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ABSTRACT 
In this article the structure of non-stationary curves which are stationary connected in Hilbert space is studied 
using triangular models of non-self-adjoint operator. The concept of evolutionary representability plays here 
an important role. It is proved that if one of two curves in Hilbert space is evolutionary representable and the 
curves are stationary connected, then another curve is evolutionary representable too. These curves are studied 
firstly. The structure of a cross-correlation function in the case when operator, defining the evolutionary 
representation, has one-dimensional non-Hermitian subspace (the spectrum is discreet and situated in the upper 
complex half-plane or has infinite multiplicity at zero (Volterra operator)) is studied. 
 
Keywords: Stationary Connectedness, Infinitesimal Correlation Matrix, Triangular Operator Model, 
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1. INTRODUCTION 

It is well known (Rozanov, 1967; Hannan, 2009; 
Pugachev and Sinitsyn, 2001) that if two stationary 
random processes of the second order 1 ( )tξ  and 2 ( )tξ  
(in what follows we consider that ( ) 0M tαξ = ) are 
stationary connected, then in the corresponding space 

( ) { } [ ),,
( , 1,2; 1, ; 0,kk kk

H H C t k tαξ ξ αα
ξ α= ∨ = = ∞ = ∞  is the 

value space of random processes) they correspond to 
the stationary curves of the form 0( ) tt Uα αξ ξ= , where 

tU  is a one-parameter group of unitary operators 
which always can be represented as itA

tU e= , where A 
is a self-adjoint and, in general, unbounded operator 
in Hξ . If ( )( )1,2tαξ α =  are nonstationary random 
processes, then the question concerning stationary 
connectedness, i.e., the cross-correlation function 
dependence upon difference t s− , is still opened. The 
solution of problem may be found in the framework of 
the Hilbert approach to the construction of the 
correlation theory of random processes. We will 
restrict our consideration to the case when 
corresponding curves in Hξ  are evolutionary 

(linearly) representable (Pugachev and Sinitsyn, 2001; 
Livshits and Yantsevich, 1979), i.e., may be expressed 
as ( ) ( )0 1,2itAt e α

α
αξ ξ α= = , where Aα  are linear 

bounded operators in H ξ . For simplicity, we assume 
that 1 2 ,H H H Hξ α= =  are Hilbert spaces 

( ), kkH C tαα αα
ξ= ∨ . 

2. EVOLUTIONARY 
REPRESENTABLE STATIONARY 

CONNECTED CURVES IN Hξ 

Let us introduce an infinitesimal correlation matrix 
(Pugachev and Sinitsyn, 2001) with components: 
 

( , ) ( ) ( , )W t s t s K t sαβ αβ= − ∂ + ∂  
 

For evolutionary representable curves one can easily 
derive the following expression: 
 

*

( , ) ( ), ( )
H

A A
W t s t s

i
α β

αβ α β

ξ

ξ ξ
−

=  (1) 
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Lemma 1. 
In order for two random processes to be stationary 

connected, it is necessary and sufficient that 
( )12 ,K t s satisfies the equation: 

 
( ) 12 ( , ) 0t s K t s∂ + ∂ =   (2) 

 
The necessity is evident, since, in the case of 

stationary connected processes, ( )12 ,K t s depends on 
the difference t s−  and, for the proof of sufficiency, 
the new variables ,U t s V t s= + = −  should be 
introduced in Equation 2. 

Theorem 1. 
If the random processes are stationary connected and 

are evolutionary representable, then *
2 1A A= . 

Proof. 

Let ( )( ), ,K t sα β  be the correlation matrix for a vector 

random process ( ) ( )( )1 2,t t Hξξ ξ ∈ . Then the following 

representation for ( ), ,K t sα β  in Hξ  is valid, 

( ) ( ) ( ), ,
H

K t s t s
ξ

αβ α βξ ξ= , where ( ) ( )1 2,t t Hξξ ξ  are 

corresponding curves in Hilbert space Hξ . Since, by 
hypothesis, ( )tαξ  are evolutionary representable: 
 

0 0( , ) ,
H

itA isAK t s e e
ξ

αβ α βξ ξ=  

 
In view of the stationary connectedness, ( )12 , 0K t s =  

(Lemma 1) and: 
 

( )
22

11( , ) 0
( , )

0 ( , )
W t s

W t s
W t sαβ

 
=  
 

 

 
From the other hand: 

 
*

1 2
12 1 2( , ) ( ), ( )

H

A AW t s t s
i

ξ

ξ ξ−
=  

 
Hence, it follows from the stationary 

connectedness that: 

( )*
21 1 2

1 1
( ), ( ) 0

H

n m

j j l l
j l

A A a t b t
ξ

ξ ξ
= =

− =∑ ∑  

i.e.: 
 

( )*
1 2 1 2, 0

H
A A h h

ξ

− =  

 
where, 1 2,h h  are elements of linear span 

( ),,, k kkk
L C tααα

ξ= ∨ . Proceeding to a closure of L , we 

derive that *
1 2A A=  or *

2 1A A= . 
Hence, if 1 ( )tξ and 2 ( )tξ  are evolutionary 

representable and stationary connected, then in Hξ  they 
are expressed as: 
 

( ) ( ) *
1 01 2 02, ,itA itAt e t eξ ξ ξ ξ= =  

 
and the matrix ( )( ),W t sαβ is given by: 

2 2

1 1

( , )

2Im ( ), ( ) 0
.

0 2Im ( ), ( )

H

H

W t s

A t s

A t s

αβ

ξ

ξ

ξ ξ

ξ ξ

=

 
 
 
 − 
 

 (3) 

 
For the stationary and stationary connected 

curves *
1 2A A A A= = = , we arrive to the well-known 

representation of the stationary vector curve in 
( ) ( )0: 1,2itAH t eξ α αξ ξ α= =  (Rozanov, 1967). 

In the subsequent discussion, we restrict our 
consideration to the most interesting case for application, 
when the subspace Im AHξ  is finite-dimensional and let 
r  be the subspace dimension. 

If the nonstationarity rank of the vector curve 
( ) ( )( )1 2,t tξ ξ in Hξ  is defined as maximal rank of 

quadratic forms: 
 

, (1)1 2

(2)
, 1 2

ˆ[ ] ( , ) , ,
N N

k
k l k l k

Ek l k

z
z W t t z z z

z=

 
Φ = =  

 
∑

  

 

 
( )1,2
kz  are complex numbers, then, in the case of 

dimIm AH r= , one may show that the nonstationarity 
rank does not exceed 2r . 

Really, if the operator A  is included in the operator 
complex (Livshits and Yantsevich, 1979; Zolotarev, 2003), 

( )( )1, , , , , ImrK A H g g Jξ=  , where ( )ImJ is an involutive 
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matrix 
1

andlm pm
p

r

lm ip imJ J J J δ
=

 
= = 

 
∑ , then we obtain the 

following expression for ( ),W t sαβ : 
 

, 1

, 1

( ) 0
( , )

0 ( )

r

l lm m
l m

r

l lm m
l m

J S
W t s

J S
αβ

ϕ ϕ

ψ ψ

=

=

 
 
 =  

−  
 

∑

∑
 (4) 

 
where: 
 

*
01 02( ) , , ( ) ,itA itA

l l l lH H
t e g t e g

ξ ξ

ϕ ξ ψ ξ= =  (5) 

 
Then we have: 

 

, 1 , 1
[ ]

r r

lm l lm l
l m l m

z J u u J v vβ β
= =

Φ = −∑ ∑  

 
where: 
 

1 2
(1) (2)

1 1
( ) , ( )

N N

l l k k l l j j
k j

u t z v t zφ ψ
= =

= =∑ ∑  

 
hence it follows that the rank of [ ]zΦ  does not exceed 

the doubled rank of matrix ( )ImJ , i.e., 2r . 

Theorem 2.  

If two curves in Hξ are stationary connected and one 
of them is evolutionary representable, then another curve 
is also evolutionary representable. 

Proof.  

Let ( )1 tξ be evolutionary representable curve, i.e., 

( )1 01
itAt eξ ξ= . In view of stationary connectedness: 

 
( ) ( ) ( )12 12, , 0W t s t s K t s= − ∂ + ∂ =  

 
But: 

 
( ) ( ) 1 2

1 2
2 1

( , ) ( ), ( )

( ) ( ), ( ) ( ),

H

H H

t s K t s t s t s

d t d ss t
dt ds

ξ

ξ ξ

ξ ξ

ξ ξξ ξ

∂ + ∂ = ∂ + ∂

= +
 

2
2 1

* 2
1 2

( )( ), ( ) ( ),

( )( ), ( )

H
H

H

d siA t s t
ds

d st iA s
ds

ξ
ξ

ξ

ξξ ξ ξ

ξξ ξ

= +

= − +

 

 
Hence, it follows (compare with the proof of 

Theorem 1) that: 
 

* 2
2

( ), ( ) 0, ,
H

d sh iA s h H
ds ξ

ξ

ξξ− + = ∀ ∈  

 
i.e.: 

 

2
* itA*2

2 02
d (s)iA (s) 0 or (s) e

ds
ξ

− ξ + = ξ = ξ  

 

3. THE STRUCTURE OF ( )12W t,s  AND 
( )12K t,s  FOR STATIONARY 

CONNECTED CURVES IN ξH  

Now we proceed to the investigation of ( )( ),W t sαβ  

for the dissipative operator A . ImlmJ δ= and: 
 

( )
l

r

l
l 1

r

l l
l 1

(t) (s) 0
W (t,s) .

0 (t) (s)

=
αβ

=

 
ϕ ϕ 

 =
 

− ψ ψ 
 

∑

∑
 

 
If the dissipative operator A has discreet spectrum: 

 
2

2

11

( ) ,
2
k

k k
kk

A i withβσ α β
∞ ∞

==

 
= + < ∞ 
 

∑  

 
then, if 1r = , the functions ( )tϕ  and ( )tψ  (index l  is 
omitted) may be restored only by spectrum and initial 
values 01ξ  and 02ξ . 

Theorem 3. 
Let: 

 
2
k

k k i ,k 1,
2

 β
λ = α + = ∞ 
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be arbitrary complex numbers in upper complex 
half plane and: 
 

2
k

k 1
,

∞

=
β < ∞∑  

 
and 1 2 1 2, , , , ,a a b b   be arbitrary sequences with: 
 

2 2
k k

k 1 k 1
a and b

∞ ∞

= =
< ∞ < ∞∑ ∑  

 
then there exists the evolutionary representable Gauss 
vector process with matrix Equation 6 and 7: 
 

(t) (s) 0
W (t,s)

0 (t) (s)
αβ

 ϕ ϕ
=   ψ ψ 

 

 
where: 
 

*
k k k k

k 1 k 1
(t) (t), (t) b (t)

= =
ϕ = α Λ ψ = Λ∑ ∑  (6) 

 
with: 
 

1

1

*

1

2Im1( )
2

2Im1( ) .
2

k
k

jit
k

jk j

jkit
k

j kk j

t e d
i

t e d
i

λ

λ

λ λλ
λ

π λ λ λ λ

λ λλ
λ

π λ λ λ λ

−
−

=

∞
−

= +

−
Λ = −

− −

−
Λ = −

− −

∏∫

∏∫





 (7) 

 
Proof. 

Let us build a triangular model of operator Â  acting 
in the space 2

  with the help of the set of 1 2, ,λ λ   
(Livshits and Yantsevich, 1979; Zolotarev, 2003). Then 
consider in 2

  the model curves: 
 

ˆ ˆ*
1 01 2 02( ) , ( )itA itAt e t eξ ξ ξ ξ= =  

 
where: 
 

02

1 1

01 2 2,
b
b

α
ξ α ξ

   
   

= =   
   
    

 

 
Taking into account the expressions (5) for ( )tϕ  and 

( )tψ , with ˆA A=  and the expressions for ˆitAe  and ˆ*itAe  
via the corresponding resolvents: 

11 ( ) ,
2

itB ite e B I d B
i

λ

γ

λ λ
π

− −= − − < ∞∫  

 
the contour γ  encloses the spectrum of operator B 
(Pugachev and Sinitsyn, 2001), we obtain the 
expressions (6) and (7). 

The existence of Gauss vector processes results from 
the possibility of the correlation matrix ( )( ),K t sαβ  to be 
restored by the scalar products calculations: 
 

ˆ ˆ *
0 0( , ) ,

H

itA isAK t s e e
ξ

αβ α βξ ξ=  

 
The Gauss complex valued vector process 
( ) ( )( )21 ,t tξ ξ  may be reconstructed, but not uniquely 

defined, by the correlation matrix (Hannan, 2009). 
In our case, the most interesting is the structure: 

 
ˆ( )

12 01 02( , ) ,
H

i t s AK t s e
ξ

ξ ξ−=  

 
First we consider a case when: 

 
1

02 2 ˆ
b
b gξ
 
 

= = 
 
 

 

 
where, ĝ is a channel element of dissipative operator A 
with discrete spectrum. Then using results from chapter 
V (Livshits and Yantsevich, 1979) we derive the 
expression: 
 

12
1

( ) ( )l l
l

K t s t sα
∞

=
− = Λ −∑   (8) 

 
where, ( )l tΛ  are special Λ -functions (Livshits and 
Yantsevich, 1979) built only by the operator spectrum 
{ }kλ . For example, if all kλ  are different, then: 
 

,
1

( ) it j
l l j

j
t d e λ∞

=
Λ =∑  

 
If 02 ĝξ = , then we can derive similar expression (8) 

for ( )12K t s−  using formula: 
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( ) 1ˆ( ) * ( )
02 02

1 ˆ * .
2

i t s A i t se e A I d
i

λ

γ

ξ λ ξ λ
π

−
− − − −= − −∫  

The calculation of resolvent for the triangular model 
operator *Â  on 02 ĝξ ≠ is reduced to the solution of 
inhomogeneous difference equation: 
 

k
k 1 k k 1 k

k

y y .+ +
λ − λ

− = γ − γ
λ − λ

 (9) 

 
Where: 
 

( ) 1

02

, ( ) ,

ˆ( ) *

k
k k

k k
k k

k
k

b y f

f A I

λ λγ λ
β β

λ λ ξ
−

−
= =

 = − 
 

 

 
Solving Equation (9) for ( )kf λ , we obtain Equation 10: 

 
1 22

1
11 1 1

1
1

1

( ) ,

2

( ) |

k jk kk
jk k l

k j
jj j ik j k l

f

k
bf

λ λβ λ λλ γ
λ λ λ λ λ λ

λ
λ λ

−− −−
−

+
== = = −

  − −  = +   − − −  
≥

=
−

∑∏ ∏ ∏

 (10) 

 
If ( )02ξ  coincides with channel element g  of the 

operator A , then all ( )1k k kbγ β= = and (10) changes to 
the expression obtained in the reference (Pugachev and 
Sinitsyn, 2001). 

Taking into consideration (10), for ( )k tΛ  we obtain: 
 

1( ) ( )
2 k

it
k t e f d

i
λ

γ

λ λ
π

−Λ = − ∫  

 
Thus: 

 

( )12

1
1 1

1 1 1 1 2 2
2 2 1 2

1 2 1 2

( )

( ) ,it

it

it

t b e

ib ibt e b eλ

λ

λβ β β β λ λ
λ λ λ λ

Λ =

 
Λ = + − ≠ 

− − 

 

 
and, in general, if all { }kλ are different, then: 
 

,
1

( )
k it j

k k j
j

t c e λ

=
Λ =∑  

 
If we use as a model operator the Volterra operator: 

 

0

ˆ ( )
x

Af i f u du= ∫  

 
acting in a space [ ]

2
0,lL , then one can easily obtain the 

following expressions for ( )tϕ  and ( )tψ : 

( )

( )

0

0

l

0
l

0

(t) a (x)J 2 tu du

(t) b(x)J 2 t (l u) du

ϕ =

ψ = −

∫

∫
 

 
where, 0J  is the Bessel function of a zero order. 

Using the universal models of dissipative operators 
(Livshits and Yantsevich, 1979; Zolotarev, 2003), one 
may also consider any case of 2 r≤ < ∞ . 

4. CONCLUSION 

Spectral representation for non stationary curves, 
which are stationary connected, in the case when the 
operator A  satisfies the requirements of completeness, 
i.e., it has full chain of decreasing subspaces 

10H H H= ⊃ ⊃  with 1 1k kH H− Θ = , may be obtained 
using the theory of open systems associated with the 
operator colligations containing the operators A or 

*A (Livshits and Yantsevich, 1979; Zolotarev, 2003). 
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