-antenna array,

as depicted in Fig. 8. In this architecture, we assume per-antenna power splitting with parameter
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Fig. 8. Low power receiver architecture for SWIPT.

ν (as defined earlier). After power splitting, the input signal at each antenna passes through a

rectifier, followed by a DC combiner that yields the harvested energy. For the information path,

after passing through power-splitters, the received signals are first combined in the RF domain

using a combining vector w. The resulting signal is then decoded in the baseband. Because

they require extremely small power, the combining vector is assumed to be implemented using

switches [28], i.e., w = [w1, · · · ,wNr ] ∈ [0, 1]Nr .

We now derive the combining gain expression for the proposed SWIPT receiver architecture

in Fig. 8. Let y be the signal output at the RF combiner. If a BS applies a beamforming vector

f ∈ CNt×1 to send data symbol s (where E [|s|2] = Pt) to a target user, it follows that

y =
√
ν [w∗Hdfs+ w∗rint + w∗n] , (29)

where Hd ∈ CNr×Nt is the channel between the user and its serving BS, and rint is the received

signal due to the interfering BSs. Since the channel between each user and its BS is assumed

to be single-path, the channel matrix Hd = h0

√
g0(r0)ar (φr) at (φt), where at (φt) and ar (φr)

are the array response vectors at the BS and user, respectively. Recall that go(ro) denotes the

path gain from the serving BS, while φr and φt respectively denote the channel angle of arrival

and angle of departure at the user and BS. If the channel is known at the BS, and given the

antenna model in Section II-C, the BS will design the beamforming vector f to maximize the

beamforming gain, i.e., to have |a∗t (φt) f |2 = Nt. Denoting ᾱ = h0

√
g0(r0)a∗t (φt) f , the received
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signal in (29) can be written as

y =
√
ν (ᾱw∗ar (φr) s+ w∗rint + w∗n) . (30)

The post-combining SINR can then be expressed as

SINR =
νPt |α|2Nt |w∗ar (φr)|2

I + νw∗wσ2
, (31)

where |w∗ar (φr)|2 represents the combining gain at the receiver, and I denotes the aggregate

interference power. The SINR in (31) can be maximized if the receiver designs the optimum

combining vector, which can be implemented by activating certain antennas on or off. This

requires the receiver to have global channel knowledge, which is often challenging in practice.

We relax this condition by assuming that the receiver has the angle of arrival information for

the serving BS only. Ignoring the interference, we propose to design the combining vector by

maximizing the SNR =
Pt|ᾱ|2Nt|w∗ar(φφr)|2

w∗wσ2 instead, i.e., the receiver designs its combining vector

w such that

w? = arg max
w∈ [0,1]Nr

|w∗ar (φr)|2

w∗w
. (32)

The optimal solution in (32) can be found by an exhaustive search over all possible combinations

of w. For large receive antenna arrays, this could entail high computational costs, which would

further increase the power consumption. Therefore, it is important to consider computationally

efficient approaches for designing the combining vector. As outlined in Algorithm 1, we propose

a greedy solution for designing w by (step-wise) activating only those antennas that boost the

received SNR. With ŵ denoting the combining vector designed using Algorithm 1, the combining

gain for the switch-based architecture can be defined as Mc =
|∑Nr

i=1 ŵiekd(i−1) cos(φr)|2
|ŵ|2 where k

denotes the wavenumber and d is the antenna element spacing. Despite its low-complexity,

numerical simulations in the next section reveal that our low-power greedy approach could give

a good combining gain, without losing substantial performance compared to more advanced but

power-hungry solutions.
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Algorithm 1 Greedy Switch Combining Design
Input Nr, φr

Initialization w = 0, w1 = 1
for i = 2, · · · , Nr do

if 1
i

∣∣∣∑i−1
n=1 wne

kd(n−1) cos(φr) + ekd(i−1) cos(φr)
∣∣∣2 > 1

i−1

∣∣∣∑i−1
n=1 wne

kd(n−1) cos(φr)
∣∣∣2 then

wi = 1
end if

end for

C. Results

Using Theorem 3, Fig. 9 plots the overall success probability for a given transmit antenna beam

pattern. The users are equipped with a single-antenna receiver, similar to the one in Fig. 8 with

Nr = 1. First, Fig. 9 shows that a good success probability can be obtained with mmWave SWIPT

system for typical mmWave propagation and system parameters. Further, this plot illustrates that

the power splitting ratio ν needs to be optimized for a given SINR outage threshold to maximize

the overall success probability. Matching the intuition, the figure shows that in the low SINR

outage regime (when T is large), it is desirable to divert more power to the information decoding

module, while a larger fraction of power needs to be portioned for the energy harvesting system

in the high SINR outage regime (when T is small). This trend is consistent with prior studies

on SWIPT architectures [10].

We now evaluate the performance of the proposed low-power receiver architecture for different

number of receive antennas. In Fig. 10, the success probability Psuc(λ, T, ψ, ν) is plotted for a

fixed transmit antenna beam pattern. For the proposed architecture, the combining vector is

obtained using Algorithm 1, and the curves are averaged over the angle of arrival parameter.

For comparison, we also plot the success probability for (fully digital) maximal ratio combining

(MRC) receivers. We observe that the success probability improves with the receive antenna

array size. Further, when the SINR outage threshold T is small, the success probability is mainly

limited by the energy outage. This also explains why the success probability converges to a limit

(determined by the energy outage threshold) as T decreases. Moreover, there are diminishing

returns as the number of antennas are increased. A comparison with power-hungry MRC receivers

shows that the proposed switch-based architecture performs reasonably well. This is particularly

desirable for future mmWave SWIPT devices.
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Fig. 9. A 3D plot showing the interplay between the success probability, the power splitting ratio ν, and the SINR outage
threshold T for a given energy outage threshold ψ and network density λ. As T gets large, the system becomes SINR-limited, and
the optimum value of ν increases, suggesting that a larger fraction of received signal should be used for information extraction to
optimize the overall success probability. The transmit antenna beam pattern is set to A15,−15,10◦,350◦ . Other parameters include
ψ = −70 dB, σ2

c = −80 dB, λ = 200/km2, and Pt = 43 dBm.

V. CONCLUSION

In this paper, we analyzed the energy harvesting performance at low-power devices powered

by a mmWave cellular network. Using a stochastic geometry framework, we derived analytical

expressions characterizing the performance of mmWave energy and information transfer in

terms of system, channel and network parameters. Simulations results were used to validate

the accuracy of the derived expressions. Leveraging the analytical framework, we also provided

useful network and device level design insights. For the connected case when the transmitter and

receiver beams are aligned, results show that the energy coverage improves with narrower beams.

In contrast, wider beams provide better energy coverage when the receivers are not aligned with

a particular transmitter. This trade-off is evident in the more general scenario having both types

of receivers, where there typically exists an optimal beamforming beamwidth that maximizes the

network-wide energy coverage. Moreover, we found that several device-related parameters can

significantly impact the system performance. For example, the performance can be substantially

improved by optimizing over the power splitting ratio and by leveraging large antenna arrays. To
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Fig. 10. The success probability for different number of receive antennas Nr at the user given a fixed transmit beam
pattern A15,−15,10◦,350◦ at the BSs. Proposed low-power architecture achieves good performance compared to superior receiver
architectures. Other parameters include ν = 0.5, ψ = −70 dB, σ2

c = −80 dB, λ = 200/km2, and Pt = 43 dBm.

allow using multiple antennas at the mmWave receivers while keeping the power consumption

low, we proposed a low-power receiver architecture for mmWave energy and information transfer

using antenna switches. Simulation results show that the proposed architecture can provide good

gains for the overall mmWave energy harvesting performance. Simulation results also reveal

that mmWave cellular networks could potentially provide better energy coverage than lower

frequency solutions.

APPENDIX A

The following inequality approximates the tail probability of a normalized Gamma distribution.

Lemma 5 (From [29]): For a normalized Gamma random variable u with parameter N , the

probability Pr (u < x) can be tightly upper-bounded by

Pr (u < x) <
(
1− e−ax

)N
where the constant x > 0 and a = N(N !)−

1
N .

We write Pcon (λ, ψ) = Pr [γ > ψ] = Pr [S + I + σ2 > ψ], where S = PtMtMrH0g0(r0) and I =∑
`>0,`∈Φ(λ)\B(rg) Ptδ`H`g`(r`). We can derive the result in Theorem 1 by finding the conditional
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distributions Pcon,L (λ, ψ) and Pcon,N (λ, ψ). To proceed, first consider the conditional distribution

Pcon,L (λ, ψ) = Pr (S + I > ψ|L) given the receiver is aligned with a LOS BS (which is indicated

by the subscript L in the following notation).

Pcon,L (λ, ψ) = ES,I|L
[
Pr

(
u <

S + I

ψ

)]
(a)
≈ ES,I|L

[(
1− e−a

S+I
ψ

)N]
= ES,I|L

[
N∑
k=0

(−1)k
(
N

k

)
e−ak

S+I
ψ

]
=

N∑
k=0

(−1)k
(
N

k

)
ES,I|L

[
e−â(S+I)

]
(33)

where we have included a dummy random variable u ∼Γ
(
N, 1

N

)
in the first equation. Note that

u converges to 1 as N →∞. Therefore, this substitution is in fact an approximation when N is

finite. The introduction of u allows leveraging the inequality in Lemma 4, which leads to (a),

where the constant a = N(N !)−
1
N . The last equation follows from the Binomial series expansion

of (b), and by further substituting â = ak
ψ

. To evaluate the expectation in (33), consider

ES,I|L
[
e−â(S+I)

]
= ES|L

[
e−âSEI|S,L

[
e−âI

]]
. (34)

The inner expectation in (34) can be simplified by applying the thinning theorem for a PPP

[24]. Note that Φ can be independently thinned into two PPPs ΦL and ΦN, where the former

comprises the LOS BSs whereas the latter consists of NLOS BSs. We can further thin ΦL into

four independent PPPs {Φi
L}4

i=1, where each resulting PPP Φi
L contains BSs that correspond to

a nonzero directivity gain Di with pi being the thinning probability. This follows because the

beam orientations are assumed to be independent across links. Thus, a link can have a directivity

gain of Di with probability pi independently of other links. We let the received power due to

the transmission from the BSs in Φi
L be I iL. Likewise, ΦN can be split into {Φi

N}4
i=1 with the

corresponding received powers denoted by {I iN}4
i=1. Since the resulting PPPs are independent,

(34) can be simplified as

EI|S,L
[
e−âI

]
=

4∏
i=1

EI|S,L
[
e−âI

i
L

] 4∏
j=1

EI|S,L
[
e−âI

j
N

]
(35)
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where EI|S,L
[
e−âI

i
L

]
equals

EΦiL,H|ro

[
e
−â

∑
`∈Φi

L
\B(ro)

PtH`DiCLr`
−αL
]

(a)
= EΦiL|ro

 ∏
`∈ΦiL\B(ro)

EH`
[
e−âPtH`DiCLr`

−αL

]
(b)
= EΦiL|ro

 ∏
`∈ΦiL\B(ro)

(
1

1 + âPtDiCLr`−αLNL
−1

)NL

 = e
−2πλpi

∞∫
ro

(
1−
(

1

1+âPtDiCLt
−αLNL

−1

)NL
)
p(t)tdt

(36)

where (a) follows by conditioning on the length ro of the serving LOS link, and by further noting

that small-scale fading is independent across links. Here, B (ro) denotes a circular disc of radius

ro centered at the typical user. (b) is obtained by using the moment generating function of a

normalized Gamma random variable, while the last equation follows by invoking the probability

generating functional [24] of the PPP Φi
L. Substituting (36) in the first (left) product term of

(35) yields (11). Similarly, EI|S,L
[
e−âI

i
N

]
is given by

EΦiL,H|ro

[
e
−â

∑
`∈Φi

N
\B(ρL(ro))

PtH`DiCNr`
−αN
]

= e
−2πλpi

∞∫
ρL(ro)

(
1−
(

1

1+âPtDiCNx
−αNNN

−1

)NN
)

(1−p(t))tdt
.

(37)

By substituting (37) in the second (right) product term of (35) yields (12). Using the expressions

in (35)–(37) in (34), and by further evaluating the expectation of the resulting expression with

respect to S, we obtain

∞∫
rg

(
1

1 + âPtMtMrCLr−αLNL
−1

)NL

e−Υk,1(λ,ψ,r)−Υk,2(λ,ψ,ρL(r)) × τ̃L(r)dr (38)

where we have again used definition of the moment generating function of a normalized Gamma

distribution. Υk,1 (·) and Υk,2 (·) are given in (11) and (12) respectively, rg denotes the minimum

link distance, while the distance distribution is provided in Lemma 3. Using (33) and (34), we

can thus retrieve the expression in (9). We can similarly derive the conditional distribution

Pcon,N (λ, ψ) = Pr (S + I > ψ|N) in (10) for the NLOS case.
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APPENDIX B: PROPOSITION 1

We can derive Proposition 1 by finding the conditional means P̄L = E [S + I|L] and P̄N =

E [S + I|N]. P̄L can be evaluated by conditioning on the link distance r0 from the serving BS

as follows.

E [S + I|r0,L] = E [S|r0,L] +
4∑
i=1

E
[
I iL + I iN|r0,L

]
(a)
= PtMtMrCLr0

−αL +
4∑
i=1

2πλPtpiDiCL

∞∫
r0

t−(αL−1)p(t)dt+

4∑
i=1

2πλPtpiDiCN

(ρL(r0))−(αN−2)

αN − 2
−

∞∫
ρL(r0)

t−(αN−1)p(t)dt


= PtMtMrCLr0

−αL + ΨL (r0) + ΨN (ρL(r0)) (39)

where (a) is obtained by averaging over the fading distribution, followed by invoking Campbell’s

theorem [24], while (39) follows from the definitions of ΨL and ΨN provided in (16) and (17)

respectively. Taking expectation of E [S + I|r0,L] with respect to ro using Lemma 3 yields (14).

The expression for P̄N is (15) can be derived using similar steps.

APPENDIX C: THEOREM 2

We now derive an analytical approximation for the energy coverage probability Pncon (λ, ψ) =

Pr{γ > ψ} in the nonconnected case. Since no prior beam alignment is assumed for this case,

the directivity gain δ` would be random for any BS ` ∈ Φ. We therefore let γ = I + σ2 where

I =
∑

`∈Φ(λ)\B(rg) Ptδ`H`g`(r`) and rg defines the minimum link distance. Using the steps similar

to those in (33), (36) and (37), it follows that Pncon (λ, ψ) =

Pr

(
1 <

I

ψ̂

)
= EI

[
N∑
k=0

(−1)k
(
N

k

)
e
−ak
ψ̂
I

]
=

N∑
k=0

(−1)k
(
N

k

)
e−Υk,1(λ,ψ̂,rg)−Υk,2(λ,ψ̂,rg) (40)

where ψ̂ = ψ − σ2, while Υk,1(·) and Υk,2(·) follow from (11) and (12) respectively.
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APPENDIX D: THEOREM 3

We proceed by recalling that γ = (1 − ν) (S + I + σ2) where S = PtMtMrH0g0(r0) and

I =
∑

`>0,`∈Φ(λ)\B(rg) Ptδ`H`g`(r`). To find Psuc (λ, T, ψ, ν) = Pr [SINR > T, γ > ψ], consider

Pr

[
νS

ν(I + σ2) + σ2
c

> T, (1− ν)
(
S + I + σ2

)
> ψ

]
= EI

[
Pr

[
S > T

(
I + σ2 +

σ2
c

ν

)
, S >

ψ

1− ν
− I − σ2

]]
(a)
= EI

[
Pr

[
S > T

(
I + σ2 +

σ2
c

ν

)]]
Pr [I > µ] + EI

[
Pr

[
S >

ψ

1− ν
− I − σ2

]]
Pr [I ≤ µ]

= Pcov(λ, T, ν)P̃con(λ, µ) + Pcon(λ, ϕ)
[
1− P̃con(λ, µ)

]
(41)

where the SINR coverage probability Pcov(λ, T, ν) follows from Lemma 4, and the energy

coverage probability Pcon(λ, ϕ) from Theorem 1. P̃con(λ, µ) is the interference CCDF evaluated

at µ, where µ given in (28) follows from the inequality T
(
I + σ2 + σ2

c

ν

)
> ψ

1−ν − I − σ
2.
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