Adrien Todeschini

Adrien Todeschini
French National Centre for Scientific Research | CNRS · Mathematical Institute of Bordeaux

PhD in Applied Mathematics, Statistics, Machine Learning

About

14
Publications
1,244
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
88
Citations

Publications

Publications (14)
Article
Abstract: We propose a novel statistical model for sparse networks with overlapping community structure. The model is based on representing the graph as an exchangeable point process, and naturally generalizes existing probabilistic models with overlapping block-structure to the sparse regime. Our construction builds on vectors of completely random...
Thesis
Full-text available
Nous proposons deux nouvelles approches pour les systèmes de recommandation etles réseaux. Dans la première partie, nous donnons d’abord un aperçu sur les systèmes de recommandationavant de nous concentrer sur les approches de rang faible pour la complétionde matrice. En nous appuyant sur une approche probabiliste, nous proposons de nouvellesfoncti...
Thesis
We propose two novel approaches for recommender systems and networks. In the first part, we first give an overview of recommender systems and concentrate on the low-rank approaches for matrix completion. Building on a probabilistic approach, we propose novel penalty functions on the singular values of the low-rank matrix. By exploiting a mixture mo...
Article
Full-text available
We propose a novel statistical model for sparse networks with overlapping community structure. The model is based on representing the graph as an exchangeable point process, and naturally generalizes existing probabilistic models with overlapping block-structure to the sparse regime. Our construction builds on vectors of completely random measures,...
Article
Full-text available
Nous proposons un modèle bayésien non paramétrique (BNP) à faible rang pour les graphes bipartis. Récemment, Caron (2012) a proposé un modèle BNP où chaque élément possède son propre paramètre de sociabilité permettant de capturer le compor-tement en loi de puissance observé dans les graphes bipartis réels. Ce modèle peut être considéré comme une f...
Article
Full-text available
Biips is a software platform for automatic Bayesian inference with interacting particle systems. Biips allows users to define their statistical model in the probabilistic programming BUGS language, as well as to add custom functions or samplers within this language. Then it runs sequential Monte Carlo based algorithms (particle filters, particle in...
Article
Full-text available
Nous proposons une nouvelle classe d'algorithmes pour la complétion de matrice de rang faible. Notre approche s'appuie sur de nouvelles fonctions de pénalité sur les valeurs singulières de la matrice de rang faible. En exploitant une représentation basée sur un modèle de mélange de cette pénalité, nous montrons qu'un ensemble de variables latentes...
Article
Full-text available
We consider the problem of local radioelectric property estimation from global electromagnetic scattering measurements. This challenging ill-posed high dimensional inverse problem can be explored by intensive computations of a parallel Maxwell solver on a petaflopic supercomputer. Then, it is shown how Bayesian inference can be perfomed with a Part...
Conference Paper
Full-text available
We propose a novel class of algorithms for low rank matrix completion. Our approach builds on novel penalty functions on the singular values of the low rank matrix. By exploiting a mixture model representation of this penalty, we show that a suitably chosen set of latent variables enables to derive an Expectation-Maximization algorithm to obtain a...

Network

Cited By