Adriana Garay-Arroyo

Adriana Garay-Arroyo
National Autonomous University of Mexico | UNAM · Institute of Ecology

PhD

About

70
Publications
43,011
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,970
Citations

Publications

Publications (70)
Article
Full-text available
HSCs differentiation has been difficult to study experimentally due to the high number of components and interactions involved, as well as the impact of diverse physiological conditions. From a 200-node network, that was grounded on experimental data, we derived a 21-node regulatory network by collapsing linear pathways and retaining the functional...
Article
Full-text available
The balance between cell growth, proliferation and differentiation emerges from gene regulatory networks coupled to various signal transduction pathways, including reactive oxygen species (ROS) and transcription factors (TFs), enabling developmental responses to environmental cues. The Arabidopsis thaliana's primary root has become a valuable syste...
Article
Full-text available
Retinoblastoma protein is central in signaling networks of fundamental cell decisions such as proliferation and differentiation in all metazoans and cancer development. Immunostaining and biochemical evidence demonstrated that during interphase retinoblastoma protein is in the nucleus and is hypophosphorylated, and during mitosis is in the cytoplas...
Article
Full-text available
Background Arabidopsis thaliana primary root growth has become a model for evo-devo studies due to its simplicity and facility to record cell proliferation and differentiation. To identify new genetic components relevant to primary root growth, we used a Genome-Wide Association Studies (GWAS) meta-analysis approach using data published in the last...
Article
Full-text available
Cellular behavior, cell differentiation and ontogenetic development in eukaryotes result from complex interactions between epigenetic and classic molecular genetic mechanisms, with many of these interactions still to be elucidated. Histone deacetylase enzymes (HDACs) promote the interaction of histones with DNA by compacting the nucleosome, thus ca...
Preprint
Full-text available
The differentiation of two cell types in the root epidermis of Arabidopsis thaliana-atrichoblasts, which give rise to hair cells, and atrichoblasts, which do not develop into hair cells-is orchestrated by a complex regulatory network of transcription factors and hormones. These elements synchronize spatially and temporally to create a characteristi...
Preprint
Full-text available
Background The differentiation of hematopoietic stem cells towards their different cell fates, has been difficult to study experimentally due to the diverse number of physiological conditions involved in it. These experimental obstacles have generated antagonistic positions to explain this differentiation process. Methods Here, we build a gene regu...
Article
Full-text available
MADS-domain transcription factors play pivotal roles in numerous developmental processes in Arabidopsis thaliana. While their involvement in flowering transition and floral development has been extensively examined, their functions in root development remain relatively unexplored. Here, we explored the function and genetic interaction of three MADS...
Preprint
Full-text available
Arabidopsis thaliana primary root growth has become a model for evo-devo studies due to its simplicity and facility to record cell proliferation and differentiation. To identify new genetic components relevant to primary root growth, we used a Genome-Wide Association Studies (GWAS) meta-analysis approach using data published in the last decade. In...
Preprint
Full-text available
The differentiation of the two cell types of the root epidermis, atrichoblasts, which give rise to hair cells, and atrichoblasts, which do not develop as hair cells, is determined by a complex regulatory network of transcriptional factors and hormones that act in concert in space and time to define a characteristic pattern of rows of hair cells and...
Article
Full-text available
Light and photoperiod are environmental signals that regulate flowering transition. In plants like Arabidopsis thaliana, this regulation relies on CONSTANS, a transcription factor that is negatively posttranslational regulated by phytochrome B during the morning, while it is stabilized by PHYA and cryptochromes 1/2 at the end of daylight hours. CO...
Preprint
Full-text available
Postembryonic primary root growth relies on meristems that harbour multipotent stem cells that produce new cells that will duplicate and provide all the different root cell types. Arabidopsis thaliana primary root growth has become a model for evo-devo studies due to its simplicity and facility to record cell proliferation and differentiation. To i...
Article
Full-text available
The Trithorax Group (TrxG) is a highly conserved multiprotein activation complex, initially defined by its antagonistic activity with the PcG repressor complex. TrxG regulates transcriptional activation by the deposition of H3K4me3 and H3K36me3 marks. According to the function and evolutionary origin, several proteins have been defined as TrxG in p...
Article
Full-text available
Genome-wide association studies (GWAS) have allowed the identification of different loci associated with primary root (PR) growth, and Arabidopsis is an excellent model for these studies. The PR length is controlled by cell proliferation, elongation, and differentiation; however, the specific contribution of proliferation and differentiation in the...
Article
Arabidopsis (Arabidopsis thaliana) primary and lateral roots are well suited for 3D and 4D microscopy, and their development provides an ideal system for studying morphogenesis and cell proliferation dynamics. With fast-advancing microscopy techniques used for live-imaging, whole tissue data are increasingly available, yet present the great challen...
Article
Asymmetric cell divisions (ACDs) are essential to generate different cellular lineages. In plants, ACDs regulate the correct formation of embryo, stomatal cells, apical and root meristems, and lateral roots. The current knowledge about the ACDs regulation suggests that, in addition to the function of key transcription factor networks, the epigeneti...
Article
Full-text available
The growth of multicellular organisms relies on cell proliferation, elongation and differentiation that are tightly regulated throughout development by internal and external stimuli. The plasticity of a growth response largely depends on the capacity of the organism to adjust the ratio between cell proliferation and cell differentiation. The primar...
Article
Full-text available
The root stem cell niche (SCN) of Arabidopsis thaliana consists of the quiescent center (QC) cells and the surrounding initial stem cells that produce progeny to replenish all the tissues of the root. The QC cells divide rather slowly relative to the initials, yet most root tissues can be formed from these cells, depending on the requirements of th...
Article
Full-text available
ULTRAPETALA1 (ULT1) is a versatile plant-exclusive protein, initially described as a trithorax group (TrxG) factor that regulates transcriptional activation and counteracts polycomb group (PcG) repressor function. As part of TrxG, ULT1 interacts with ARABIDOPSIS TRITHORAX1 (ATX1) to regulate H3K4me3 activation mark deposition. However, our recent s...
Article
Full-text available
As sessile organisms, plants must adjust their growth to withstand several environmental conditions. The root is a crucial organ for plant survival as it is responsible for water and nutrient acquisition from the soil and has high phenotypic plasticity in response to a lack or excess of them. How plants sense and transduce their external conditions...
Article
Plants respond to adverse environmental cues by adjusting a wide variety of processes through highly regulated mechanisms to maintain plant homeostasis for survival. Because of the sessile nature of plants, their response, adjustment and adaptation to the changing environment is intimately coordinated with their developmental programs through the c...
Article
Full-text available
The Retinoblastoma protein (pRb) is a key cell cycle regulator conserved in a wide variety of organisms. Experimental analysis of pRb's functions in animals and plants has revealed that this protein participates in cell proliferation and differentiation processes. In addition, pRb in animals and its orthologs in plants (RBR), are part of highly con...
Article
Full-text available
Asymmetric divisions maintain long-term stem cell populations while producing new cells that proliferate and then differentiate. Recent reports in animal systems show that divisions of stem cells can be uncoupled from their progeny differentiation, and the outcome of a division could be influenced by microenvironmental signals. But the underlying s...
Article
Full-text available
Arabidopsis naturally occurring populations have allowed for the identification of considerable genetic variation remodeled by adaptation to different environments and stress conditions. Water is a key resource that limits plant growth, and its availability is initially sensed by root tissues. The root’s ability to adjust its physiology and morphol...
Article
Full-text available
During plant development, morphogenetic processes rely on the activity of meristems. Meristem homeostasis depends on a complex regulatory network constituted by different factors and hormone signaling that regulate gene expression to coordinate the correct balance between cell proliferation and differentiation. ULTRAPETALA1, a transcriptional regul...
Article
Full-text available
Plants, as sessile organisms, adapt to different stressful conditions, such as drought, salinity, extreme temperatures, and nutrient deficiency, via plastic developmental and growth responses. Depending on the intensity and the developmental phase in which it is imposed, a stress condition may lead to a broad range of responses at the morphological...
Article
Full-text available
Plant growth is largely post‐embryonic and depends on meristems that are active throughout the lifespan of an individual. Developmental patterns rely on the coordinated spatio‐temporal expression of different genes, and the activity of transcription factors is particularly important during most morphogenetic processes. MADS‐box genes constitute a t...
Article
Full-text available
The Arabidopsis thaliana (hereafter Arabidopsis) root has become a useful model for studying how organ morphogenesis emerge from the coordination and balance of cell proliferation and differentiation, as both processes may be observed and quantified in the root at different stages of development. Hence, being able to objectively identify and delimi...
Article
Full-text available
Resumen La biología evolutiva se enfoca al estudio de los patrones de variación fenotípica heredables dentro de las poblaciones y su dinámica en tiempos transgeneracionales. Históricamente, los modelos evolutivos a nivel de las poblaciones se han desarrollado bajo supuestos simples. Dos de ellos particularmente importantes son: 1) el cambio genétic...
Article
Downstream connection effects on transcription are caused by retroactivity. When biomolecular dynamical systems interconnect retroactivity is a property that becomes important. The biological functional meaning of these effects is increasingly becoming an area of interest. Downstream targets, which are operator binding sites in transcriptional netw...
Article
Background: Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, g...
Article
Full-text available
Background and aims: The Arabidopsis thaliana root is a key experimental system in developmental biology. Despite its importance, we are still lacking an objective and broadly applicable approach for identification of number and position of developmental domains or zones along the longitudinal axis of the root apex or boundaries between them, whic...
Article
Full-text available
Arabidopsis thaliana has been an excellent model system for molecular genetic approaches to development and physiology. More recently, the potential of studying various accessions collected from diverse habitats has been started to exploit. Col-0 has been the best-studied accession but we now know that several traits show significant divergences am...
Article
Current advances indicate that epigenetic mechanisms play important roles in the regulatory networks involved in plant developmental responses to environmental conditions. Hence, understanding the role of such components becomes crucial to understanding the mechanisms underlying the plasticity and variability of plant traits, and thus the ecology a...
Article
Full-text available
A growing body of evidence suggests that alterations in transcriptional regulation of genes involved in modulating development are an important part of phenotypic evolution, and this can be documented among species and within populations. While the effects of differential transcriptional regulation in organismal development have been preferentially...
Article
In Arabidopsis thaliana multiple genes involved in Shoot Apical Meristem (SAM) transitions have been characterized, but the mechanisms required for the dynamic attainment of vegetative-, inflorescence- and flower meristem (VM, IM, FM) cell-fates during SAM transitions are not well understood. Here we show that a MADS-box gene, XAANTAL2 (XAL2/AGL14)...
Article
Full-text available
Auxins are hormones involved during the life cycle of plants and they are especially interesting because they participate in multiple morphogenetic processes. One important question is, how the same molecule can induce proliferation, elongation and differentiation at different moments and tissues during development. In this respect, auxin gradients...
Article
Full-text available
Elucidating molecular links between cell-fate regulatory networks and dynamic patterning modules is a key for understanding development. Auxin is important for plant patterning, particularly in roots, where it establishes positional information for cell-fate decisions. PIN genes encode plasma membrane proteins that serve as auxin efflux transporter...
Article
Full-text available
Hormones regulate plant growth and development in response to external environmental stimuli via complex signal transduction pathways, which in turn form complex networks of interaction. Several classes of hormones have been reported, and their activity depends on their biosynthesis, transport, conjugation, accumulation in the vacuole, and degradat...
Article
Full-text available
Understanding how the information contained in genes is mapped onto the phenotypes, and deriving formal frameworks to search for generic aspects of developmental constraints and evolution remains one of the main challenges of contemporary biological research. The Mexican endemic triurid Lacandonia schismatica (Lacandoniaceae), a mycoheterotrophic m...
Article
Full-text available
Spontaneous homeotic transformations have been described in natural populations of both plants and animals, but little is known about the molecular-genetic mechanisms underlying these processes in plants. In the ABC model of floral organ identity in Arabidopsis thaliana, the B- and C-functions are necessary for stamen morphogenesis, and C alone is...
Article
Full-text available
Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the de...
Article
Full-text available
Lacandonia schismatica (Triuridaceae) is the only known angiosperm species with flowers composed of central stamens surrounded by carpels. If the reproductive axes of this species are interpreted as heterotopic flowers, crucial questions on the evolution of morphological novelties arise, such as: a) is this phenotype fixed or whether intermediate f...
Article
Full-text available
A possible consequence of planting genetically modified organisms (GMOs) in centres of crop origin is unintended gene flow into traditional landraces. In 2001, a study reported the presence of the transgenic 35S promoter in maize landraces sampled in 2000 from the Sierra Juarez of Oaxaca, Mexico. Analysis of a large sample taken from the same regio...
Article
Full-text available
Molecular studies were performed to establish the causes of the superior lovastatin productivity of a novel solid-state fermentation (SSF) process, in relation with liquid submerged fermentation (SmF; 20 mg/g vs. 0.65 mg/ml). In SSF, biosynthetic genes lovE and lovF transcripts accumulated to high levels from day 1 to day 7. In this period, lovE tr...
Article
Full-text available
MADS-box genes are key components of the networks that control the transition to flowering and flower development, but their role in vegetative development is poorly understood. This article shows that the sister gene of the AGAMOUS (AG) clade, AGL12, has an important role in root development as well as in flowering transition. We isolated three mu...
Article
Full-text available
APETALA1 (AP1) and CAULIFLOWER (CAL) are closely related MADS box genes that are partially redundant during Arabidopsis thaliana floral meristem determination. AP1 is able to fully substitute for CAL functions, but not vice versa, and AP1 has unique sepal and petal identity specification functions. In this study, the unique and redundant functions...
Article
Full-text available
Genes and proteins form complex dynamical systems or gene regulatory networks (GRN) that can reach several steady states (attractors). These may be associated with distinct cell types. In plants, the ABC combinatorial model establishes the necessary gene combinations for floral organ cell specification. We have developed dynamic gene regulatory net...
Article
Hydrophilins are a wide group of proteins whose defining characteristics are high hydrophilicity index (> 1.0) and high glycine content (> 6%). The transcripts of most hydrophilins accumulate in response to water deficit in organisms such as plants, fungi and bacteria. In plants, most of the known Late Embryogenesis Abundant (LEA) proteins belong t...
Article
Full-text available
Two sets of Saccharomyces cerevisiae strains were compared for their physiological responses to different stress conditions. One group is composed of three strains adapted to controlled laboratory conditions (CEN.PK, LR88 and RS58), whereas the other consisted of five industrial strains (IND1101, SuperStart, LO24, LO41 and Azteca). Most industrial...
Article
Full-text available
All living organisms are subject to changing environmental conditions, to which they must adapt in order to survive. Recently, there have been significant advances leading to the comprehension of the different mechanisms implicated in the responses to stressful situations in the yeast S. cerevisiae. In nature, as well as in laboratory conditions or...
Article
Full-text available
Here we analyzed the role of the antioxidant response in Saccharomyces cerevisiae adaptation to hyperosmotic stress. We show that Cu,Zn-superoxide dismutase (SOD1) plays a fundamental role in this adaptation process since under hyperosmosis SOD1 mutants lead to high protein oxidation levels and show a sensitive phenotype, which is reversed by the a...
Article
Full-text available
The late embryogenesis abundant (LEA) proteins are plant proteins that are synthesized at the onset of desiccation in maturing seeds and in vegetative organs exposed to water deficit. Here, we show that most LEA proteins are comprised in a more widespread group, which we call "hydrophilins." The defining characteristics of hydrophilins are high gly...
Article
Full-text available
The late embryogenesis abundant (LEA) proteins are plant proteins that are synthesized at the onset of desiccation in maturing seeds and in vegetative organs exposed to water deficit. Here, we show that most LEA proteins are comprised in a more widespread group, which we call "hydrophilins." The defining characteristics of hydrophilins are high gly...
Article
Full-text available
In this work we report the isolation and characterization of t