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Abstract—Cloud Native (CN) in 5G systems has been identified
as a pivotal candidate for operational and capital expenditure
savings as well as for improvements in system agility and
services role-out. CN telco is a step forward with respect to
Network Function Virtualisation (NFV) aiming at embracing a
microservice-based architecture. With this in mind, the European
Telecommunications Standards Institute (ETSI) has evolved the
ETSI NFV reference architecture to adapt to CN and fill the
gap with the NFV framework, including containers and Zero-
Touch, among other capabilities. Open-source Management &
Orchestration (MANO) initiatives, such as Open Source MANO
(OSM), are promoting this adoption giving support to CN
solutions based on containers. However, at this early stage deploy-
ments are currently non-standalone and embedded in VNF-based
solutions such as OpenStack. In this context, this paper presents
a proof of concept of a full container technology deployment
-via Kubernetes- in a NFV architecture. First, a full CN NFV
environment is set with the help of OSM MANO, for which
we describe the implementation to enable native kubernetes-
based Container Network Functions (CNFs) and analyse their
performance, limits, advantages and drawbacks. Finally, our
solution for CNFs is benchmarked against a typical OSM-
OpenStack setup where VNFs are deployed. The results obtained
in this work can help to further encourage users and operators
to use CNFs and get the most out of containerisation in NFV.

Index Terms—NFV, 5G, Cloud Native, OSM, K8s

I. INTRODUCTION

Network Function virtualisation (NFV) has been one of
the most groundbreaking networking concepts in recent years,
yielding attention from both industry and academia, and lead-
ing to a change of generation on how network elements and
functions are managed. By replacing the proprietary hardware
with software network functions via Network Services (NSs)
based on Virtual Network Functions (VNFs), service providers
count with an unprecedented flexibility, faster deployment and
more efficient use of physical resources [1], [2]. With the
evolution of virtualisation technologies through solutions such
as containers, and the advent of Cloud Native (CN), these
capabilities can be further enhanced, introducing practices
coming from the IT world like DevOps, and giving great im-
portance to development automation with methodologies such
as Continuous Integration and Continuous Delivery (CI/CD).

The NFV architectural framework, defined by the European
Telecommunications Standards Institute (ETSI) [3], conveys
NFV’s basic requirements and groups its architecture into three

main blocks: the NFV Infrastructure (NFVI) managed by the
Virtual Infrastructure Manager (VIM), the NFV Management
and Orchestration (MANO) and the set of VNFs. Notice that
this architectural framework does not specify any detailed im-
plementation. Thus, many implementations of different blocks
can be formed and are left to the vendor choice. Currently,
several commercial and open-source solutions are available for
each of these architectural blocks. On the one hand, VMware
vCloud Director, OpenStack, and OpenVIM are some of the
most extended VIMs. On the other hand, Open Network
Automation Platform (ONAP), Open Source MANO (OSM)
and Cloudify MANO are some open-source MANO’s systems,
while Ericsson Cloud Manager, and CloudBand (Nokia) are
vendors’ proprietary MANO’s solutions. Finally, some exam-
ples of VNFs are DHCP servers, routers or firewalls.

Cloud Native refers to the approach to design, build and
run applications and virtual functions that fully exploits the
benefits of the cloud computing model. The CN approach
refers to the way applications are created and deployed, and
not only where they are executed [4]. CN is based on the
principle of decomposing applications into a set of microser-
vices that can be developed and deployed independently to
accelerate and optimise DevOps lifecycle of software systems.
These microservices are packaged into lightweight containers
that are scheduled to run on compute nodes by a container
orchestrator. To boost the benefits of CN, several associations
and foundations have been formed. One of the most important
is the Cloud Native Computing Foundation (CNCF) [5], which
is an open-source software foundation under the umbrella of
Linux Foundation (LF) promoting container technology and
aligning the tech industry around its evolution.

Due to the evolution in virtualisation technologies and
networking, the CN principles have also arrived in the telco
domain, promoting a new paradigm known as Cloud Native
telco. This change of perspective involves a radical approach
to NFV, which is highly needed to satisfy the demands of
5G and 6G verticals [6]. It should be remarked that no
single technology by itself will be able to meet all 5G
Key Performance Indicators (KPIs) [7], but that not all of
these requirements will be demanded by every 5G single
application. Moreover, to satisfy the stringent latency needs
of such 5G verticals, the application deployment is moving



from powerful data centers to the network’s edges through the
Multi-access Edge Computing (MEC) paradigm [8]. While
MEC enables much reduced latency, it is also characterised
by more limited resources. For these reasons, Cloud Native
in 5G systems has been identified as a major candidate for
cost saving and improvement in system agility and service
deployment. In this regard, ETSI has published specifications
to enable MEC deployments in NFV environments, where
MEC applications are deployed as VNFs, managed by ETSI
NFV MANO components, along with an optional layer of
intelligence providing network information for MEC apps
optimisation. The virtualisation infrastructure is deployed as in
NFV and managed by the VIM, allowing operators to deploy
simultaneously MEC and NFV [9].

In this context, one of the MANO systems attracting most
of the interest in the NFV industry is OSM. OSM is an
ETSI-hosted initiative providing an open-source NFV MANO
software stack entirely aligned with ETSI NFV specifications.
OSM acts as NFV Orchestrator (NFVO) and is responsi-
ble for the deployment of NSs and VNFs. It also plays
the role of Virtual Network Function Manager (VNFM) by
monitoring the lifecycle management of virtualised network
functions. Additional layers, such as service orchestration,
are also required for operators to fully enable NFV services.
Therefore, OSM is a very interesting tool, because it contains
two of the key components of the ETSI NFV architecture and
strictly follows the ETSI NFV stack. In view of its recent
support for containers (since OSMr7), new NFV paradigms
partially or fully composed of containers can be formed.
OSM gives container support through Kubernetes (i.e., K8s) to
deploy Container Network Functions (CNFs)1 following two
approaches as sketched in Figure 1:

1) K8s embedded on a second VIM: This method can be
performed via two methods. The first method employs a
K8s cluster running on Virtual Machines (VMs) inside
the VIM and connecting all the VMs to the VIM
network. Alternatively, the second method consists on
spinning up a bare metal K8s cluster connected to the
VIM network. In both options, NSs based on VNFs,
CNFs, or even hybrid ones can be instantiated, giving
high flexibility to the network operators. Currently the
only VIM supported is OpenStack.

2) Pure standalone K8s: This approach follows a pure
CN scenario, as no VMs or additional VIMs are needed
in the solution. OSM directly interact with K8s, and
NSs can be instantiated in the form of CNFs running
leveraging containers. To do so, a K8s cluster with some
OSM’s addons needs to be set.

The first solution has the disadvantage that to use CNFs
it is necessary to have an OpenStack cluster acting as an
intermediary between OSM and K8s, which could be challeng-
ing due to the lack of resources or expertise in this complex

1NFs instantiated on containers receive either the name of Container
Network Functions (CNFs) from 5GPPP side or Kubernetes-based virtual
Network Functions (KNFs) from OSM’s official documentation. Nonetheless,
for being a more standard term, in this paper we refer to them as CNFs.

Fig. 1. OSM’s support for the deployment of CNFs (via K8s).

cloud computing platform. This constraint could thus lead to
many users being reluctant to employ CNFs. By contrast, in
the second solution, a user can deploy CNFs without having
OpenStack knowledge and/or resources. By leveraging only
OSM and K8s, developers and users could work with CNFs
in a more direct way, favoring a faster and more efficient
advancement of container-based NSs. Nevertheless, the main
issue of this last approach is the lack of validation. To the
best of the authors’ knowledge, at the time of writing no work
in the literature can be found regarding the deployment and
validation of this OSM-isolated K8s architecture.

In this context, this work has as main aim to introduce
a proof of concept and validation of an standalone OSM-
isolated K8s environment for CNF deployment. In particular,
the contribution of this paper is threefold. First, we provide
the details to enable native CNFs on this NFV architecture
considering some of the gaps encountered, and validate and
study its limits, advantages and drawbacks. Second, we dis-
cuss some of the issues encountered during this work and
propose some solutions in order to better support OSM in
standalone K8s deployments. Finally, we benchmark the CNFs
performance using a OSM-K8s’ testbed in comparison with an
OSM-OpenStack environment, where VNFs are deployed.

The remainder of this paper is structured as follows. Sec-
tion II discusses the related work. An analysis of the NFV
evolution and the NFV architecture followed on this research
is provided in Section III. Container support in OSM is dis-
cussed in Section IV along with some comments regarding its
implementation. In Section V K8s-based VNFs are evaluated
using some KPIs against a classic NFV scenario based on
OSM and OpenStack. To conclude, some future work lines
and our conclusions are drawn in Section VI.

II. RELATED WORK

In the recent years, the promising performance argued by
Docker containers as a lightweight virtualisation option has led
to a huge body of literature aiming at analysing their capabil-
ities in different contexts and deployment options [10], [11].
Similarly, several experimental studies have been conducted
to evaluate container orchestration technologies, such as Ku-
bernetes [12], as well as to compare the benefits of containers
w.r.t. other virtualisation options such as VMs [13]–[16] and
unikernels [17]–[20]. All these benchmarks demonstrate the



high performance of Docker applications in comparison to
their competitors. While on the one hand, VMs is the per-
excellence virtualisation option, container-based deployments
are able to reduce startup and end-user serving time. Moreover,
despite the attention attracted by Unikernels, its development,
deployment and heavy debugging issues, have made this
technology to stay behind containerised environments.

In the specific context of 5G systems, SDN, NFV and
MEC have been identified as key cornerstones to enable
efficient network management and orchestration. NFV and
SDN have been proved essential in enabling network flexibility
and programmability by decoupling control plane from user
plane, and by allowing the detachment of network functions
from the underlying hardware. In this respect, multiple works
have study the usefulness of lightweight container solutions
for deploying NFV environments and analysed how this choice
determines network performance [16], [21], [22]. In [16] the
authors address performance gaps associated with a VNF
running on container and VM platforms (via KVM) in terms
of CPU, memory consumption and deployment time. Similar
conclusions are reach in [21] using LXC, Docker and rkt as
container technologies. Different from the rest, the authors
of [22] showcase a container-based 5G setup for CNF deploy-
ment of network services faster than NVFs. Nonetheless, the
work is focused on performance prediction on the Kubernetes
VIM but does not take into account a full MANO system [23].

Despite the high number of works focusing on virtualisation
technologies, most of them take into account only cloud
deployments where resource availability and power suppliant
are usually insured. Nevertheless, with the emergence of edge
computing to deploy latency-sensitive applications close to the
end user, lightweight virtualisation technologies have become
essential, given the more limited storage and performance
capacity available [24], [25]. Moreover, a good part of the
current research fail to consider MANO platforms or overlook
the complexity of the whole orchestration system. In this
respect, some limited efforts can be found in [26], which
overviews several orchestration solutions from a theoretical
point of view. Conversely, a full MANO platform evaluation
is introduced in [27] by relying on two versions of OSM to
perform orchestration tasks. Nonetheless, the authors do not
consider light-weight virtualisation technologies and do not
offer a comparison with other tools.

Some papers in the literature study both virtualisation
technologies and MANO systems in a MEC context [28], [29].
The authors of [28] discuss that even though containerisation
can bring greater advantages as a lightweight virtualisation
technology, it is not mature enough to support the service
migration required in several MEC scenarios to support user
mobility in 5G networks and argue the need of more efficient
orchestration tools. Conversely, the work in [29] evaluate two
important MANO platforms such as OSM and Open Baton
under diverse VIM environments such as OpenStack and AWS.
Although Docker containers are also considered, the authors
only analyse this environment under Open Baton, and no
results are offered with respect to OSM.

Regarding NFV, some papers with a similar scope than
this work have been recently published. On the one hand,
the authors of [30] investigate and compare two of the most
widely used MANO platforms, such as OSM and ONAP.
The evaluation is performed in operational terms (resources
footprint and deployment delay), and functional terms (sup-
ported VIMs, scaling support, etc.), by fixing OpenStack as
the VIM and instantiating different VNFs that implement an
open-source virtual Customer Premises Equipment (vCPE).
However, no containerised functions, and hence CNFs, are
taken into consideration in this work. On the other hand,
similar to our work, the authors of [31] showcase some of
the first use cases on CNFs using the 5GTANGO service
platform [32] in a smart manufacturing domain. However, this
last work is limited to a validation of the 5GTANGO along
with K8s, without actually getting to study the behaviour of
this system nor comparing it with the classical scenario based
on VNFs, which would have helped to make tangible how
beneficial the adoption of containerisation in NFV could be.

Nevertheless, to the best of the authors’ knowledge, there
is no work in the literature introducing a proof of concept
and benchmarking of Kubernetes-based deployment for CNFs
orchestrated by the ETSI-hosted OSM. The work presented
in this paper is aligned with the ETSI-NFV architectural
framework and takes OSM as the MANO platform to natively
deploy CNFs. To this end, a pure standalone Kubernetes de-
ployment is setup in OSM (meaning that no intermediate VIM
such as OpenStack is used), in which Kubernetes provides the
functionality of the VIM itself, and both OSM and the NSs
are deployed via containers. Furthermore, the performance of
this architecture has been compared with the classical one, the
deployment relying on a VM-based VIM (i.e., in this case,
Openstack) running NSs (via VNFs) in VMs.

III. ETSI NFV VISION
A. NFV Evolution

The telco sector is moving towards Cloud Native due to
an evolution in the underlying technologies. The immediate
example is the use of containerisation as a natural evolution
from classic virtualisation. However, this process will take
place gradually. VNFs running on VMs will still be used in
production for some time due to the lack of maturity of the
container technology from the telecommunications point of
view (highlighting networking and security) and the recent
equipment expenditure from operators to adapt to VMs sce-
narios, which still have to be made profitable. In this context,
to make Cloud Native telco a reality, a transition from VNFs
to CNFs must take place. This is well reflected in [33], which
conveys the point of view of the European Commission and
the European ICT industry, and provides some guidelines on
how this technology will evolve in the near future.

This evolution can be seen in Figure 2, which showcases
the path from the classic solution based on VNF implemen-
tations running on VMs to a new architecture based on CNF
implemented on containers. As stated above, this shift is a
process that cannot be done immediately, but instead a gradual



Fig. 2. Evolution of the virtualisation solutions used in telcos.

evolution is required. Therefore, we are currently experiencing
a period of coexistence between VMs and containers that will
last for a few years. More specifically, the various phases of
this evolution can be described as follows:

• Past. The classic solution is based on VMs running on
bare metal or public clouds. Although this approach
has coped with the services demanded in 4G and lower
generations, it falls short to meet the requirements of 5G
in terms of latency, scalability and ultra-reliability. AWS,
Microsoft Azure, or Google Cloud are examples of rele-
vant public cloud providers. Hypervisors such as VMware
or VirtualBox have been widely adopted. Openstack has
been used as the de-facto cloud computing platform.

• Current status. The only feasible approach for the Cloud
Native Telco is to offer solution enabling the evolution
from VNFs (e.g., a Firewall, a DHCP server, etc.) running
on VMs to CNFs leveraging containers. It mirrors how
enterprises are moving their monolith architectures based
on VMs to containers orchestrated by K8s and then
refactoring them into microservices. Besides the gradual
evolution required, many legacy solutions cannot be im-
plemented yet with K8s, reaching a coexistence period in
terms of infrastructure between VMs and containers.

• Future. The most likely future approach is based entirely
on container cluster management. As a matter of fact, the
CNFC has adopted Kubernetes as the default open-source
management tool for micro-service oriented applications.
Therefore, no longer room would remain for OpenStack.
To address uses cases where VMs are a must (where
some VNFs have not been ported to CNFs yet or cannot
be ported), some software such as KuberVirt or Virtlet
could be used on top of Kubernetes.

The path towards orchestration including containerisation
states the basics of edge computing, which is another key
concept in 5G. Edge computing, in a nutshell, argues the
deployment of applications and services closer to the users
to mitigate the latency and bandwidth limitations of today’s
communications. To reach a landscape with more distribution
across multi-clouds and the inclusion of heterogeneous infras-
tructures, orchestration platforms with container support have
become a must. The tree main orchestration frameworks for
both VMs and/or containers promoted for the edge domain by
5GPPP are Kubernetes, OSM and ONAP [34].

Fig. 3. NFV architecture layout implemented by OSM and K8s.

B. Our NFV Architecture

The ETSI NFV architectural framework provides the func-
tional definition of the components involved but it does not
specify any implementation approach [3]. Therefore, different
combinations forming different architectures are possible. In
this context, benchmarking works targeting the evaluation and
analysis of the implementation choices are very useful and
interesting contributions. The NFV network model studied in
this paper is reflected in Figure 3 along with the ETSI NFV
architecture. This model is divided into three main blocks,
namely the VNFs themselves, the NFVI and the MANO layer.

At the MANO layer, the NFVO is implemented using OSM,
which is responsible for the deployment of NS and CNFs
on top of containers. Furthermore, OSM also acts as VNFM,
and it is in charge of monitoring the lifecycle management
of these virtualised network functions. The main reason for
selecting OSM as the MANO platform is due to its maturity,
performance, low resource print and wide adoption [30].

At the NFVI side, a K8s cluster manages the computing,
storage and network resources, acting as both NFVI and VIM
components. This decision was given by the fact that K8s
is currently the only container management tool supported by
OSM. Moreover, as previously mentioned, K8s is considered a
major candidate to be the future orchestrator in B5G networks
by both academia and industry because of its vast capabilities
and flexibility. However, current NFV implementations make
a tiny use of the real potential of this orchestration engine,
since MANO systems consider K8s as a “dumb” NFVI [34].

The next section provides further details on the implemen-
tation details considered to naively enable the deployment of
CNFs taking as a reference the architecture presented above.

IV. NFV ARCHITECTURE FOR CNF SUPPORT

A. K8s support in OSM

As introduced in Section I, there exist two approaches
to deploy a Kubernetes cluster along with OSM. The first



Fig. 4. Implementation of the OSM-Standalone K8s architecture

method entails a K8s cluster connected to a second VIM
(e.g., Openstack), which in turn is also connected to OSM.
This setup could be implemented via two methods: the first one
consist of a K8s cluster running on VMs inside the VIM and
connecting them to the VIM network, while he second method
relays on spinning up a baremetal K8s cluster and connecting
it again, to the VIM network. The second method regards a
pure standalone K8s approach. In this pure NFV CN scenario
(based only on containers) no additional VIM between OSM
and K8s is needed. Therefore, network operators can deploy
CNFs without requiring an operative extra VIM, which could
be challenging due to resources and/or expertise.

Taking into account its very recent support for K8s environ-
ments, OSM is more inclined in the first phase of this adoption
towards the deployments based on connecting K8s with an
additional VIM. The reason for this is that this option is easier
to take to a production environment from the current status
(i.e., VNFs deployments using VIMs such as Openstack), since
its use helps manage networks and facilitates the connection
to the infrastructure [35]. Therefore, this option has available
a richer documentation and different tested use cases.

By contrast, the standalone K8s approach is currently in
a much more immature state and has less documentation
resources. Given that OSM is an open-source solution, its
progress is partly due to the activities of its community. Such
activities include validation tasks and feature testing, which
allows discovering and fixing issues and bugs. This is also
one of the motivations for investigating and analysing this
architecture, and that aims to contribute to the evolution of
OSM with respect to lightweight virtualisation techniques.

Therefore, this work has as main objective to introduce a
proof of concept and validation of a pure standalone OSM-
K8s deployment in an NFV architecture in which CNFs can be
instantiated. According to the official documentation of OSM,
it is advised to deploy K8s associated with a VIM, giving the
impression that they do not consider K8s as a VIM. Never-
theless, this is debatable, since K8s can be considered a VIM
itself due to its functionality and capabilities. Furthermore, it
should be stressed that the use of an intermediate VIM between
OSM and K8s breaks the Cloud Native vision.

B. Setting a pure Cloud Native Testbed: OSM-Standalone K8s

The goal of this setup is to implement and validate the
container-based NFV architecture represented in Figure 3. The
implementation apart from the NFV components, OSM and
K8s, includes a third component, a helm chart repository, as
it is shown in Figure 4. This repository, was added in order

to be able to store and test our personalised K8s apps. This
architecture is based on OSM Release 8 (OSM-8), a K8s
cluster (K8s v1.19.2) and a Helm Chart repository (Helm v2).

In the helm chart repository component is where K8s apps,
in the form of helm charts, are stored. A helm chart is a
collection of files that describe a related set of Kubernetes
resources [36]. In a few words, a helm-chart could be defined
as a large YAML file that fully describes the K8s deployment.
It is important to highlight that the container image specified
in the helm chart is not stored in the helm chart repository.
Helm charts are at the same level than K8s, while container
images are at a lower one, being stored in Docker registries.
Therefore, it is an interesting option to use the same node as
helm chart repository and Docker registry.

In the implementation of the NFV CN testbed, a K8s-all-
in-one cluster has been set. This means that the same node
acts as master node and worker node. This works main aim
is to test the NFV CN architecture and therefore overlooks
concepts such as high availability and disaster recovery that
would be a must in a production environment (that would
have of course a greater number of master, etcd and worker
nodes). For instance, adding more worker nodes to the cluster
would be as easy as installing kubelet (K8s node agent) in
a new machine and adding it to the cluster by using a token
signed by the master node. By default, a K8s’ cluster does not
schedule pods on the control-plane node for security reasons.
To allow it, it is necessary to untaint the master following the
steps specified in K8s official documentation [37].

Figure 5 presents a sequence diagram of the main steps
required to implement a OSM-Standalone K8s environment.
Note that this UML diagram includes the operations for both
the preparation of the NFV environment and the instantiation
of a NS formed by CNFs, and that will be detailed below.

Preparation of the NFV environment. This phase includes
the tasks for the creation of the K8s cluster and the deployment
of OSM to ensure a successful connection and communication
both solutions. On the one hand, the process of adding some
OSM addons to the K8s cluster: (i) a load balancer (i.e.,
metallb); and (ii) a storage class [38]. For Kubernetes clusters
>v1.15, it is also needed a special permission of Tiller, which
is the server portion of helm (in Helm v2). On the other hand,
some steps in OSM must be also performed. First of all, due
to current OSM requirements, to be able to work with a OSM-
K8s isolated cluster, a dummy VIM must be added due to the
lack of native support for Kubernetes. This dummy VIM does
not perform any task and it is simply a OSM’s VIM definition
that contains dummy information in the different fields. It is
reasonable to think that in future OSM releases this step will be
deleted. Secondly the credentials and the location of the K8s
cluster need to be provided to OSM, and thirdly, the details
of the helm-chart repository must be also included.

Instantiation of a NS formed by CNFs. OSM is at this
point ready to instantiate container-based NFs. In the deploy-
ment process, OSM communicates with the K8s cluster, which
downloads the helm-charts specified in the CNF Descriptors
(CNFD) and implements the configuration defined in them. An



Fig. 5. Sequence diagram of the main steps while setting the CN testbed.

Fig. 6. Example of a CNFD written in YAML

example of a CNFD written in YAML is provided in Figure 6.
In the last part of the descriptor the helm chart repository and
the helm chart name are specified, where information such as
container images, network configuration, Role-Based Access
Control (RBAC) policies, etc. is provided.

C. OSM-Standalone K8s architecture: lessons learnt

As stated earlier, the progress of OSM is partly due to the
activities of its community. In this respect, the deployment
and implementation given in the previous section has allowed

identifying various issues regarding the instantiation of CNFs
in pure CN OSM-K8s environments, that are listed below.

• Lack of native support in the standalone Kubernetes
approach. To deploy this environment a dummy VIM
that does not perform any task needs to be registered
to OSM. Nonetheless, note that at the beginning of this
work, no information regarding this dummy step was
reflected in OSM’s official documentation.

• Lack of support for more than one K8s cluster. OSMr8
does not support the selection of the K8s cluster where
the NSs formed by CNFs are deployed. While on a
scenario with a single K8s cluster OSM perfectly handles
the deployment of container-based NFs, on a multi-k8s
cluster it raises an error as it is not able to select the
specific cluster.

• Lack of information in errors related to Helm charts.
If any error on the helm chart or the helm chart repos-
itory in the CNFD occurs, OSMr8 does not provide
any details about the error and limits it to a noti-
fication such as: “Error: failed to download
<Helm-Repo>/<Helm-Chart>”. Therefore, debug-
ging becomes a very hard task as the error could come
from different sources. Manual debugging on the OSM’s
pod is neither a solution, as due to permission issues
is not possible to debug at such level. A solution for
OSM could be to include the flag --debug in its internal
helm-related commands. With it, a more complete error-
reporting is provided, specifying the cause of the error.

V. PERFORMANCE EVALUATION. CNFS VS VNFS

The performance evaluation reported in this section aims
not only to validate the pure CN NFV framework for CNFs
introduced in this work but also to compare it with the
performance achieved by VNFs running on VMs. To this end,
below we present the methodology followed (including testbed
setup, images used, and experimentation details) and discuss
the results obtained.

A. Methodology

1) Testbed setup: Two testbeds implementing the ETSI
NFV architecture have been used for benchmarking in this
work. The first testbed is based on native OSM-K8s, while the
second one builds on OSM-OpenStack. The installation details
and resources used by the components required by the two
testbeds are specified in Table I. In particular, the MANO layer
(including VNFM functionalities) of both testbeds is based
on OSM. At the NFVI-VIM side, each testbed differs: the
first one follows the containers philosophy, while the second
one is based on a VM-driven architecture, which has been set
for benchmarking purposes. Figure 7 graphically displays the
configuration of the two aforementioned testbeds.

2) Images used: To fairly and equitably compare the be-
haviour of VNFs and CNFs, and hence of both testbeds, it is
required to use an image with similar size and performance
requirements. However, not many images meeting these two



Fig. 7. Benchmarking testbeds: OSM-K8s & OSM-OpenStack.

TABLE I
INSTALLATION DETAILS & RESOURCES USED BY THE TWO TESTBEDS

Installation details & resources used

Comp. Testbed 1:
OSM-Standalone K8s

Testbed 2:
OSM-OpenStack

OSM
OSM v8.0.1, installation based on K8s.

Installed in a VM running Ubuntu 18.04 with
2 vCPUS, 6GB of RAM and 60GB of storage

K8s

K8s v1.19.2 all-in-one
cluster installed with

kubeadm. Installed in a
VM running Ubuntu 18.04

with 2 vCPUS, 8GB of
RAM and 60GB of storage

-

Helm
Chart
Repo

Helm v2.20. VM running
Ubuntu 18.04 with 2

vCPUS, 8GB of RAM
and 60GB of storage

-

Open-
Stack -

Devstack v5.3.1 all-in-one
cluster. Installed in a VM

running Ubuntu 18.04 with
2 vCPUS, 8GB of RAM and

60GB of storage

conditions are available for both VMs and containers. Con-
tainer images, due to its nature, use to have lighter weight. For
instance, Ubuntu’s 18.04 image in cloud format weights more
than 300MB, while the docker image takes around 30MB.
Therefore, it is not a good candidate for a fair benchmarking.
On the other hand, CirroS images [39], which are minimal
Linux distributions designed for testing, are available in both
formats and have similar size (12.6MB in docker image format
and 15.58MB in cloud format). Hence, these images guarantee
a fair analysis and benchmarking for VNFs/CNFs. It should
be also noted that the results of the performance evaluation are
subject to the images and the resources used in the scenarios.

3) Experimentation details: To perform the analysis under
a controlled environment in both testbeds and evaluate their
behaviour when the complexity of the NSs grows, a set of
NSs composed of a varying number of VNFs/CNFs has been
previously onboarded in OSM. To this end, the number of
replicas for each NS (i.e., the number of VNFs/CNFs forming
each NS) has been increased at each iteration mimicking the
scaling up process in a NS on this type of systems. We

Fig. 8. NSIT of a NS for an increasing number of VNFs/CNFs.

remind the reader that the VNFs/CNFs forming those NSs
implement the same function, i.e., running CirroS cloud/-
docker images, respectively. The number of VNFs/CNFs per
NS is increased until they are composed of 10 VMs/containers,
respectively. The maximum number is given by the constraint
of our OpenStack testbed in which no more than 10 VMs
can be simultaneously instantiated, as it will be detailed in
Section V-B3. Once the onboarding is completed adding all
the VNF/CNF and NS descriptors to OSM, the helm chart
described in the CNF descriptors needs to be stored in the
helm chart repository. Assuming that the steps described in
Figure 5 have been performed without issues, the NSs are
ready to be instantiated. Each experiment (i.e., deployment of
NSs, increasing its VNFs/CNFs) has been repeated 4 times.

B. Performance Analysis

The next subsections discuss the tests performed for bench-
marking using some KPIs proposed in the literature such as
Network Service Instantiation time (NSIT), CPU and RAM
consumption, and maximum number of VNFs/CNFs supported
with the same resources.

1) KPI 1 - Network Service Instantiation Time (NSIT):
It defines the time needed to deploy and instantiate the
VNFs/CNFs of a NS [40]. This process involves the provision,
instantiation and configuration of the VMs/containers. The
creation of virtual links (if necessary) is also considered. These
actions follow the specifications provided in the VNFs/CNFs
and NS descriptors. This time is a key indicator as it reflects
the time necessary to scale a NS, or even to re-instantiate it due
to any issue. This metric is collected from the NFVO, which
has a global view of the underlying NSs state. The idea behind
this KPI is also considered in other related works [30], where
the authors separate this concept into Deployment Process
Delay (DPD) and On-boarding Process Delay (ODP).

Figure 8 showcases the NSIT taken by different NSs with
regard to the number of VNFs/CNFs. Each VNF/CNF contains
a single Virtual Deployment Unit (VDU)/Kubernetes deploy-
ment Unit (KDU). Its noticeable the huge difference between
the NSIT taken by NSs based on VNFs (running on VMs)
and NSs based on CNFs (running on containers). For instance,



Fig. 9. CPU usage of a NS for an increasing number of VNFs/CNFs.

when the NS is based on 1 CNF/VNF, the VNF takes more
than 2.5 times to be up and running. This difference increases
at each iteration, and with 10 VNFs/CNFs per NS, the VNF
version takes more then 7 times longer than the CNF one.
Notice that in the first iteration the docker image needs to be
downloaded before instantiating the CNF, which imposes an
extra time that is not present in the next experiments.

2) KPI 2 - CPU and RAM consumption: These are some
of the must-do KPIs to be analysed in this type of infras-
tructures. In Figure 9 the percentage of CPU usage in both
clusters is depicted, where it is clear that by default the K8s
cluster consumes more CPU than the Openstack one. When
instantiating the different NSs, the CPU used by each testbed
evolves differently. The OpenStack testbed (in which VNFs are
deployed) consume each iteration more CPU, even though no
task is run with them, and is caused by the resource-allocation
constraint of VMs. Conversely, containers use the resources
that they need and, if they are not running any task, no impact
is caused on the resources of the node where they are running.
Note that, if required, K8s also allows the reservation and
limitation of resources for a container using resource quotas.
These parameters have been collected in both VIMs.

In terms of RAM consumption, Figure 10 shows how the
OpenStack cluster consumes 60% of the memory only to run
the OpenStack services. Moreover, with 10 VNFs running,
the OpenStack cluster is almost at the limit, whereas the
K8s cluster is almost unaffected. The K8s cluster consumes
25% of RAM to run the containers that implement the K8s
architecture, and it only increases to 26% running 10 CNFs
in parallel. Furthermore, these tests can be considered as a
functional validation of both testbeds since they present logical
results due to the nature of the type of virtualisation used.

3) KPI 3 - Maximum number of VNFs/CNFs supported si-
multaneously: As both Openstack and K8s all-in-one cluster’s
machines have the same resources, and the simulations have
been run with images with similar size, a comparison between
the maximum number of NFs running simultaneously in both
testbeds (VNFs and CNFs respectively) is an interesting idea.
Due to the nature of the virtualisation technique of each
testbed, it is clear that the CNFs that can be instantiated in the

Fig. 10. RAM Usage of a NS for an increasing number of VNFs/CNFs.

TABLE II
MAX. NUMBER OF NFS RUNNING SIMULTANEOUSLY IN EACH TESTBED

Testbed Maximum simultaneous instances
OSM-Standalone K8s 116 CNFs
OSM-OpenStack 10 VNFs

K8s cluster outnumber the VNFs in the Openstack. Assuming
that each CNF runs on a pod and each VNF runs on a VM, a
116-10 ratio is obtained, as shown in Table II.

The main factor in favour of CNFs is that containers can
consume less than 1vCPU if needed, e.g., a container that
needs only 0.6 vCPU to run. VMs, on the other hand, need at
least 1 vCPU to be instantiated. Thus, CNFs allow saving sys-
tem resources and have a direct impact on CAPEX and OPEX.
For the same resources per server, the number of applications
that can be instantiated is 100 times higher, allowing users
to deploy several NSs in parallel, or forming complex VNF-
Forwarding Graphs composed of different NSs. However,
coping with scenarios where a high volume of containers are
interconnected could be a hard task due to the networking and
troubleshooting complexity. To address this, a concept called
service mesh is of great benefit. Open platforms such as Istio,
implement service mesh, allowing users to achieve a reliable
and secure communication between containers, facilitating
service-to-service communications between microservices.

VI. CONCLUSION

The deployment of CNFs on lightweight devices provides to
the NFV world an unprecedented flexibility and a crucial role,
boosting the 5G verticals KPIs, such as in automotive, smart
manufacturing, etc. Despite ETSI’s efforts to adapt to CN, due
to the early support of containers in the NFV architecture,
there are still no stand-alone NFV environments in the litera-
ture that support pure CNFs. In this context, the main objective
of this work is to introduce a proof of concept and validation
of the NFV OSM-Standalone K8s architecture, which is fully
aligned with CN principles as it is exclusively container-based.
Facilitating this deployment aims also to encourage the use
of CNFs from operators and developers. The results obtained
provide a functional validation and demonstrate the advantages



w.r.t. VM-based deployments in terms of instantiation time,
concurrent CNFs, and RAM/CPU consumption, which have a
direct impact on CAPEX and OPEX.

As a future work, both NFV testbeds will be deployed in
more resourceful bare-metal servers to analyse their behaviour
in an environment closer to production. Moreover, we will
perform the benchmarking with real network services with
more complex and heterogeneous images, such as a firewall
or a DHCP service with real traffic. At the time of writing, a
new version of OSM was released (OSMr9), enabling resource
orchestration in different scenarios and improved VNF/CNF
lifecycle management supporting Helm 3. In this regard,
future research work will include upgrading both testbeds with
OSMr9 and benchmarking using Helm 3.
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