Afshin Shoeibi

Afshin Shoeibi
University of Granada | UGR · Data Science and Computational Intelligence Institute

MSc. in Telecommunication & BioElectronics Engineering

About

78
Publications
23,506
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,392
Citations
Citations since 2017
76 Research Items
1392 Citations
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
Introduction
Afshin Shoeibi currently works at the Faculty of Computer Engineering, BioMedical Machine Learning Lab (BML), UNSW Sydney (Australia). Afshin does research in Advanced Biomedical Signal Processing, Chaotic and Fuzzy Systems Theory, Computational Neuroscience, Deep Neural Networks, CMOS-VLSI Design, Functional Brain Mapping, Multivariate Digital Signal Processing and VLSI for Machine Learning.
Additional affiliations
August 2022 - present
UNSW Sydney
Position
  • Internship

Publications

Publications (78)
Preprint
Coronavirus, or COVID-19, is a hazardous disease that has endangered the health of many people around the world by directly affecting the lungs. COVID-19 is a medium-sized, coated virus with a single-stranded RNA. This virus has one of the largest RNA genomes and is approximately 120 nm. The X-Ray and computed tomography (CT) imaging modalities are...
Article
Epilepsy, a brain disease generally associated with seizures, has tremendous effects on people’s quality of life. Diagnosis of epileptic seizures is commonly performed on electroencephalography (EEG) signals, and by using computer-aided diagnosis systems (CADS), neurologists can diagnose epileptic seizure stages more accurately. In these systems, a...
Article
Full-text available
While coronary angiography is the gold standard diagnostic tool for coronary artery disease (CAD), but it is associated with procedural risk, it is an invasive technique requiring arterial puncture, and it subjects the patient to radiation and iodinated contrast exposure. Artificial intelligence (AI) can provide a pretest probability of disease tha...
Article
Multiple Sclerosis (MS) is a type of brain disease which causes visual, sensory, and motor problems for people with a detrimental effect on the functioning of the nervous system. In order to diagnose MS, multiple screening methods have been proposed so far; among them, magnetic resonance imaging (MRI) has received considerable attention among physi...
Article
Full-text available
COVID-19 has caused many deaths worldwide. The automation of the diagnosis of this virus is highly desired. Convolutional neural networks (CNNs) have shown outstanding classification performance on image datasets. To date, it appears that COVID computer-aided diagnosis systems based on CNNs and clinical information have not yet been analysed or exp...
Patent
Full-text available
The present invention relates to a field of convolution neural network. In more particular, the present invention relates to a random forest classifier with convolutional neural network features for coronary artery disease diagnosis based on cardiac magnetic resonance.
Article
Brain diseases, including tumors and mental and neurological disorders, seriously threaten the health and well-being of millions of people worldwide. Structural and functional neuroimaging modalities are commonly used by physicians to aid the diagnosis of brain diseases. In clinical settings, specialist doctors typically fuse the magnetic resonance...
Article
Full-text available
Nowadays, many people worldwide suffer from brain disorders, and their health is in danger. So far, numerous methods have been proposed for the diagnosis of Schizophrenia (SZ) and attention deficit hyperactivity disorder (ADHD), among which functional magnetic resonance imaging (fMRI) modalities are known as a popular method among physicians. This...
Preprint
Full-text available
Myocarditis is among the most important cardiovascular diseases (CVDs), endangering the health of many individuals by damaging the myocardium. Microbes and viruses, such as HIV, play a vital role in myocarditis disease (MCD) incidence. Lack of MCD diagnosis in the early stages is associated with irreversible complications. Cardiac magnetic resonanc...
Preprint
Full-text available
In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other symptoms when starting CVD. Coronary artery disease (...
Article
Full-text available
Apnea is a sleep disorder that stops or reduces airflow for a short time during sleep. Sleep apnea may last for a few seconds and happen for many while sleeping. This reduction in breathing is associated with loud snoring, which may awaken the person with a feeling of suffocation. So far, a variety of methods have been introduced by researchers to...
Article
Full-text available
Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these...
Article
Epilepsy is a disorder of the brain denoted by frequent seizures. The symptoms of seizure include confusion, abnormal staring, and rapid, sudden, and uncontrollable hand movements. Epileptic seizure detection methods involve neurological exams, blood tests, neuropsychological tests, and neuroimaging modalities. Among these, neuroimaging modalities...
Article
Motor intention decoding is one of the most challenging issues in brain machine interface (BMI). Despite several important studies on accurate algorithms, the decoding stage is still processed on a computer, which makes the solution impractical for implantable applications due to its size and power consumption. This study aimed to provide an approp...
Article
Full-text available
Coronary artery disease (CAD) is a prevalent disease with high morbidity and mortality rates. Invasive coronary angiography is the reference standard for diagnosing CAD but is costly and associated with risks. Noninvasive imaging like cardiac magnetic resonance (CMR) facilitates CAD assessment and can serve as a gatekeeper to downstream invasive te...
Article
Many studies have been performed to handle the uncertainties in the data using type-1 fuzzy regression (FR). Few type-2 fuzzy (T2F) regression studies have used interval type-2 (IT2) for indeterminate modeling using type-1 fuzzy membership. The current article proposes a triangular T2F regression (TT2FR) model to ameliorate the efficiency of the mo...
Article
Full-text available
Myocarditis is heart muscle inflammation that is becoming more prevalent these days, especially with the prevalence of COVID-19. Noninvasive imaging cardiac magnetic resonance (CMR) can be used to diagnose myocarditis, but the interpretation is time-consuming and requires expert physicians. Computer-aided diagnostic systems can facilitate the autom...
Preprint
Full-text available
Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these...
Preprint
Full-text available
Nowadays, many people worldwide suffer from brain disorders, and their health is in danger. So far, numerous methods have been proposed for the diagnosis of Schizophrenia (SZ) and attention deficit hyperactivity disorder (ADHD), among which functional magnetic resonance imaging (fMRI) modalities are known as a popular method among physicians. This...
Article
Schizophrenia (SZ) is a mental disorder that typically emerges in late adolescence or early adulthood. It reduces the life expectancy of patients by 15 years. Abnormal behavior, perception of emotions, social relationships, and reality perception are among its most significant symptoms. Past studies have revealed that SZ affects the temporal and an...
Chapter
Schizophrenia (SZ) is a mental disorder that threatens the health of many people around the world. People with schizophrenia always suffer from symptoms that include hallucinations and loss of coordination between thoughts and feelings. Using deep learning and connectivity characteristics, we present a method to detect SZ from electroencephalograph...
Chapter
Full-text available
Sleep apnea syndrome is one the most prevalent sleep disorders. The accurate diagnosis and treatment of apnea by physicians can help to avoid its destructive effects in the long term. Electroencephalogram (EEG) records activity of the brain from different areas of scalp and can be an appropriate method to diagnose sleep apnea. In this work, we prop...
Article
Epileptic seizures are one of the most crucial neurological disorders, and their early diagnosis will help the clinicians to provide accurate treatment for the patients. The electroencephalogram (EEG) signals are widely used for epileptic seizures detection, which provides specialists with substantial information about the functioning of the brain....
Article
Full-text available
Introduction: To reduce mortality in hospitalized patients with COVID-19 and cardiovascular disease (CVD), it is necessary to understand the relationship between patient's symptoms, risk factors, and comorbidities with their mortality rate. To the best of our knowledge, this paper is the first which take into account the determinants like risk fac...
Article
Full-text available
Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its electrical system. It has remained one of the most challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in approximately 20% of adults less than 40 years of a...
Chapter
Myocarditis is a cardiovascular disease caused by infectious agents, especially viruses. Compared to other cardiovascular diseases, myocarditis is very rare, occurring mainly due to chest pain or heart failure. Cardiac magnetic resonance (CMR) imaging is a popular technique for diagnosis of myocarditis. Factors such as low contrast, different noise...
Article
Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) techniques can aid physicians to apply automatic diagnosis and rehabilitation procedures. AI techniques comprise traditional machine learning (ML) approaches and deep learning (DL)...
Article
Full-text available
Schizophrenia (SZ) is a mental disorder whereby due to the secretion of specific chemicals in the brain, the function of some brain regions is out of balance, leading to the lack of coordination between thoughts, actions, and emotions. This study provides various intelligent deep learning (DL)-based methods for automated SZ diagnosis via electroenc...
Article
Full-text available
The new coronavirus has caused more than one million deaths and continues to spread rapidly. This virus targets the lungs, causing respiratory distress which can be mild or severe. The X-ray or computed tomography ( CT ) images of lungs can reveal whether the patient is infected with COVID-19 or not. Many researchers are trying to improve COVID-19...
Preprint
Full-text available
Hypertrophic cardiomyopathy (HCM) can lead to serious cardiac problems. HCM is often diagnosed by an expert using cardiovascular magnetic resonance (CMR) images obtained from patients. In this research, we aimed to develop a deep learning technique to automate HCM diagnosis. CMR images of 37421 healthy and 21846 HCM patients were obtained during tw...
Article
Implantable high-density multichannel neural recording microsystems provide simultaneous recording of brain activities. Wireless transmission of the entire recorded data causes high bandwidth usage, which is not tolerable for implantable applications. As a result, a hardware-friendly compression module is required to reduce the amount of data befor...
Preprint
Full-text available
One of the most common problems encountered in human-computer interaction is automatic facial expression recognition. Although it is easy for human observer to recognize facial expressions, automatic recognition remains difficult for machines. One of the methods that machines can recognize facial expression is analyzing the changes in face during f...
Preprint
Many works have been done to handle the uncertainties in the data using type 1 fuzzy regression. Few type 2 fuzzy regression works used interval type 2 for indeterminate modeling using type 1 fuzzy membership. The current survey proposes a triangular type-2 fuzzy regression (TT2FR) model to ameliorate the efficiency of the model by handling the unc...
Preprint
Full-text available
Epilepsy is one of the most crucial neurological disorders, and its early diagnosis will help the clinicians to provide accurate treatment for the patients. The electroencephalogram (EEG) signals are widely used for epileptic seizures detection, which provides specialists with substantial information about the functioning of the brain. In this pape...
Preprint
Full-text available
Schizophrenia (SZ) is a mental disorder whereby due to the secretion of specific chemicals in the brain, the function of some brain regions is out of balance, leading to the lack of coordination between thoughts, actions, and emotions. This study provides various intelligent Deep Learning (DL)-based methods for automated SZ diagnosis via EEG signal...
Article
Full-text available
In this paper, a novel medical image encryption method based on multi-mode synchronization of hyper-chaotic systems is presented. The synchronization of hyper-chaotic systems is of great significance in secure communication tasks such as encryption of images. Multi-mode synchronization is a novel and highly complex issue, especially if there is unc...
Preprint
Full-text available
Plant species with anti-inflammatory properties might play an essential role in combatting COVID-19 via reducing cytokine storms. We aimed to review the extant evidence of the potential therapeutic efficacy of natural products against cytokine storms by inhibiting interleukin-6 (IL-6) as a major pathological mediator. Data were collected following...
Preprint
Full-text available
Many inflammatory mechanisms are involved in the pathophysiology of COVID-19 infection. COVID-19 inhibits IFN antiviral responses, so we should expect an out-of-control viral replication. “Cytokine storms” occur due to the over-production of pro-inflammatory cytokines after an influx of neutrophils and monocytes/macrophages and may be responsible f...
Article
Full-text available
The first known case of Coronavirus disease 2019 (COVID-19) was identified in December 2019. It has spread worldwide, leading to an ongoing pandemic, imposed restrictions and costs to many countries. Predicting the number of new cases and deaths during this period can be a useful step in predicting the costs and facilities required in the future. T...
Preprint
Full-text available
Epileptic seizures are a type of neurological disorder that affect many people worldwide. Specialist physicians and neurologists take advantage of structural and functional neuroimaging modalities to diagnose various types of epileptic seizures. Neuroimaging modalities assist specialist physicians considerably in analyzing brain tissue and the chan...
Article
Full-text available
A variety of screening approaches have been proposed to diagnose epileptic seizures, using electroencephalography (EEG) and magnetic resonance imaging (MRI) modalities. Artificial intelligence encompasses a variety of areas, and one of its branches is deep learning (DL). Before the rise of DL, conventional machine learning algorithms involving feat...
Article
Full-text available
Introduction: Cardiac Hydatidosis is a rare and ominous complication of hydatid disease. Cardiac echinococcosis may be asymptomatic for several years but could be discovered after the development of lethal complications. Case Presentation: A 31-year-old-male referred with possible diagnosis of acute pericarditis. Abdominal and pelvic spiral CT scan...
Preprint
Full-text available
Multiple Sclerosis (MS) is a type of brain disease which causes visual, sensory, and motor problems for people with a detrimental effect on the functioning of the nervous system. In order to diagnose MS, multiple screening methods have been proposed so far; among them, magnetic resonance imaging (MRI) has received considerable attention among physi...
Preprint
Full-text available
Covid-19 has been started in the year 2019 and imposed restrictions in many countries and costs organisations and governments. Predicting the number of new cases and deaths during this period can be a useful step in predicting the costs and facilities required in the future. The purpose of this study is to predict new cases and death rate for seven...
Preprint
Full-text available
The outbreak of the corona virus disease (COVID-19) has changed the lives of most people on Earth. Given the high prevalence of this disease, its correct diagnosis in order to quarantine patients is of the utmost importance in steps of fighting this pandemic. Among the various modalities used for diagnosis, medical imaging, especially computed tomo...
Preprint
Full-text available
Background To prevent infectious diseases, it is necessary to understand how they are spread and their clinical features. Early identification of risk factors and clinical features is needed to identify critically ill patients, provide suitable treatments, and prevent mortality. Methods We conducted a prospective study on COVID-19 patients referred...
Preprint
Full-text available
In this paper, we propose a novel method named CNN-AE to predict survival chance of COVID-19 patients using a CNN trained on clinical information. To further increase the prediction accuracy, we use the CNN in combination with an autoencoder. Our method is one of the first that aims to predict survival chance of already infected patients. We rely o...
Article
The coronavirus (COVID-19) is currently the most common contagious disease which is prevalent all over the world. The main challenge of this disease is the primary diagnosis to prevent secondary infections and its spread from one person to another. Therefore, it is essential to use an automatic diagnosis system along with clinical procedures for th...
Article
Full-text available
Understanding the data and reaching accurate conclusions are of paramount importance in the present era of big data. Machine learning and probability theory methods have been widely used for this purpose in various fields. One critically important yet less explored aspect is capturing and analyzing uncertainties in the data and model. Proper quanti...
Preprint
Full-text available
Schizophrenia (SZ) is a mental disorder that typically emerges in late adolescence or early adulthood. It reduces the life expectancy of patients by 15 years. Abnormal behavior, perception of emotions, social relationships, and reality perception are among its most significant symptoms. Past studies have revealed the temporal and anterior lobes of...
Preprint
Full-text available
The coronavirus (COVID-19) is currently the most common contagious disease which is prevalent all over the world. The main challenge of this disease is the primary diagnosis to prevent secondary infections and its spread from one person to another. Therefore, it is essential to use an automatic diagnosis system along with clinical procedures for th...
Preprint
The new coronavirus has caused more than 1 million deaths and continues to spread rapidly. This virus targets the lungs, causing respiratory distress which can be mild or severe. The X-ray or computed tomography (CT) images of lungs can reveal whether the patient is infected with COVID-19 or not. Many researchers are trying to improve COVID-19 dete...
Article
Full-text available
In this paper, the multi-state synchronization of chaotic systems with non-identical, unknown, and time-varying delay in the presence of external perturbations and parametric uncertainties was studied. The presence of unknown delays, unknown bounds of disturbance and uncertainty, as well as changes in system parameters complicate the determination...
Article
While coronary angiography is the gold standard diagnostic tool for coronary artery disease (CAD), but it is associated with procedural risk, it is an invasive technique requiring arterial puncture, and it subjects the patient to radiation and iodinated contrast exposure. Artificial intelligence (AI) can provide a pretest probability of disease tha...
Article
A 65-year-old male was introduced with a history of percutaneous coronary intervention 2 years ago who received Aspirin and Plavix. He was referred for coronary angiography after receiving thrombolytic therapy for ST-elevation myocardial infarction in precordial leads. On admission, he had dyspnea with low oxygen saturation, leukocytosis, lymphopen...
Article
Preventing communicable diseases requires understanding the spread, epidemiology, clinical features, progression, and prognosis of the disease. Early identification of risk factors and clinical outcomes might help to identify critically ill patients, provide proper treatment and prevent mortality. We conducted a prospective study in patients with f...
Preprint
Understanding data and reaching valid conclusions are of paramount importance in the present era of big data. Machine learning and probability theory methods have widespread application for this purpose in different fields. One critically important yet less explored aspect is how data and model uncertainties are captured and analyzed. Proper quanti...