Aggelos KatsaggelosNorthwestern University | NU · Department of Electrical Engineering and Computer Science
Aggelos Katsaggelos
Doctor of Philosophy
About
1,077
Publications
166,815
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
30,058
Citations
Publications
Publications (1,077)
ackground: Heart failure (HF), a global health challenge, requires innovative diagnostic and management approaches. The rapid evolution of deep learning (DL) in healthcare necessitates a comprehensive review to
evaluate these developments and their potential to enhance HF evaluation, aligning clinical practices with
technological advancements.
Obje...
The relationship of human brain structure to cognitive function is complex, and how this relationship differs between childhood and adulthood is poorly understood. One strong hypothesis suggests the cognitive function of Fluid Intelligence (Gf) is dependent on prefrontal cortex and parietal cortex. In this work, we developed a novel graph convoluti...
The Tauc–Lorentz–Urbach (TLU) dispersion model allows us to build a dielectric function from only a few parameters. However, this dielectric function is non-analytic and presents some mathematical drawbacks. As a consequence of this issue, the model becomes inaccurate. In the present work, we will adopt a procedure to conveniently transform the TLU...
Binary stars undergo a variety of interactions and evolutionary phases, critical for predicting and explaining observations. Binary population synthesis with full simulation of stellar structure and evolution is computationally expensive, requiring a large number of mass-transfer sequences. The recently developed binary population synthesis code PO...
Tactile sensing is essential for a variety of daily tasks. New advances in event-driven tactile sensors and Spiking Neural Networks (SNNs) spur the research in related fields. However, SNN-enabled event-driven tactile learning is still in its infancy due to the limited representation abilities of existing spiking neurons and high spatio-temporal co...
X-ray fluorescence (XRF) analysis of art objects has rapidly gained popularity since the late 2000s due to its increased accessibility to scientists. This introduced an imaging component whereby the XRF image volume provides clues as to which chemical elements are present and where they are located spatially in the object. However, as is the nature...
X-ray fluorescence (XRF) spectroscopy is a common technique in the field of heritage science. However, data processing and data interpretation remain a challenge as they are time consuming and often require a priori knowledge of the composition of the materials present in the analyzed objects. For this reason, we developed an open-source, unsupervi...
Ptychography is a well-studied phase imaging method that makes non-invasive imaging possible at a nanometer scale. It has developed into a mainstream technique with various applications across a range of areas such as material science or the defense industry. One major drawback of ptychography is the long data acquisition time due to the high overl...
X-ray fluorescence spectroscopy (XRF) plays an important role for elemental analysis in a wide range of scientific fields, especially in cultural heritage. XRF imaging, which uses a raster scan to acquire spectra across artworks, provides the opportunity for spatial analysis of pigment distributions based on their elemental composition. However, co...
The sense of touch is essential for a variety of daily tasks. New advances in event-based tactile sensors and Spiking Neural Networks (SNNs) spur the research in event-driven tactile learning. However, SNN-enabled event-driven tactile learning is still in its infancy due to the limited representative abilities of existing spiking neurons and high s...
Lack of explainability in artificial intelligence, specifically deep neural networks, remains a bottleneck for implementing models in practice. Popular techniques such as Gradient-weighted Class Activation Mapping (Grad-CAM) provide a coarse map of salient features in an image, which rarely tells the whole story of what a convolutional neural netwo...
Macro x-ray fluorescence (XRF) imaging of cultural heritage objects, while a popular non-invasive technique for providing elemental distribution maps, is a slow acquisition process in acquiring high signal-to-noise ratio XRF volumes. Typically on the order of tenths of a second per pixel, a raster scanning probe counts the number of photons at diff...
The papers in this special section focus on deep learning for high-dimensional sensing. People live in a high-dimensional world and sensing is the first step to perceive and understand the environment for both human beings and machines. Therefore, high-dimensional sensing (HDS) plays a pivotal role in many fields such as robotics, signal processing...
In this paper, leveraging the capabilities of neural networks for modeling the non-linearities that exist in the data, we propose several models that can project data into a low dimensional, discriminative, and smooth manifold. The proposed models can transfer knowledge from the domain of known classes to a new domain where the classes are unknown....
Background:
The Coronavirus Disease 2019 (COVID-19) results from infection by SARS-CoV-2 virus to produce a range of mild to severe physical, neurologic and mental health symptoms. Indirectly, the COVID-19 pandemic has caused significant emotional distress, triggering emergence of mental health symptoms in persons not previously affected, or exace...
Despite the surge of deep learning in the past decade, some users are skeptical to deploy these models in practice due to their black-box nature. Specifically, in the medical space where there are severe potential repercussions, we need to develop methods to gain confidence in the models' decisions. To this end, we propose a novel medical imaging g...
Background:
Electrocardiogram (ECG) is one of the most common noninvasive diagnostic tools that can provide useful information regarding a patient's health status. Deep learning (DL) is an area of intense exploration that leads the way in most attempts to create powerful diagnostic models based on physiological signals.
Objective:
This study aim...
Operant keypress tasks, where each action has a consequence, have been analogized to the construct of "wanting" and produce lawful relationships in humans that quantify preferences for approach and avoidance behavior. It is unknown if rating tasks without an operant framework, which can be analogized to "liking", show similar lawful relationships....
Background and objective:
Intracranial hemorrhage (ICH) is a life-threatening emergency that can lead to brain damage or death, with high rates of mortality and morbidity. The fast and accurate detection of ICH is important for the patient to get an early and efficient treatment. To improve this diagnostic process, the application of Deep Learning...
Most massive stars are members of a binary or a higher-order stellar systems, where the presence of a binary companion can decisively alter their evolution via binary interactions. Interacting binaries are also important astrophysical laboratories for the study of compact objects. Binary population synthesis studies have been used extensively over...
Respiratory diseases constitute one of the leading causes of death worldwide and directly affect the patient's quality of life. Early diagnosis and patient monitoring, which conventionally include lung auscultation, are essential for the efficient management of respiratory diseases. Manual lung sound interpretation is a subjective and time-consumin...
Stain variation between images is a main issue in the analysis of histological images. These color variations, produced by different staining protocols and scanners in each laboratory, hamper the performance of computer-aided diagnosis (CAD) systems that are usually unable to generalize to unseen color distributions. Blind color deconvolution techn...
Monitoring and treatment of severely ill COVID-19 patients in the ICU poses many challenges. The effort to understand the pathophysiology and progress of the disease requires high-quality annotated multi-parameter databases. We present CoCross, a platform that enables the monitoring and fusion of clinical information from in-ICU COVID-19 patients i...
Generative Adversarial Networks (GANs) have shown promise in augmenting datasets and boosting convolutional neural networks' (CNN) performance on image classification tasks. But they introduce more hyperparameters to tune as well as the need for additional time and computational power to train supplementary to the CNN. In this work, we examine the...
BACKGROUND
While the psychiatric and psychological impacts of the COVID-19 pandemic on the general population have been studied since its onset, studies of the long-term impacts on individuals infected by the SARS-CoV-2 virus are relatively new. Depression, anxiety, and neurological symptoms associated with Post-COVID-Syndrome have been observed in...
Background:
While the psychiatric and psychological impacts of the COVID-19 pandemic on the general population have been studied since its onset, studies of the long-term impacts on individuals infected by the SARS-CoV-2 virus are relatively new. Depression, anxiety, and neurological symptoms associated with Post-COVID-Syndrome have been observed...
Dense depth map capture is challenging in existing active sparse illumination based depth acquisition techniques, such as LiDAR. Various techniques have been proposed to estimate a dense depth map based on fusion of the sparse depth map measurement with the RGB image. Recent advances in hardware enable adaptive depth measurements resulting in furth...
In this investigation, we compare two standard optical characterization methods to analyze the material properties of amorphous silicon thin films obtained from their transmission spectra.
The relationship of human brain structure to cognitive function is complex, and how this relationship differs between childhood and adulthood is poorly understood. One strong hypothesis suggests the cognitive function of Fluid Intelligence (Gf) is dependent on prefrontal cortex and parietal cortex. In this work, we developed a novel graph convoluti...
Wetlands serve many important ecosystem services, yet the United States lacks up-to-date, high-resolution wetland inventories. New, automated techniques for developing wetland segmentation maps from high-resolution aerial imagery can improve our understanding of the location and amount of wetlands. We assembled training and testing data sets (patch...
Room-temperature semiconductor radiation detectors (RTSD) such as CdTe are becoming popular in Computed Tomography (CT) Imaging. These detectors are often pixelated, requiring cumbersome post interaction 3D event reconstruction, which can benefit from detailed material characterization at micron level. Transport properties and material defects with...
Lack of explainability in artificial intelligence, specifically deep neural networks, remains a bottleneck for implementing models in practice. Popular techniques such as Gradient-weighted Class Activation Mapping (Grad-CAM) provide a coarse map of salient features in an image, which rarely tells the whole story of what a convolutional neural netwo...
Objective:To accelerate compressed sensing (CS) reconstruction of subsampled radial k-space data using a geometrically-derived density compensation function (gDCF) without significant loss in image quality.Approach:We developed a theoretical framework to calculate a gDCF based on Nyquist distance along the radial and circumferential directions of a...
The observation of gravitational waves is hindered by the presence of transient noise (glitches). We study data from the third observing run of the Advanced LIGO detectors, and identify new glitch classes: fast scattering/crown and low-frequency blips. Using training sets assembled by monitoring of the state of the detector, and by citizen-science...
Background and objective:
Color variations in digital histopathology severely impact the performance of computer-aided diagnosis systems. They are due to differences in the staining process and acquisition system, among other reasons. Blind color deconvolution techniques separate multi-stained images into single stained bands which, once normalize...
In recent years, deep learning-based models have gained momentum in imaging problems such as image and video super-resolution, image restoration or inpainting. The analytical approaches that have traditionally been used to solve image inverse problems have started to be replaced by deep learning ones, being outperformed in terms of efficacy and eff...
Intracranial hemorrhage (ICH) is a life-threatening emergency with high rates of mortality and morbidity. Rapid and accurate detection of ICH is crucial for patients to get a timely treatment. In order to achieve the automatic diagnosis of ICH, most deep learning models rely on huge amounts of slice labels for training. Unfortunately, the manual an...
Many visual and robotics tasks in real-world scenarios rely on robust handling of high speed motion and high dynamic range (HDR) with effectively high spatial resolution and low noise. Such stringent requirements, however, cannot be directly satisfied by a single imager or modality, rather by complementary sensors. In this paper, we explore the syn...
Computed tomography is a well-established x-ray imaging technique to reconstruct the three-dimensional structure of objects. It has been used extensively in a variety of fields, from diagnostic imaging to materials and biological sciences. One major challenge in some applications, such as in electron or x-ray tomography systems, is that the project...
Previous research always solely utilizes Artificial Neural Networks (ANNs) or Spiking Neural Networks (SNNs) for object recognition. However, evidence in neuroscience suggests that the visual processing in human vision is performed hierarchically in the combination of analog and digital processing. To construct a more human vision-like object recog...
Intravascular Optical Coherence Tomography (IVOCT) images provide important insight into every aspect of atherosclerosis. Specifically, the extent of plaque and its type, which are indicative of the patient’s condition, are better assessed by OCT images in comparison to other in vivo modalities. A large amount of imaging data per patient require au...
Intracranial hemorrhage (ICH) is a life-threatening emergency with high rates of mortality and morbidity. Rapid and accurate detection of ICH is crucial for patients to get a timely treatment. In order to achieve the automatic diagnosis of ICH, most deep learning models rely on huge amounts of slice labels for training. Unfortunately, the manual an...
The volume of labeled data is often the primary determinant of success in developing machine learning algorithms. This has increased interest in methods for leveraging crowds to scale data labeling efforts, and methods to learn from noisy crowd-sourced labels. The need to scale labeling is acute but particularly challenging in medical applications...
We present a novel adaptive multi-modal intensity-event algorithm to optimize an overall objective of object tracking under bit rate constraints for a host-chip architecture. The chip is a computationally resource constrained device acquiring high resolution intensity frames and events, while the host is capable of performing computationally expens...
X-ray ptychography is one of the versatile techniques for nanometer resolution imaging. The magnitude of the diffraction patterns is recorded on a detector and the phase of the diffraction patterns is estimated using phase retrieval techniques. Most phase retrieval algorithms make the solution well-posed by relying on the constraints imposed by the...
We present a novel adaptive host-chip modular architecture for video acquisition to optimize an overall objective task constrained under a given bit rate. The chip is a high resolution imaging sensor such as gigapixel focal plane array (FPA) with low computational power deployed on the field remotely, while the host is a server with high computatio...
We apply reinforcement learning to video compressive sensing to adapt the compression ratio. Specifically, video snapshot compressive imaging (SCI), which captures high-speed video using a low-speed camera is considered in this work, in which multiple (B) video frames can be reconstructed from a snapshot measurement. One research gap in previous st...
In this paper, we propose EveRestNet, a convolutional neural network designed to remove blocking artifacts in videostreams using events from neuromorphic sensors. We first degrade the video frame using a quadtree structure to produce the blocking artifacts to simulate transmitting a video under a heavily constrained bandwidth. Events from the neuro...
The complex relationship between the shape and function of the human brain remains elusive despite extensive studies of cortical folding over many decades. The analysis of cortical gyrification presents an opportunity to advance our knowledge about this relationship, and better understand the etiology of a variety of pathologies involving diverse d...
Several patterns of atrophy have been identified and strongly related to Alzheimer’s disease (AD) pathology and its progression. Morphological changes in brain shape have been identified up to ten years before clinical diagnoses of AD, making its early diagnosis more desirable. We propose novel geometric deep learning frameworks for the analysis of...
Dense depth map capture is challenging in existing active sparse illumination based depth acquisition techniques, such as LiDAR. Various techniques have been proposed to estimate a dense depth map based on fusion of the sparse depth map measurement with the RGB image. Recent advances in hardware enable adaptive depth measurements resulting in furth...
The observation of gravitational waves is hindered by the presence of transient noise (glitches). We study data from the third observing run of the Advanced LIGO detectors, and identify new glitch classes. Using training sets assembled by monitoring of the state of the detector, and by citizen-science volunteers, we update the Gravity Spy machine-l...
Capturing high-dimensional (HD) data is a long-term challenge in signal processing and related fields. Snapshot compressive imaging (SCI) uses a two-dimensional (2D) detector to capture HD ($\ge3$D) data in a {\em snapshot} measurement. Via novel optical designs, the 2D detector samples the HD data in a {\em compressive} manner; following this, alg...
Capturing high-dimensional (HD) data is a long-term challenge in signal processing and related fields. Snapshot compressive imaging (SCI) uses a 2D detector to capture HD (≥3D) data in a snapshot measurement. Via novel optical designs, the 2D detector samples the HD data in a compressive manner; following this, algorithms are employed to reconstruc...
We present a novel adaptive host-chip modular architecture for video acquisition to optimize an overall objective task constrained under a given bit rate. The chip is a high resolution imaging sensor such as gigapixel focal plane array (FPA) with low computational power deployed on the field remotely, while the host is a server with high computatio...
The utilization of computational photography becomes increasingly essential in the medical field. Today, imaging techniques for dermatology range from two-dimensional (2D) color imagery with a mobile device to professional clinical imaging systems measuring additional detailed three-dimensional (3D) data. The latter are commonly expensive and not a...
Optical coherence tomography (OCT) is an optical technique which allows for volumetric visualization of the internal structures of translucent materials. Additional information can be gained by measuring the rate of signal attenuation in depth. Techniques have been developed to estimate the rate of attenuation on a voxel by voxel basis. This depth...
Atrial fibrillation is a heart arrhythmia strongly associated with other heart-related complications that can increase the risk of strokes and heart failure. Manual electrocardiogram (ECG) interpretation for its diagnosis is tedious, time-consuming, requires high expertise, and suffers from inter-and intra-observer variability. Deep learning techni...
In this paper, we present a low-cost 3D reconstruction method for large-scale specular objects based on deflectometry. Experiments show that our system reaches high accuracy and meets requirements of the target applications in the cultural heritage preservation.
Ptychography becomes increasingly ill-posed when the overlap between neighboring scan points is reduced, inhibiting the object reconstruction. Here, we discuss and show reconstructions with low-overlap ratios by regularizing with priors such as Total- Variation and Structure-Tensor-Prior.
We present an efficient simulation of the recording and playback phases of a 2D image in a reflection volume hologram. The proposed algorithm uses the free-space Green’s function propagation and assumes the Born approximation.
3D shape reconstruction is a primary component of augmented/virtual reality. Despite being highly advanced, existing solutions based on RGB, RGB-D and Lidar sensors are power and data intensive, which introduces challenges for deployment in edge devices. We approach 3D reconstruction with an event camera, a sensor with significantly lower power, la...
Computed tomography is widely used to examine internal structures in a non-destructive manner. To obtain high-quality reconstructions, one typically has to acquire a densely sampled trajectory to avoid angular undersampling. However, many scenarios require a sparse-view measurement leading to streak-artifacts if unaccounted for. Current methods do...
Background
Memory complaints are widespread among the elderly and aging is a major risk factor for Alzheimer’s disease (AD), leading to the impression that gradual loss of memory ability is a nearly universal consequence of getting old. Our longitudinal studies of SuperAgers, 80+ year‐olds with episodic memory performance that remains in the range...