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Abstract: The commonly observed increased heavy metal tolerance of ectomycorrhized plants is
usually linked with the protective role of the fungal hyphae covering colonized plant root tips. How-
ever, the molecular tolerance mechanisms in heavy metal stressed low-colonized ectormyocrrhizal
plants characterized by an ectomycorrhiza-triggered increases in growth are unknown. Here, we
examined Populus × canescens microcuttings inoculated with the Paxillus involutus isolate, which
triggered an increase in poplar growth despite successful colonization of only 1.9% ± 0.8 of root tips.
The analyzed plants, lacking a mantle—a protective fungal biofilter—were grown for 6 weeks in
agar medium enriched with 0.75 mM Pb(NO3)2. In minimally colonized ‘bare’ roots, the proteome
response to Pb was similar to that in noninoculated plants (e.g., higher abundances of PM- and V-type
H+ ATPases and lower abundance of ribosomal proteins). However, the more intensive activation of
molecular processes leading to Pb sequestration or redirection of the root metabolic flux into amino
acid and Pb chelate (phenolics and citrate) biosynthesis coexisted with lower Pb uptake compared to
that in controls. The molecular Pb response of inoculated roots was more intense and effective than
that of noninoculated roots in poplars.

Keywords: citrate biosynthesis; dilution effect; ectomycorrhiza; heavy metals; proteomic and
metabolomics

1. Introduction

Heavy metals, including lead (Pb), constitute one of the most dangerous environmen-
tal stressors affecting the whole plant physiology. Pb, either directly or via Pb-triggered
oxidative stress, disrupts key plant cell macromolecules, resulting in DNA mutations, lipid
peroxidation or improper protein folding and aggregation [1–4]. As a consequence, Pb
exposure results in leaf chlorosis, decreases in root mass and the inhibition of whole plant
growth [2,5–9].

Plants have developed numerous tolerance mechanisms aimed at decreasing the
negative impact of free Pb2+ ions [10–13]. One of the most important stress-tolerance-
increasing mechanisms is colonization by ectomycorrhizae (ECM), a class of obligate
symbiotic fungi associated with numerous vascular plants [14–19].

The main advantage of this mutual association is increased water and nutrient transfer
into the plant partner in exchange for the transfer of carbohydrates to the fungal part-
ner [20–22]. It is commonly believed that this resource exchange occurs at the root tips,
which are covered and partly penetrated (the epidermis and cortex, which are known as
the Hartig net) during functional ectomycorrhizal symbiosis by the fungal hyphae to create
a new special organ, the colonized root tip [17,18,21,23].
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This additional layer created by the fungal mantle plays a very important role in
the increased tolerance of ECM plants against heavy metals (HMs; [8,14,21,24–29]. ECM
fungi release large amounts of various HM chelating agents, such as low-molecular-weight
organic acids, phenolic compounds or low molecular weight proteins, all of which create a
monolayer around the colonized root to generate the first biofilter that blocks Pb access
into the plant cell (e.g., [10,25,28]). Next, heavy metals are detoxified in fungal cells; the
processes of Pb binding to chitin in the fungal cell wall or sequestration in fungal vacuoles
usually result in significantly decreased Pb in root plant cells [8,14,24–29]. Despite some
exceptions (fungal exudates may decrease the pH in the rhizosphere and increase Pb
availability; [10,29,30]), it is commonly believed that ECM fungi generate an efficient Pb
biofilter [8,11,14,18,24,25,28,31].

However, ectomycorrhizal strains significantly differ in root colonization ratios [18,28],
and the protective effect of ECM in Pb-exposed plants may also be a direct consequence of
the increased plant growth triggered by the symbiotic fungi. Usually, improved nutrition
and water access results in improved CO2 assimilation and antioxidative and carbohydrate
status, which directly increases host resistance to impending HM stress [8,28,29,32–35].
Moreover, symbiotic partners influence the molecular activity of plant hosts by modifying
the activity of genes involved in defense, energy metabolism, and cell wall biosynthesis,
which altogether increases HM tolerance of ectomycorrhizal (M) plants [8,29,35]. These
factors may increase HM tolerance regardless of root colonization ratio, but there is no
molecular data available on the heavy metal stress response of plants devoid of a protective
fungal biofilter (mantles).

All these improvements also, in most cases, increase the biomass of mycorrhized
plants, which generates an additional effect: HM particles are dispersed within the in-
creased root cell volume of M plants. It has been reported that high HM influx may be
less harmful in bigger M plants [29,36]. Because ectomycorrhizal fungi may promote plant
host growth independently of the degree of root colonization ([37,38], Szuba, unpublished
data), ECM-triggered increases in plant mass volume may play an important role in the
increased HM tolerance of M plants [36].

Nevertheless, the molecular adjustments in Pb-treated plants triggered by inoculation
with ectomycorrhizal fungi remain largely unknown. Our goal was to highlight these
unknown mechanisms, especially the very poorly recognized role of the effect of heavy
metal dilution on the increased plant mass volume of M plants.

In most cases, M roots are covered by the fungal mantle and the protective effects of
ECM during HM stress were analyzed previously almost exclusively in plants colonized
by ECM fungi, which therefore had a protective fungal biofilter [14–19]. Furthermore,
ECM usually results in increases in plant host biomass; thus, distinguishing between the
protective effects of ECM caused by the fungal biofilter and the exclusive effects of the
increased growth in inoculated, HM-stressed plants is a challenging task.

We hypothesized that, in M plants colonized with a low colonization ratio mycorrhiza,
roots would be directly exposed to Pb but simultaneously affected at the molecular level
by the presence of the fungal partner (in the form of the external mycelium). Consequently,
in such ‘bare’ or minimally colonized M roots, the Pb response will be significantly dif-
ferent than that in non-inoculated (NM) plants. The interesting and open question is
whether the molecular response to Pb exposure will be enhanced e.g., due to intensified Pb
detoxification/exclusion triggered by the presence of the fungal partner.

In our study, we analyzed Populus × canescens inoculated with a Paxillus involutus
isolate, which significantly improved plant host growth regardless of the low root coloniza-
tion ratio (Szuba, unpublished data). Such a combination provides a unique opportunity to
analyze the molecular responses of ectomycorrhizal plants to HM stress influenced by the
ECM-triggered increase in biomass but not by the presence of biofilters created by fungal
hyphae.
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In the present experiment, a high-throughput gel-free proteomic tool (combined with a
metabolomic approach) was used to examine the unknown molecular responses of poplars
minimally colonized with ectomycorrhizal fungi to Pb exposure.

2. Results
2.1. Poplar Biometrics and Root Colonization Ratio

After six weeks of plant growth (Figure 1a–c), Pb-exposed plants inoculated with Pax-
illus involutus (M-Pb) were characterized by larger mass (Figure 1d) and height (Figure 1e)
compared to NM-Control and NM-Pb poplars (Figure 1a–e).
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Figure 1. Biometrics and growth medium acidity. Representative images of NM-Control (a), NM-Pb
(b) and M-Pb (c) poplar microcuttings. Fresh masses of leaves, stems, roots and whole plant mass
presented for all treatments (d); (n = 16). Height of analyzed poplars (e); (n = 16). Acidity of the agar
growth medium collected after six weeks of poplar growth (f); (n = 4). The mean values ± SE are
presented. Different letters represent significant differences according to the HSD post hoc test.

The acidity of the agar growth medium significantly differed between all treatments
and was lower for the Pb treatments, with a dramatic decrease for the M-Pb treatment
(Figure 1f).

The highest Pb levels were found in roots compared to those in aboveground poplar
tissues independently of root colonization (Figure 2a,b). In addition, Pb concentrations
(µg DWg−1; Figure 2a) and contents (mg per plant; Figure 2b) in roots and stems (stem
content was insignificant) were lower in M-Pb poplars than in NM-Pb poplars. In contrast,
in leaves of M-Pb poplars, Pb was found at higher concentrations and with higher contents
compared to that in leaves of NM-Pb poplars (Figure 2a,b). This increase resulted in a
higher translocation factor in M-Pb poplars (compared to that in NM-Pb poplars; Figure 2c)
but had no impact on the whole poplar Pb content, which was lower in M-Pb poplars
(Figure 2b).
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Paxillus involutus grew well on the agar surface (Figure S1), but the root colonization
ratio was very low. The mycorrhized root tips were about 11% of the total (1.9% ± 0.8
of root tips were fully colonized, and 9.6% ± 2.4 of root tips were covered by fungi but
lacked a fully developed Hartig net (changed root tips; [18]), and the phenotype of most
M-Pb roots did not differ from that of NM roots, except that the M-Pb roots were larger
(Figure 1a–c, Figure S1). The relative abundance of ergosterol (indicator of the fungal
biomass not detected in stems and leaves nor in the NM roots; data not shown) in the M-Pb
treatment group, which was estimated on the basis of comparison with P. involutus hyphae
(established as 100%), was 0.8% ± 0.8 of the root biomass. The root samples consisted of
more than 99% plant tissue.

2.2. Root Proteome

First, the root protein abundances detected in NM-Pb poplars were compared to
those in the NM-Control treatment group to evaluate the ‘basic’ effect of Pb on the root
proteome. Our main goal was to highlight the molecular differences between noninoculated
and inoculated plants exposed to Pb2+ ions. For this reason, we performed proteome
comparisons of M-Pb plants with two plant groups: NM-Controls and NM-Pb poplars.

2.2.1. NM-Pb vs. NM-Control

In noninoculated poplars grown for 6 weeks in agar medium enriched with 0.75 mM
Pb(NO3)2, 87 proteins were differentially abundant (compared to NM-Controls; Table S1).
In NM-Pb plants, we found a few proteins associated with stress responses, including
an increased abundance of alcohol dehydrogenases (Figure 3a and Table S1; [39]). More
proteins involved in carbohydrate metabolism were also found in the NM-Pb than in
the NM-Control plants (Table S1). PM- and V-type ATPases, which are involved in the
generation of the H+ gradient necessary for membrane transport of numerous compounds
and ions, including Pb2+ (classified into the ‘energy production and conversion’ Clusters of
Orthologous Groups (COG)), were repeatedly identified as being more abundant in NM-Pb
roots (Figure 3a and Table S1), but 14-3-3 proteins were less abundant (Table S1). Enzymes
involved in protein turnover, especially protein biosynthesis, as well as photosynthetic
proteins (Table S1), were less abundant in NM roots exposed to Pb (Figure 3a and Table S1).
Actin was less abundant, whereas tubulin was more abundant in NM-Pb roots than in
NM-Controls (Figure 3a and Table S1).
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Figure 3. Protein classification according to COG (Clusters of Orthologous Groups) classes. Differen-
tially abundant proteins detected in three independent two-sample T tests, NM-Control vs. NM-Pb
(a), NM-Control vs. M-Pb (b) and NM-Pb vs. M-Pb (c), were divided into the COG classes according
to the proteins that were more abundant in a particular treatment group. The following color codes
were used for all classes: green columns, more abundant in NM-Control roots; red columns, more
abundant in M-Pb roots; blue column, more abundant in M-Pb roots. The total number of upregulated
proteins in a given treatment group and COG class (x-axis) are given.

2.2.2. M-Pb vs. NM-Control: Pb Molecular Sensitivity in M-Pb Roots

The number of differentially abundant proteins between NM-Controls and M-Pb
plants was only slightly higher than that observed during the NM-Control vs. NM-Pb
comparison (89; see Figure 3b and Table S1), and numerous COG were affected similarly in
both Pb treatment groups compared to NM-Control plants. For example, proteins involved
in ‘carbohydrate transport and metabolism (including glycolytic enzymes; Table S1)’ or
‘energy production and conversion’ were more abundant (Figure 3a vs. Figure 3b), whereas
photosynthetic proteins were less abundant in Pb-treated plants independent of P. involutus
inoculation (compared to Controls; Table S1). Similar to NM-Pb, HSP80 and HSP90 were
more abundant in M-Pb roots, but we also detected a higher abundance of proteins related
to biotic stress (wound-induced protein and endochitinase; Table S1). HSP70s were more
numerous in NM-Control roots (compared to both Pb treatment groups; Table S1). Proteins
involved in protein turnover were less abundant in M-Pb poplars (similar to the NM-Pb to
NM-Control comparison), but those changes were not as clear as in those in noninoculated
plants (Figure 3); several proteins involved in protein biosynthesis and degradation were
also more abundant in M-Pb plants (compared to those in NM-Controls; Table S1).

ATP synthases were found to be less abundant in M-Pb roots than in NM-Controls
(Table S1). The influence of Pb on H+ ATPases was more intense in M poplars than in
NM plants; all detected membrane pumps (both PM- and V-type H+ ATPases) were more
abundant in M-Pb roots (Figure 3b; Table S1).

Some signals of increased lipid metabolism were also found in all Pb-treated plants
(Figure 3), including a higher abundance of phospholipase D (Table S1). Aspartate amino-
transferase (enzyme involved in glutamate/aspartate metabolism) was more abundant,
whereas glutamine synthetase (which catalyzes glutamine/glutamate transformation) was
less abundant in M-Pb roots (Table S1). Finally, proteomic signals of decreased lignin
biosynthesis were found in M-Pb plants (Table S1).

2.2.3. M-Pb vs. NM-Pb: Effect of Inoculation and Increased Biomass of M-Pb Plants

The comparison of the two Pb-exposed treatment groups revealed distinct differences
in the root molecular status between NM- and M-Pb-stressed poplars due to the effects of
fungal inoculation and the ECM-triggered biomass increase. Proteins that differed in abun-
dance between M-Pb an NM-Pb treatments were more numerous (107), and the differences
between the compared proteomes were different than those found when comparing the
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Control and Pb treatments (Figure 3c and Table S1). In M-Pb plants, signals of increased pro-
tein turnover, especially increases in ribosomal proteins, were found (Figure 3c, Table S1),
but HSP70 chaperones were less abundant in inoculated poplars exposed to Pb (Table S1).
Generally, stress-related proteins were more frequently detected as differentially abundant
in this comparison (Table S1), but no clear trends were observed (e.g., wound-induced
proteins were more abundant, but osmotic-like proteins were less abundant in M-Pb roots),
except for redox-related proteins, which were less abundant in M-Pb roots (compared to
the NM-Pb treatment group; Table S1). In M-Pb plants, PAL was less abundant as well
as enzymes involved in lignin biosynthesis (Table S1). In M-Pb roots, glycolytic proteins
were more abundant than in the NM-Pb treatment group, but enzymes involved in further
energy production and conversion were less abundant in inoculated plants exposed to
Pb (Figure 3c). In the M-Pb roots, aspartate aminotransferase was more abundant and
glutamine synthetase was less abundant than in the NM-Pb roots, similar to that observed
in the NM-Controls (Table S1). Finally, phospholipase D was more abundant and tubulin
was less abundant in M-Pb plants (Figure 3c and Table S1).

2.2.4. Proteins Detected as Variable in All Three Proteomic Comparisons

In the present study, 21 proteins were identified as differentially abundant in all three
proteomic comparisons (Figure 4), which corresponds to 20–25% of the affected proteins.
These varyingly abundant proteins could be divided into three subgroups based on their
abundances in the NM-Control→NM-Pb→M-Pb series. Among the proteins characterized
by decreased abundance in the presence of Pb, especially in M-Pb roots, we detected
enzymes involved in photosynthesis, lignin biosynthesis and a previously identified 2,3-
bisphosphoglycerate-independent phosphoglycerate mutase, which is a late glycolytic
enzyme (Figure 4). The most numerous proteins were those with increased abundance
in NM-Control→NM-Pb→M-Pb series. Among these proteins were enzymes involved
in lipid metabolism, cytoplasmic malate dehydrogenase, alcohol dehydrogenase and PM-
and V-type membrane ATPases (Figure 4).
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Figure 4. Common root proteins. The heat map analysis combined with hierarchical cluster analysis
showing the ion intensities of proteins identified as differentially abundant according to all three
two-sample test T tests: NM-Control vs. NM-Pb, NM-Control vs. M-Pb and NM-Pb vs. M-Pb. Green,
minimal abundance; red, maximal abundance. Ion intensities were log2-transformed, batch-corrected
and Z-scored for each row. Three protein clusters are clearly visible: proteins with decreased
abundance in the series NM-Control→NM-Pb→M-Pb, proteins with similar abundance in NM-
Control and M-Pb roots but with decreased abundant in NM-Pb poplars (so-called ‘restored’ proteins)
and proteins with increased abundance in the series NM-Control→NM-Pb→M-Pb.
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Four proteins with significantly varying abundances in all three comparisons were
decreased in NM-Pb roots, but, in M-Pb plants, their abundances were similar to those
in NM-Controls (so-called ‘restored proteins’, Figure 4). These proteins included a serine
hydroxymethyltransferase that catalyzes the interconversion of serine and glycine and
proteins involved in ribosome functioning (Figure 4).

2.3. Metabolome Adjustments (GC MS/MS Study)

The nontargeted GC MS/MS study aimed to analyze amino acids, carbohydrates,
organic acids and other primary metabolites, but other compounds, including lipidic or
phenolic compounds, were also identified (Figure 5). Among the 280 detected compounds,
there were no differently abundant compounds between the NM-Control vs. NM-Pb
treatment groups, 73 (26 identified and 47 unknown compounds) differently abundant
compounds between the NM-Control vs. M-Pb treatment groups and 39 (including 14
identified) between the NM-Pb vs. M-Pb groups (Table S2). According to the hierarchical
analysis of compounds selected on the basis of the multisample ANOVA, the major factor
influencing the analyzed metabolome was inoculation with P. involutus rather than exposure
to Pb (data for the identified compounds are presented in Figure 5). The numerous
differently abundant carbohydrates were less abundant in M-Pb roots compared to NM-
Control roots (and also to NM-Pb roots, for the majority; Figure 5). In M-Pb plants, pyruvic
acid, the end product of glycolysis, and glycolic and glyceric acid were less abundant
(compared to both NM treatment groups). Citric acid was more abundant in Pb-treated
roots (significant only in M-Pb roots; Figure 5) along with the massive upregulation of
citrate synthase (Table S1). Flavonoids and amino acids were generally more abundant in
M-Pb plants than in both NM treatment groups, especially when compared to the levels in
NM-Controls (Figure 5).
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3. Discussion
3.1. Molecular Response to Pb Exposure in NM and M Poplar Roots—Similarities

In roots inoculated with P. involutus characterized by a very low colonization ratio,
most of the root surface was not covered with fungal hyphae and thus was deprived
of fungal biofilters influencing the plant cell response to heavy metal stress [8,14,24–29].
For this reason, when the differences between the control and Pb-exposed poplar roots
were analyzed, the molecular adjustments were, in many aspects, very similar in the
noninoculated and inoculated plants (for the plant molecular adjustments caused by the
analyzed P. involutus strain under control conditions see [40]).
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In NM-Pb and M-Pb roots, increased abundances of PM- and V-type H+ ATPases
were observed. H+ ATPases play key roles in heavy metal tolerance [12,19,41–44] because
the proton gradient is necessary for the transport of organic compounds needed for Pb
sequestration in the rhizosphere as well as for Pb plasma membrane and tonoplast transport
and sequestration in vacuoles [3,44]. These mechanisms seem to be efficient in all Pb-
exposed poplars since we did not observe numerous proteomic signals of stress responses,
including HSP overexpression or anti-free-radical activity, which are some of the most
frequently observed proteomic responses to heavy metal stress [6,45–51]. The relatively
low mobilization of anti-free-radical enzymes suggests the presence of low free radical
concentrations in Pb-exposed roots.

Interestingly, in both NM-Pb and M-Pb roots, decreased abundances of proteins
involved in ribosome activity were observed, indicating decreased protein biosynthesis [6,
46]. Protein biosynthesis may be disrupted by strong Pb-induced stress [5]. However, in
the present study, no significant negative phenotypic changes were observed due to Pb; no
decreased growth, mass or leaf chlorosis was observed [7,52]. The poplar microcuttings
were exposed to mild Pb-induced stress (most probably Pb2+ ions were precipitated in
the MS medium rich in phosphates and sulfates; [18,29]). In the present experiment,
decreased protein turnover was rather related to the low Pb dose, and most importantly
to the chronic nature of Pb exposure. To reduce energy-consuming processes such as
protein biosynthesis [3,47,53] only proteins necessary to provide metabolome stability are
upregulated. Decreased or unchanged protein turnover was previously observed in plants
exposed to prolonged stress [49,54,55]. Decreased protein biosynthesis may be indirectly
confirmed by a decrease in HSP70 abundance. HSP chaperones are frequently upregulated
under stress conditions [3,45,54] but are necessary mainly for protein maturation (also
under physiological conditions; [45]). Such a decrease in HSP70 suggests a decreased
number of biosynthesized and damaged proteins, which may be linked with low ROS
levels in Pb-treated poplar roots, as suggested by our proteomic results.

In contrast, we detected more abundant HSP80 and HSP90. These chaperones are
rather linked with stress adaptation and reducing negative effects of environmental per-
turbations than with the acute HM stress response [45,55,56]. The decrease in protein
turnover was less obvious in M-Pb plants because in inoculated plants, the effect of the
plant response to chronic Pb exposure coexisted with the continuous influence on the plant
proteome (plant metabolism) of the presence of the symbiotic partner [57–61].

3.2. Paxillus involutus—What Difference Does Inoculation by ‘Low-Colonizer’ Make in the Plant
Pb Response?

Despite many similarities, as hypothesized, the Pb response differed between noinoc-
ulated and inoculated poplars, involving a direct influence by fungal inoculation and
endochitinase induction.

Most importantly, in M-Pb roots, we observed the increased abundances of glycolytic
and TCA cycle enzymes (Figure 6), although proteomic signals of mitochondrial electron
transport chain activation were not detected (Table S1). The source of the glycolytic
intermediates also remained unknown. The source may be carbohydrates present in the
growth medium preferentially taken up by M-Pb plants [61] rather than C-compounds
provided by leaves, as suggested by the symptoms of reduced photosynthesis: lower levels
of Mg, leaf pigments and N observed in M-Pb leaves (Figure S2; [62]). The main mobile
carbohydrate transferred from leaves to sink organs, sucrose [63], was not increased in
M-Pb poplar roots compared to that in all noninoculated poplars (data not shown), which
was similar to that observed for the levels of glucose and fructose (Figure 6). Nevertheless,
we detected clear OMIC signals of the redirection of metabolome flux into the glycolysis-
mediated biosynthesis of phenolic compounds, amino acids and citrate (Figure 6).
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Figure 6. Primary metabolic alterations under Pb exposure. The color code (green: increased in
NM-Control roots; red: increased in M-Pb roots; blue: increased in M-Pb roots; white: nonsignificant
change or not detected) is used to represent changes in the abundances of the identified enzymes
(involved mainly in glycolysis and TCA) and selected metabolites according to three independent T
tests: NM-Control vs. NM-Pb (1), NM-Control vs. M-Pb (2) and NM-Pb vs. M-Pb (3; square boxes
from left to right). The most important changes are marked with a larger font.

Both phenolic compounds (known antioxidants; [64]) and amino acids increase the
overall fitness of M-Pb poplars [65,66] and may bind Pb2+ ions [5,64], which would reduce
the harmful concentration of free Pb ions in the plant cytosol [3,6,67].

However, the most important factor in the context of the Pb response seems to be
the role of intensified citrate biosynthesis (Figure 6). Citrate is one of the most important
low-molecular-weight organic acids known to play a vital role in chelating heavy metals
in the rhizosphere, especially in ectomycorrhized plants [27,29,68]. Citrate secretion is
usually linked with the increased activity of PM H+ ATPases [8,29,36,44,68], which are also
upregulated in M-Pb plants (compared to both NM treatments). It was previously shown
that ectomycorrhizal fungi under heavy metal stress may trigger the increased expression
of various plant host genes, including H+ ATPases [29,36]. However, in the majority of
reports, such increased low-molecular-weight organic acids and H+ ATPase abundances
resulted in a decrease in the growth medium pH [10,29,36,69]. An increase in the acidity of
the growth medium would increase Pb bioavailability, and indeed, increased HM uptake
was frequently observed in ectomycorrhizal plants [8,19,29,36,70]. Surprisingly, in poplars
with low levels of colonization, we observed a significantly increased agar pH. This effect
was probably responsible for the lower Pb levels detected in M-Pb roots (above pH ~5.5,
Pb bioavailability rapidly decreases; [71]), but this raises the question of the origin of the
decrease in pH. The decreased acidity of the agar-grown medium could theoretically be
caused by polyamines. Polyamines, which have been reported to be released by P. involutus
hyphae in large amounts [72], are known regulators of plant growth. These basic molecules
promote plant root growth regardless of ectomycorrhizal root colonization [38,73], exactly
as observed in our study.

H+ ATPase activity generates a proton gradient throughout the plasma membrane [19,44].
The resulting ‘apoplastic protons’ may be theoretically used for H+/Pi symport [74]. Such
a hypothesis would explain increased P level in M leaves. Protons could also be ‘con-
sumed’ by the H+/citrate cotransport systems (e.g., the H+-ATPase-coupled MATE co-
transport system, suggested to be a H+/citrate antiport; [44,69]). The resulting proton
influx along with the citrate outflow [44,75] would partly explain the increase in agar pH
in Pb-exposed roots [69]. Such theoretical citrate efflux and further chelation of Pb in the
rhizosphere [27,29,68] could also contribute to, as observed in our study, the decreased Pb
recruitment in M-Pb roots compared to that in NM-Pb roots.
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There is, however, also a possibility that, due to an increase in Pb2+ absorption and the
toxicity threshold in hyphae compared to that in plant cells [76], Pb could have been taken
up by a vast external P. involutus mycelium (Figure S1). It could also be speculated that the
pool of bioavailable Pb in the M-Pb treatment group was further decreased by other Pb-
chelating compounds known to be excluded by ECM plants (and the P. involutus hyphae
itself), such as soluble proteins, metallothionines, or phenolic compounds [8,25,76–78].
Moreover, the dark pigmentation of the growth medium observed in the M-Pb treat-
ment group (Figure S1) may suggest the transformation of the secreted phenolics into
melanins [18,77] which are also known Pb chelators [79]. All these mechanisms were
probably responsible for the decreased Pb levels detected in M-Pb plants.

In our study, Pb accumulation was detected, as commonly reported, mainly in roots
because Pb is blocked by the endodermis by Casparian strips and must follow the symplas-
tic route before Pb is translocated to leaves via vascular flow [5,80–82]. This known and
very strong translocation restriction phenomenon was not disrupted in inoculated poplar
roots. However, some differences in Pb flux were probably present in the aboveground part
of M-Pb [5,29,75] as we found more Pb in M leaves despite the lowered Pb level in M roots
and stems (and overall lower Pb content in M-Pb plants compared with NM-Pb). Unfortu-
nately, the transport of Pb from roots into the aboveground parts of plants is still poorly
understood. It is known, however, that Pb may compete with Ca for binding to divalent ion
transporters [12,28], and foliar Ca was slightly decreased in M-Pb plants compared with
NM-Pb (Figure S1), which could suggest cation competition plays some role in regulating
foliar Pb levels. Moreover, the important role that the apoplastic/symplastic barrier plays
in transporting Pb into the root xylem and further root-to-shoot translocation involves
various PM ATPases [75]. In roots, we detected the increased abundance of various PM-
and V-type H+ ATPases; thus, there is a high probability that other ATPases were also
upregulated in M-Pb leaves [75].

4. Conclusions

In minimally colonized M-Pb poplars, we generally detected less Pb (which was
more dispersed in the increased mass volume of inoculated plants), which suggests that
inoculation with ectomycorrhizal fungi is beneficial for HM-stressed plants despite the
low root colonization ratio [29,34–36]. Nevertheless, the decreased Pb uptake observed
in bigger M-Pb plants coexisted with the intensive activation of molecular processes
involved in Pb sequestration [83] or the redirection of the root metabolic flux into an
increase in the production of Pb chelates such as citrate [44]. In this context, in inoculated
but minimally colonized roots, the plant cell molecular response was more intense than
that in noninoculated plants (and the opposite of that in massively colonized plants,
where the fungal biofilter resulted in reduced proteome responses in plant host cells
exposed to Pb; [53]) but more efficient than that in noncolonized plants. Inoculation
with ectomycorrhizal fungi increases the host plant’s heavy metal tolerance (mainly via
activation of molecular pathways associated with reducing Pb bioavailability/toxicity)
regardless of low root colonization ratio.

5. Materials and Methods
5.1. Poplar Trees and Fungal Cultures

In our experiment, we compared three variants: nonmycorrhized (NM) plants grown
in control conditions (NM-Control), nonmycorrhized plants exposed to Pb (NM-Pb) and
inoculated poplars exposed to Pb (M-Pb).

Populus × canescens microcuttings were cultivated in vitro in agar (0.8%) containing
full-strength Murashige and Skoog medium (MS) supplemented with 1.5% sucrose covered
with 3 mm of modified Melin–Norkrans medium (MNM) containing 1% glucose and 0.5%
maltose. For the NM-Pb and M-Pb treatments, the agar medium was supplemented with
0.75 mM Pb(NO3)2. For the control treatment, nitrogen was compensated for with 0.75 mM
NH4NO3. The final pH was adjusted to 5.5.
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In the present study, we used Paxillus involutus, which increased in vitro poplar micro-
cutting growth despite the low colonization ratio (Szuba, unpublished results). Fragments
of barcoded (data not shown) P. involutus mycelium were placed near the freshly transferred
poplar microcuttings growing in the two-layer agar medium.

Poplar cultures were grown in a growth chamber at 21 ◦C in 60% relative humidity with
a 16 h/8 h day/night photoperiod using cool white fluorescent light (150 µmol m−2 s−1).
Additionally, for the metabolomic study, pure cultures of P. involutus were cultivated in
darkness in MNM medium on Petri dishes [18].

5.2. Harvesting and Biometrical, Biochemical and Root Colonization Analyses

Six weeks after inoculation, the leaves, stems and roots were weighed. Pooled samples
of roots and agar medium as well as P. involutus hyphae (from the pure culture) were
immediately frozen in liquid nitrogen and stored at –80 ◦C until analysis.

For the M-Pb treatment, the root colonization level was assessed. The root tip morpho-
type percentage was determined using ImageJ 1.48 v Software (Wayne Rasband, Bethesda,
MD, USA) from high-resolution images captured during harvest. Categorization was
performed on the basis of the anatomical structure of representative root tip morphotypes
(selected during harvest and immediately analyzed under a microscope exactly according
to [18]). Root tips were divided into three categories established during our previous
study [18,61]: ‘nonmycorrhized’ root tips and two stages of root tip colonization, ‘changed’
root tips (root tips devoid of root hairs and covered with fungi—such root tips do not have
the fully developed Hartig net) and ‘fully mycorrhized’ root tips (swollen, shortened root
tips with a very well-developed mantle —such phenotypes have a well-developed mantle
and Hartig net).

Pooled dried leaf (50 µg; we also analyzed the foliar P level; see Figure S1), stem and
root (10 µg) samples were used to measure the Pb level in terms of both the concentration
(µg DWg−1) and content (mg per plant). The Pb translocation factor was calculated
according to formula: Sum of Pb contents in stem and leaves (per plant)

Root Pb content (per plant) . Mineral analyses were
completed with six replicates using an inductively coupled plasma time-of-flight mass
spectrometer (GBC Scientific Equipment, Hampshire, Braeside, Australia) as described in
Szuba et al. [18].

Agar medium was agitated for 10 min at 4◦ C and then filtered through Miracloth
(Millipore). The obtained supernatants were analyzed with an Elmetron CX-551 pH meter
(n = 4).

5.3. Molecular Analyses

Concerning all molecular analyses, whole root systems were used for extractions. The
proteome study was supplemented with metabolomic analysis to detect the final level of
the compounds of interest. For molecular adjustments between NM-Control and M-control,
see Szuba et al. [40].

5.3.1. Proteome Analysis

Root proteins were isolated from 100 mg of pooled root sample according to the
modified phenol extraction method described in Szuba et al. [61]. A minimum of five
replicates were performed per treatment. The proteins were resuspended in buffer (4 M
urea and 50 mM ammonium carbonate), and their concentrations were estimated using a
2-D Quant Kit according to the manufacturer’s procedure (GE Healthcare LS). Root protein
extracts (10 µg of protein) were digested in solution using a standard method, and the
obtained peptide solutions were used for each run (directly injected onto the LC column).
Five biological repetitions per treatment were analyzed.

Peptide solutions were desalted and concentrated (using an RP C18 1 cm precolumn;
Thermo Fisher Scientific, Waltham, MA, USA) prior to separation using a Dionex UltiMate
3000 RSLCnano System equipped with a 75 µm i.d. 25 cm RP C18 Acclaim PepMap column
with a particle size of 2 µm and a pore size of 100 Å (Thermo Fisher Scientific). The Pierce
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LTQ ESI Positive Ion Calibration Solution (Thermo Fisher Scientific.) was used for system
calibration. The following LC buffers were used: buffer A (0.1% (v/v) formic acid in Milli-Q
water) and buffer B (0.1% formic acid in 90% acetonitrile). The peptides were eluted from
the column with a constant flow rate of 300 nL min−1 and a linear gradient of buffer B
from 5% to 65% over 185 min. The eluted peptides were analyzed using the Q-Exactive
Orbitrap mass spectrometer (Thermo Fisher Scientific) operated in the data-dependent
MS/MS mode. The instrument was operated with the following settings. The resolution
was set to 70,000 for MS scans and 17,500 for MS/MS scans to increase the acquisition rate.
The mass spectra were acquired in the range from 300 to 2000 m/z. The MS AGC target
was set to 1 × 106 counts, whereas the MS/MS AGC target was set to 5 × 104. Dynamic
exclusion was set with a duration of 20 s. The isolation window was set to 2 m/z. Protein
identification and label-free data normalization were performed using MaxQuant 1.5.3.30
(Max Planck, Munich, Germany) prior to quantitation. The mass spectra were compared
against the SwissProt database using the Viridiplantae taxonomy filter. The data were then
evaluated, and the statistics were calculated using Perseus software (version 1.4.1.3, Max
Planck Institute of Biochemistry, Martinsried, Germany). The normalized data were filtered
for reverse identifications (decoy analysis), contaminants, and proteins identified only by
sites. The LFQ intensities were transformed to log values and filtered for blanks in samples.
Then, missing values were replaced with values calculated from a normal distribution
(imputation). The obtained matrix was then used for statistical calculation (see below).

The identified proteins were classified according to COG (Clusters of Orthologous
Groups of proteins) classes using the EggNOG database (http://eggnogdb.embl.de/#/
app/home (accessed on 20 August 2019)). Additionally, the subcellular localization was
predicted using UniProt [www.UniProt.org (accessed on 10 October 2019)] and TargetP
1.1 [http://www.cbs.dtu.dk/services/TargetP/ (accessed on 10 October 2019)] databases.
Raw proteomic data has been deposited in the PRIDE/ProteomeXchnge with the project
accession number PXD020049.

5.3.2. Metabolomics Analysis (GC MS/MS)

The root metabolites for GC MS/MS were isolated from 5 mg of root and P. involutus
mycelium by methanol extraction and were further derivatized in a standard manner with
N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) exactly according to Swarcewicz
et al. [84]. The extracts were analyzed using a Pegasus 4D GCxGC-TOFMS system (Leco)
equipped with a DB-5 ms bonded-phase fused-silica capillary column (30 m length, 0.25
mm inner diameter, 0.25 µm film thickness) (J&W Scientific Co., Folsom, CA, USA). Three
biological repetitions per treatment were analyzed.

The mixture components were separated on a GC column using the following tem-
perature gradient: 2 min at 70 ◦C and then 10 ◦C/min to 300 ◦C with a hold for 10 min at
300 ◦C (36 min in total). As a carrier gas, helium was used at a flow rate of 1 mL/min. One
microliter of each sample was injected in splitless mode. For sample introduction, a PTV
injector was used starting at 40 ◦C for 0.1 min, and after that, the temperature was raised at
6 ◦C/s to 350 ◦C. The transfer line and ion source temperatures were maintained at 250 ◦C.
EI ionization was performed with 70 eV energy. Mass spectra were recorded in the mass
range of 50–850 m/z.

LECO ChromaTOF software was used for data acquisition, automatic peak detection,
mass spectrum deconvolution, retention index calculation and NIST library searches. Re-
tention indexes (RI) for each compound were calculated based on the alkane series mixture
(C-10 to C-36) analysis. Metabolites were identified by library searches (NIST and Fiehn
libraries); the analyte was considered identified when the quality threshold was passed, i.e.,
at a similarity index (SI) above 700 and a matching retention index ± 10. Artifacts (alkanes,
column bleed, plasticizers, MSTFA and reagents) were identified analogously and then
excluded from further analyses. The obtained data were normalized against the sum of
the chromatographic peak areas (using the TIC approach), and the resulting tables were
transferred into Perseus software (Max Planck). The ion intensities were transformed to

http://eggnogdb.embl.de/#/app/home
http://eggnogdb.embl.de/#/app/home
www.UniProt.org
http://www.cbs.dtu.dk/services/TargetP/
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log values and filtered for blanks in samples. The missing values in the Perseus data table
were replaced (by constant value (0) imputation), and such prepared matrixes were used
for the statistical calculations (see below). Metabolomic raw data have been deposited to
the European Centre for Bioinformatics and Genomics (Poznan, Poland) Bioserver.

5.4. Statistical and Bioinformatics Analyses

Statistical analyses of the biometric features of poplars and Pb levels (as well as leaf
pigments and foliar mineral composition; see Figure S1) were performed using JMP Pro
13.0.0 software (SAS Institute Inc.). Values were considered significant according to T tests
or ANOVA/post hoc HSD tests (α = 0.05).

Statistical calculations for the molecular data (proteomic and metabolomic analyses)
were performed in Perseus software. The log values (for information on data matrix
preparation, see above) were analyzed using two-sample T tests and/or multisample
ANOVA (α = 0.05; FDR = 0.05). Only the significantly differentially abundant compounds
were subjected to a hierarchical analysis. For clustering analysis, data were normalized
using the Z-score algorithm.

Supplementary Materials: Supplementary Materials are available online at https://www.mdpi.
com/article/10.3390/ijms22094300/s1.
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