Adolfo Comeron

Adolfo Comeron
Polytechnic University of Catalonia | UPC · Department of Signal Theory and Communications (TSC)

About

276
Publications
49,492
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,478
Citations

Publications

Publications (276)
Preprint
Full-text available
Cloud-radiation interaction still drives large uncertainties in climate models and its estimation is key to make more accurate predictions. In this context, the high-altitude cirrus clouds play a fundamental role, because 1) they have a high occurrence frequency globally and 2) they are the only cloud that can readily cool or warm the atmosphere du...
Article
Full-text available
We assess the temperature stability requirements of unseeded Nd:YAG lasers in lidar systems for atmospheric temperature profiling through the rotational Raman technique. Taking as a reference a system using a seeded laser assumed to emit pulses of negligible spectral width and free of wavelength drifts, we estimate first the effect of the pulse spe...
Article
The Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS) officially became the 33 rd European Research Infrastructure Consortium (ERIC) on April 25, 2023 with the support of 17 founding member and observer countries. As a pan-European legal organization, ACTRIS ERIC will coordinate the provision of data and data products on short-lived...
Preprint
Full-text available
Mineral dust has a key role in the Earth’s radiative balance, and it has become significant over the Iberian Peninsula (IP), where Saharan dust outbreaks seem to increase in frequency and intensity. This study quantifies the dust direct radiative effect (DRE) in the short-wave range (SW), during an intense persistent springtime dust episode over th...
Article
Full-text available
In this paper a statistical study of cirrus geometrical and optical properties based on 4 years of continuous ground-based lidar measurements with the Barcelona (Spain) Micro Pulse Lidar (MPL) is analysed. First, a review of the literature on the two-way transmittance method is presented. This method is a well-known lidar inversion method used to r...
Chapter
Full-text available
This work aims to assess some aerosol properties retrieved by GRASP algorithm whose inputs are degree of linear polarization (DOLP), radiances and aerosol optical depth (AOD) from new photometer at 7λ (level 1.5, version 3) and range-corrected signal (RCS) from lidar system at 3λ in the Universitat Politècnica de Catalunya (UPC). The volume size di...
Chapter
ATLAS, the Atmospheric Thermodynamic LidAr in Space, is a project aimed at developing the first spaceborne Raman Lidar capable to measure simultaneously water vapor mixing ratio and temperature profiles with high temporal and spatial resolution at global level. Within the project, proposed to the European Space Agency as a mission concept in the fr...
Article
Full-text available
The European Aerosol Research Lidar Network (EARLINET), part of the Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS), organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. Besides the standard operational proc...
Article
Full-text available
Sicard, M.; Rodríguez-Gómez, A.; Comerón, A.; Muñoz-Porcar, C.; Gil-Díaz, C.; Lolli, S.; Dubovik, O.; Lopatin, A.; Herrera, M.E.; et al. Evaluation of the Accuracy of the Aerosol Optical and Microphysical Retrievals by the GRASP Algorithm from Combined Measurements of a Polarized Sun-Sky-Lunar Photometer and a Three-Wavelength Elastic Lidar. Remote...
Article
Full-text available
Aerosols are one of the most important pollutants in the atmosphere and have been monitored for the past few decades by remote sensing and in situ observation platforms to assess the effectiveness of government-managed reduction emission policies and assess their impact on the radiative budget of the Earth's atmosphere. In fact, aerosols can direct...
Preprint
Full-text available
In this paper a statistical study of cirrus geometrical and optical properties based on 5 years of continuous ground-based lidar measurements with the Barcelona (Spain) Micro Pulse Lidar (MPL) is analysed. First, a review of the literature on the two-way transmittance method is presented. This method is a well-known lidar inversion method used to r...
Article
Full-text available
We derive an explicit (i.e., non-iterative) formula for the retrieval of the overlap function in an aerosol lidar with both elastic and Raman N2 and/or O2 channels used for independent measurements of aerosol backscatter and extinction coefficients. The formula requires only the measured, range-corrected elastic and the corresponding Raman signals,...
Preprint
Full-text available
The European Aerosol Research Lidar Network (EARLINET), part of the Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS), organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. Besides the standard operational proc...
Article
Full-text available
Three volcanic plumes were detected during the Tajogaite volcano eruptive activity (Canary Islands, Spain, September–December 2021) over the Iberian Peninsula. The spatiotemporal evolution of these events is characterised by combining passive satellite remote sensing and ground-based lidar and sun-photometer systems. The inversion algorithm GRASP i...
Preprint
Full-text available
Aerosols are one of the most important pollutants in the atmosphere and have been monitored for the past few decades by both remote sensing and in situ observation platforms to assess the effectiveness of government-managed reduction emission policies and assess their impact on the radiative budget of the Earth's atmosphere. In fact, aerosols can d...
Preprint
Full-text available
We derive an explicit (i.e. non-iterative) formula for the retrieval of the overlap function in an aerosol lidar with both elastic and Raman N2 or/and O2 channels used for independent measurements of aerosol backscatter and extinction coefficients. The formula requires only the measured, range-corrected, elastic and the corresponding Raman signals,...
Article
Full-text available
An intense and long-lasting Saharan dust outbreak crossed the Iberian Peninsula (IP) from the southwest (SW) to the northeast (NE) from 25 March until 7 April 2021. This work aims to assess the optical and mass contribution of both fine and coarse dust particles along their transport. Five Iberian lidar stations were monitoring the transport and ev...
Article
Full-text available
This paper presents the estimation of the hygroscopic growth parameter of atmospheric aerosols retrieved with a multi-wavelength lidar, a micro-pulse lidar (MPL) and daily radiosoundings in the coastal region of Barcelona, Spain. The hygroscopic growth parameter, γ, parameterizes the magnitude of the scattering enhancement in terms of the backscatt...
Preprint
Full-text available
An intense and long-lasting Saharan dust outbreak over the Iberian Peninsula (IP) in springtime 2021 is studied in this work with the aim of investigating the optical and mass contribution of both the fine and coarse dust particles along their transport by crossing the IP from the south-west to the north-east. Five Iberian lidar stations (El Arenos...
Article
Full-text available
The volcanic eruption of Cumbre Vieja (La Palma Island, Spain), started on 19 September 2021 and was declared terminated on 25 December 2021. A complete set of aerosol measurements were deployed around the volcano within the first month of the eruptive activity. This paper describes the results of the observations made at Tazacorte on the west bank...
Article
Full-text available
This paper is the companion paper of Córdoba-Jabonero et al. (2021). It deals with the estimation of the long-wave (LW) and net dust direct radiative effect (DRE) during the dust episode that occurred between 23 and 30 June 2019 and was paired with a mega-heatwave. The analysis is performed at two European sites where polarized micro-pulse lidars r...
Preprint
Full-text available
This paper presents the estimation of the hygroscopic growth parameter of atmospheric aerosols retrieved with a multi-wavelength lidar, a micro pulse lidar and daily radiosoundings in the coastal region of Barcelona, Spain. The hygroscopic growth parameter, γ, parametrizes the magnitude of the scattering enhancement in terms of the backscatter coef...
Article
Full-text available
The Global Observing System (GOS) has encountered some limitations due to a lack of worldwide real-time wind measurements. In this context, the European Space Agency (ESA) has developed the Aeolus satellite mission, based on the ALADIN (Atmospheric Laser Doppler Instrument) Doppler wind lidar; this mission aims to obtain near-real-time wind retriev...
Article
Full-text available
This paper investigates the mechanisms involved in the dispersion, structure, and mixing in the vertical column of atmospheric pollen. The methodology used employs observations of pollen concentration obtained from Hirst samplers (we will refer to this as surface pollen) and vertical distribution (polarization-sensitive lidar), as well as nested nu...
Article
Full-text available
Extreme heavy precipitation events (HPEs) pose a threat to human life but remain difficult to predict because of the lack of adequate high frequency and high-resolution water vapor (WV) observations in the low troposphere (below 3 km). To fill this observational gap, we aim at implementing an integrated prediction tool, coupling network measurement...
Poster
This study shows a spectral analysis based on hygroscopic growth cases that were identified by a multi-wavelength lidar system at the Universitat Politècnica de Catalunya (UPC) and a co-located radiosounding from the Meteorological Service of Catalonia, (Meteocat) in Barcelona, Spain (coastal area), during 2010 to 2018.
Preprint
Full-text available
This paper is the companion paper of Córdoba-Jabonero et al. (2021). It deals with the estimation of the longwave (LW) and net dust direct radiative effect (DRE) during the dust episode that occurred between 23 and 30 June, 2019, and coincided with a mega-heatwave. The analysis is performed at two European sites where polarized-Micro-Pulse Lidars r...
Preprint
Full-text available
This paper investigates the mechanisms involved in the dispersion, structure and mixing in the vertical column of atmospheric pollen. The methodology used employs observations of pollen concentration obtained from Hirst samplers (we will refer to as surface pollen) and vertical distribution (polarization-sensitive lidar) as well as nested numerical...
Preprint
Full-text available
Global Observing Systems (GOS) encounter some limitations due to a lack of worldwide real-time wind measurements. In this context, the European Space Agency (ESA) has developed the Aeolus satellite mission, based on the ALADIN (Atmospheric Laser Doppler Instrument) Doppler wind lidar, aimed to obtain near real-time wind retrievals at global scale....
Article
Full-text available
The short-wave (SW) direct radiative effect (DRE) during the summer 2019 heatwave produced partly by a moderate, long-lasting Saharan dust outbreak over Europe is analysed in this study. Two European sites (periods) are considered: Barcelona, Spain (23–30 June), and Leipzig, Germany (29 and 30 June), 1350 km apart from each other. Major data are ob...
Article
Full-text available
This paper aims to quantify the improvement obtained with a purely rotational Raman (PRR) channel over a vibro-rotational Raman (VRR) channel, used in an aerosol lidar with elastic and Raman channels, in terms of signal-to-noise ratio (SNR), effective vertical resolution, and absolute and relative uncertainties associated to the retrieved aerosol o...
Article
Relative humidity (RH) profiling using Raman lidars requires simultaneous range-resolved temperature and pressure data that are not always available. We propose and assess a method based on the use of a locally retrieved atmospheric model to estimate the temperature and pressure profiles. This model relies on the data from daily radiosonde launches...
Preprint
Full-text available
The shortwave (SW) direct radiative effect during the summer 2019 heatwave produced partly by a moderate, long-lasting Saharan dust outbreak over Europe is analysed in this study. Two European sites (periods) are considered: Barcelona, Spain, (23–30 June) and Leipzig, Germany (29–30 June). Major data are obtained from AERONET and MPLNET observation...
Article
Full-text available
This paper establishes the relationship between the signal of a lidar system corrected for the incomplete overlap effect and the signal of another lidar system or a ceilometer for which the overlap function is unknown. Simple mathematical relationships permit the estimation of the overlap function of the second system as well as the associated erro...
Article
Full-text available
A stand-alone lidar-based method for detecting airborne hazards for aviation in near real time (NRT) is presented. A polarization lidar allows for the identification of irregular-shaped particles such as volcanic dust and desert dust. The Single Calculus Chain (SCC) of the European Aerosol Research Lidar Network (EARLINET) delivers high-resolution...
Article
Full-text available
The Aerosol, Clouds and Trace Gases Research Infrastructure ACTRIS is currently being developed with support from more than 20 countries and more than 100 research-performing organizations in Europe. The pan-European distributed research infrastructure shall provide data and services related to short-lived atmospheric constituents to facilitate hig...
Preprint
Full-text available
Abstract. A stand-alone lidar-based method for detecting airborne hazards for aviation in near-real-time (NRT) is presented. A polarization lidar allows for the identification of irregular-shaped particles such as volcanic dust and desert dust. The Single Calculus Chain (SCC) of the European Aerosol Lidar Network (EARLINET) delivers high resolution...
Article
Full-text available
The water cycle strongly influence life on Earth and precipitation especially modifies the atmospheric column thermodynamics through the evaporation process and serving as a proxy for latent heat modulation. For this reason, a correct light precipitation parameterization at global scale, it is of fundamental importance, bedsides improving our under...
Article
Full-text available
Precipitation modifies atmospheric column thermodynamics through the process of evaporation and serves as a proxy for latent heat modulation. For this reason, a correct precipitation parameterization (especially for low-intensity precipitation) within global scale models is crucial. In addition to improving our modeling of the hydrological cycle, t...
Article
Full-text available
Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol pr...
Article
During the 2017 record-breaking burning season in Canada/United States, intense wild fires raged during the first week of September in the Pacific northwestern region (British Columbia, Alberta, Washington, Oregon, Idaho, Montana and northern California) burning mostly temperate coniferous forests. The heavy loads of smoke particles emitted in the...
Preprint
Full-text available
During the 2017 record-breaking burning season in Canada / United States, intense wild fires raged during the first week of September in the Pacific northwestern region (British Columbia, Alberta, Washington, Oregon, Idaho, Montana and northern California) burning mostly temperate coniferous forests. The heavy loads of smoke particles emitted in th...
Article
Full-text available
Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wild fire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol p...
Article
Full-text available
An unprecedented extreme Saharan dust event was registered in winter time from 20 to 23 February 2017 over the Iberian Peninsula (IP). We report on aerosol optical properties observed under this extreme dust intrusion through passive and active remote sensing techniques. For that, AERONET (AErosol RObotic NETwork) and EARLINET (European Aerosol Res...
Article
Full-text available
We present an automatic aerosol classification method based solely on the European Aerosol Research Lidar Network (EARLINET) intensive optical parameters with the aim of building a network-wide classification tool that could provide near-real-time aerosol typing information. The presented method depends on a supervised learning technique and makes...
Article
Among the different techniques available for measuring the atmospheric water vapor content, Raman lidars stand out as accurate instruments providing detailed profiles with high temporal and altitude resolution. Their principle is based on obtaining the range-resolved ratio of the lidar signals corresponding to Raman returns from water vapor and nit...
Article
Full-text available
In this paper, we illustrate a new, simple and complementary ground-based methodology to retrieve the vertically resolved atmospheric precipitation intensity through a synergy between measurements from the National Aeronautics and Space Administration (NASA) Micropulse Lidar network (MPLNET), an analytical model solution and ground-based disdromete...
Article
Full-text available
We propose a new method for calculating the volume depolarization ratio of light backscattered by the atmosphere and a lidar system that employs an auxiliary telescope to detect the depolarized component. It takes into account the possible error in the positioning of the polarizer used in the auxiliary telescope. The theory of operation is presente...
Article
Full-text available
We present an automatic aerosol classification method based solely on European Aerosol Research Lidar Network (EARLINET) intensive optical parameters with the aim of building a network-wide classification tool that could provide near-real-time aerosol typing information. The presented method depends on a supervised learning technique and makes use...
Preprint
Full-text available
In this paper we illustrate a new, simple and complementary ground-based methodology to retrieve the vertically resolved atmospheric precipitation intensity through a synergy between measurements from the National Aeronautics and Space Administration (NASA) Micropulse Lidar network (MPLNET), an analytical model solution and ground-based disdrometer...
Article
Full-text available
An unprecedented extreme Saharan dust event was registered in winter time from 20 to 23 February 2017 over the Iberian Peninsula (IP). We report on aerosol optical properties observed under this extreme dust outbreak through remote sensing (active and passive) techniques. For that, EARLINET (European Aerosol Research LIdar NETwork) lidar and AERONE...
Article
Full-text available
We analyze the practical limits of a lidar system based on the use of a laser diode, random binary continuous wave power modulation, and an avalanche photodiode (APD)-based photereceiver, combined with the control and computing power of the digital signal processors (DSP) currently available. The target is to design a compact portable lidar system...
Article
Full-text available
A method for determining the calibration factor of the water vapor channel of a Raman lidar, based on zenith measurements of diffuse sunlight and on assumptions regarding some system parameters and Raman scattering models, has been applied to the lidar system of Universitat Politècnica de Catalunya (UPC; Technical University of Catalonia, Spain). R...