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Abstract—Solar irradiance prediction is a major issue in
energy harvesting enabled WSNs. In this paper, we use Markov
chains of increasing order to propose a new model - referred to as
ASIM - for predicting solar irradiance patterns. Cornerstone of
the proposed model is the determination of the state dependencies
of the underlying Markov chains. The ASIM model is derived
from a comprehensive solar radiation data set of four different
locations around the globe. Our trace driven performance evalu-
ation reveals that the ASIM model predicts the solar irradiance
pattern very accurately - Normalized RMSE as low as 0.1 - as
the order of the underlying Markov model increases. We also
present mechanism to reduce the complexity of Markov chain to
make the model more practical in wireless sensor networks.

Keywords—Energy Harvesting, Solar Irradiance Prediction,
Wireless Sensor Networks, Markov Chains

I. INTRODUCTION

Solar harvesting in wireless sensor networks is challenged
by solar irradiation availability at the generation point, which
is highly time varying. Solar irradiation is diurnal in nature,
maximum at noon and zero at night, and is highly affected
by the current weather conditions. This behavior hinders the
continuous supply of energy to the network nodes. This reveals
the necessity for a mechanism with which the solar irradiation
pattern may be predicted. Accurate predictions can lead to
network protocol designs and battery charging-discharging
methods which account priori for these time varying patterns,
maximizing the network lifetime.

In this paper, we propose a new model to be used for
predicting solar irradiation patterns. The model is based on
Markov chains of increasing order. Markov chains are used in
a number of ways to predict solar irradiance, however, accurate
predictions are only possible if the state dependencies in the so-
lar irradiance pattern are accounted for and correctly evaluated.
The ASIM (Accurate Solar Irradiance prediction Model) model
accounts for such dependencies and evaluates them based on
a comprehensive radiations data set from various countries in
the world. The results demonstrate that ASIM predicts solar
radiation patterns with increasing accuracy as the order of the
underlying Markov chain increases. To utilize ASIM model in
WSN, we also present a reduced complexity version in which
a Markov chain with order K = 3 provides the similar results
as that of order 10.

The rest of the paper is organized as follows. In section
II we review related work in this domain, in section III we
describe the proposed model. In section IV we evaluate its
performance using a comprehensive data set. Moreover, we
present complexity analysis of the model in section V followed
by Utilization of ASIM in section VI and finally in section VII
we offer our conclusions and future research directions.

II. RELATED WORK

A number of solar energy availability models have been
proposed recently. These models can be classified in three
different categories: stochastic, statistical and machine learning
based models. A brief review of these models is given below.

Many stochastic models of solar radiation availability make
use of Markov chains [1], [2]. However, these models are
restricted to first or second order Markov chains. A first order
Markov chain model is proposed in [1] to generate synthetic
series of global irradiation data for the design of photovoltaic
systems. Similarly, a two state (active and inactive) first order
Markov chain model is presented in [2] by combining the
energy and traffic of the energy harvesting node.First order
Markov chain models are also used in energy harvesting in
Body Sensor Networks (BSN). For instance, authors in [3]
present MAKERS a model for residual energy prediction in
BSN. The MAKERS model relates the residual energy to the
ambient energy availability, and so the residual energy pre-
dictions generated by the model are mapped to corresponding
ambient energy values.

Higher order Markov chain based models have been pro-
posed in literature to predict a number of time series data
systems. In [4] first and second order Markov chain models
are used to generate synthetic wind speed time series data.
However, to our knowledge, higher order Markov chain models
have not been used in WSNs to model and predict solar
irradiance data sets. The proposed ASIM model fills this
gap, as it incorporates high order Markov chains to predict
solar irradiance time series to be used for the energy efficient
operation of wireless sensor networks.

Statistical models use techniques like mean, variance, re-
gression and moving average analysis. For instance, in [5],
a statistical model is proposed to predict the mean value of



solar radiation for any hour of the day. The model is derived
by introducing a correction factor to previous mathematical
models adopted by the same authors. The mathematical model
proposed in [6] is based on improvements of the Bristow-
Campbell [7] algorithm to estimate the daily solar radiation.
Temperature, humidity and precipitation values are used to
estimate the radiation. Alternative statistical approaches, such
as Auto Regression (AR), Auto Regression Moving Aver-
age (ARMA), Auto Regression Integrated Moving Average
(ARIMA) and Linear Regression (LR), are also tested on
their ability to generate accurate predictions of solar radiations
[8]. In WSNs, generally slight modifications of EWMA, such
as presented in [9], [10] and [11] are used for solar energy
predictions.

Machine learning methods are usually based on techniques
such as neural networks and fuzzy logic. The authors in [12]
propose a neural network model which is compared with
existing models such as autoregressive and fuzzy logic models
to predict half daily irradiance. The proposed model is found
to outperform existing approaches with respect to the accuracy
of the generated predictions. Similarly, the authors in [13]
propose a prediction model which is developed by combining
an artificial neural network (ANN) and a Markov transition
model. A more recent work in [14] presents a hybrid model
which is used to predict long term solar radiations. The model
is a General Fuzzy Model (GFM) which uses a Gaussian
Mixture Model (GMM) to predict solar radiation. However,
machine learning models are usually slower and more prone
to errors compared to stochastic models because those models
require many features e.g. temperature, humidity, irradiance
etc. Whereas ASIM requires only one feature the irradiance
data to train itself. Additionally, the proposed ASIM model,
stochastic in nature, thus enjoys a number of benefits such as
fast convergence and good accuracy.

III. THE ASIM MODEL

In this section we review background theory on Markov
chains and we describe how we use Markov chains of in-
creasing order as a baseline to develop the proposed pre-
diction model. Central elements of the proposed model are
state dependencies of the underlying Markov chain which
are determined using a comprehensive data set from different
collection points around the world. The main characteristics of
the data set are described together with information on how
the model is implemented, tuned and validated.

Fig. 1. Transition probabilities of the first order Markov chain

A. Description of ASIM Model

The proposed ASIM model is based on Markov chains of
increasing order. We first describe a first order Markov chain
with emphasis on the underlying state dependencies and we
then describe how the first order chain can be extended to the
kth order case and how the increase in the order affects these
state dependencies.

We consider a discrete time Markov chain {Xk}. The
Markov chain is a discrete time random process with Xk

denoting a random variable at the time instant k. Each random
variable can attain values in the set [x1, x2, ..., xn]. Each xi

is referred to as a state of the Markov chain. A first order
Markov chain is known to possess the so-called Markov prop-
erty, which states that the probability of the random process
attaining a state at a particular time instant only depends on
the attained state at the previous time instant i.e.

P (Xk+1 = xi | Xk = xj , Xk−1 = xl, ..., X1 = xm) =

= P (Xk+1 = xi | Xk = xj) = Pj,i (1)

Note that we have used the notation Pj,i to denote the
transition probability from the state xj to the state xi. So,
the random process can transition from any state to any
other state, according to the latter transition probability. This
is reflected in the relationship characterizing the probability
Πi(k) = P (Xk = xi) of the random variable Xk, at any time
instant k, attaining the state xi.

Πi(k + 1) =

n∑
j=1

Πj(k)Pj,i i,∈ {1, 2, .., n} (2)

These state dependencies are depicted schematically in Fig.
1. In the ASIM model the states [x1, x2, ..., xn] are obtained
by partitioning the range of attainable irradiance values into n
equally sized sets. Each set corresponds to a state whose value
is equal to the median of the set.

Fig. 2. Transition probabilities of the second order Markov chain



We now describe how we can extend the first order Markov
chain to a second order Markov chain as an intermediate step
in defining general K order Markov chains. A second order
Markov chain has the property that the probability of the
random process attaining a state at a particular time instant
only depends on the attained states at the previous two time
instant i.e.

P (Xk+1 = xi | Xk = xj , Xk−1 = xl, ..., X1 = xm) =

= P (Xk+1 = xi | Xk = xj , Xk−1 = xl) = Pj,l,i (3)

Denoting by Πj,l(k) = P (Xk = xj , Xk−1 = xl), the
probability Πi(k) = P (Xk = xi) is now evaluated according
to:

Πi(k + 1) =

n∑
j=1

n∑
l=1

Πj,l(k)Pj,l,i i,∈ {1, 2, .., n} (4)

In order to depict the above state dependencies schematically
we consider all the 2-tuples of consecutive state transitions. We
refer to each 2-tuple as a state. Transition from one state to
the other is only admissible if the last element of the original
state is the same as the first element of the destination state.
For example, the state x1x2 can make a transition to any state
starting with x2, e.g. x2x3. The probability associated with
the transition from x1x2 to x2x3 is the transition probability
P1,2,3. The state degeneracies of the second order Markov
chain are shown schematically in Fig. 2. Similarly a general
K order Markov chain can be defined using the second order
Markov chain. A K order Markov chain has the property that
the probability of the random process attaining a state at a
particular time instant only depends on the attained states at
the previous K time instant i.e.

P (Xk+1 = xi | Xk = xj , Xk−1 = xl, ..., X1 = xm) =

P (Xk+1 = xi | Xk = xj , Xk−1 = xl, ...

, Xk−K+1 = xq) = Pj,l,..,q,i (5)

Denoting by Πj,l,..,q(k) = P (Xk = xj , Xk−1 =
xl, ..., Xk−K+1 = xq), the probability Πi(k) = P (Xk = xi)
is now evaluated according to:

Πi(k+1) =

n∑
j=1

n∑
l=1

...

n∑
q=1

Πj,l,..,q(k)Pj,l,..,q,i i,∈ {1, 2, .., n}

In order to understand the model, let us consider all the K-
tuples of consecutive state transitions. We refer to each K-
tuple as a state. Transition from one state to the other is only
admissible if the last K element of the original state is the same
as the first K element of the destination state. For example,
the state x1x2..x

K
3 can make a transition to any state starting

with x2..x
K−1
3 , e.g. x2..x

K−1
3 xK

5 . The probability associated
with the transition from x1x2..x

K
3 to x2..x

K−1
3 xK

5 is the
transition probability P1,2,..,3,5. We assume that the accuracy
of prediction will improve as the value of K increases. We
analyze this assumption in subsequent sections.

IV. PERFORMANCE EVALUATION AND RESULTS

In this section, we first present the utilized evaluation data
sets followed by the evaluation methodology and performance
analysis.

TABLE I. DATA SET INFORMATION

Location Mean
Temp. Data years

Daily total Radiation
(W/m2)
Max min average

Sonnblick, Austria -04◦C 1993 - 2012 3828 97 1450
Valentia, Ireland 11.4◦C 2003 - 2012 3165 26 995
Bondville, IL, USA 11◦C 2003 - 2012 3246 33 1470
Tamanrasset, Algeria 21.1◦C 2001 - 2006 3604 1968 2809

A. Data Set Description

The model proposed in the previous section was tuned and
evaluated using real world solar radiation data sets obtained
from the World Radiation Data Center (WRDC) [15]. We
considered data sets from four different locations in the world:
Valentia (Ireland), Tamanrasset (Algeria), Bondville (Illinois,
USA) and Sonnblick (Austria). These locations were selected,
as the corresponding data sets are characterized by longer data
collection period, variety in daily radiation and small number
of missing values. Some basic characteristics of this data are
shown in Table I. The data sets also exhibit varying level
of dependency between radiation values. We performed basic
autocorrelation analysis to estimate the level of dependency.
The results of the autocorrelation analysis - not shown for
brevity - suggest varying level of dependency.

B. Evaluation Methodology

To evaluate ASIM, we have used the first half of each trace
as training data and the remaining half for testing the accuracy
of the generated predictions. The states of the Markov chain
are derived by partitioning the considered training data set into
bins of size 100. For example, irradiance values in the range 0-
99 are considered to lie within the first bin and are all assigned
state one. The first Markov state thus contains all the radiance
values in the range 0-99. The largest value of the data set
determines the number of states in the Markov chain model
i.e. if the largest value of the data is equal to 3604, as in the
case of the Algeria data set, then the model comprises of 37
states.

In order to train the ASIM model, the steady state transition
probabilities are extracted using the first half of the considered
data traces. We calculate the steady state probability of a
transition from a particular state to another state by dividing
the number of transitions between these states within the
considered data set, over all transitions. The trained model
is then used to generate predictions for the next half of the
trace. Once the system attains a particular state, the next state
is predicted by considering the transition probabilities from
the attained state, obtained during the training phase. The way
that this is done is by partitioning the 0-1 interval into regions
whose size is equal to the obtained transition probabilities.
A random number is then generated according to a uniform
distribution in the interval 0-1. The next state is dictated by
the region into which this random number lies.

This methodology is employed to generate predictions for
the second half of each data set. The accuracy of the predic-
tions and thus the effectiveness of the prediction algorithm is
evaluated by comparing the predicted data with the real world
data.



Fig. 3. Comparison between original and the predicted data for K=1

C. Evaluation Results

We present the evaluation results in increasing order of
model complexity. We first start with a first order Markov
chain model (K=1) and in order to investigate the effect of
increasing the order of the underlying Markov chain we present
the 5th and 10th order cases. Although we have performed
analysis for other values of K, these results are representative
of all other values of K. The evaluation is conducted by
comparing predicted and real values utilizing graphs showing
both quantities over time. In addition we use two performance
metrics: the Normalized Root Mean Square Error (NRMSE)
and the number of predicted points which lie under one
standard deviation from the corresponding original point of
the original data set. The former is a measure of the error
rate while the latter depicts the closeness of the predicted
values to the original values, in other words the accuracy of
the ASIM model. The results of these measures are discussed
in the forthcoming sections. The NRMSE is defined as:

Error =

√√√√ 1

N

N∑
i=1

(
actuali − predictedi

actuali
)2 i,∈ {1, 2, .., N}

(6)
where N is the total number of predicted values.

1) First Order Markov chain Model: This is the simplest
form of the ASIM model where each state depends only on
the previous state. In Fig. 3 we show four graphs each of
which compares real and predicted data for the considered
locations. The graphs depict the time evolution of the real and
predicted Markov states of the solar radiation system. The x-
axis represents the time (in days) and the y-axis axis represents
the Markov states at each day.

The results in Fig. 3 indicate that the predicted values do
not match very well with the original data. This demonstrates
the inability of the first order Markov chain model to correctly

capture the underlying state dependencies and thus generate
accurate predictions. This is also demonstrated in Table II
which shows the number of points which lie under one
standard deviation of the corresponding original values. For
the first order Markov chain model we observe that only
50% of the predicted values lie within one standard deviation.
Higher number of points below the one standard deviation
are needed to indicate good level of prediction accuracy and
this motivates the investigation of higher order Markov chains
despite the increased implementation complexity. The low
levels of prediction accuracy of the first order model are also
supported by the low values of the root mean squared error
which are depicted in Table III. This further warrants the use
of a higher value of K.

2) Higher Order Markov chain Model with K = 5: In
order to investigate the prediction accuracy of higher order
models we consider a Markov chain Model with K=5 which
implies that the next state depends on the previous 5 states.
In ASIM, this is implemented by defining a new set of states
where each state is a combination of states of the first order
Markov chain Model. This refinement in the chosen set of
states allows for a more detailed description of the underlying
state dependencies which in turn leads to higher prediction
accuracy. This is demonstrated in Fig. 4 which shows the time

TABLE II. POINTS BELOW ONE STANDARD DEVIATION

Location Total
points

Points under one
standard deviation
K=1 K=5 K=10

Sonnblick, Austria 3651 1826 2014 2699
Valentia, Ireland 1827 923 951 1329
Bondville, IL, USA 1827 923 1344 1359
Tamanrasset, Algeria 1096 494 547 891

evolution of the states of the solar radiation at the locations
under investigation. It is evident that the predicted values are
in much more agreement with the actual values relative to the



Fig. 4. Comparison between original and the predicted data for K=5

first order model case. This is also indicated by the lower root
mean square error values which are shown in Table III and the
higher number of points under one standard deviation from the
actual value of the original data which is highlighted in Table
II. However, the diurnal behavior of the solar irradiation data
is not captured correctly by the considered models, except in
the case of Bondville, USA. For Bondville, USA, it seems that
a value of K = 5 is good enough to be used in practice. The
autocorrelation analysis presented in the previous section can
be used to explain this as the Bonville data set is characterized
by low autocorrelation values which converge relatively fast.
For all other locations, it is evident that higher order Markov
models are needed to provide the required accuracy. However,
the goal of the ASIM model is to provide a generic solution
which can be used to predict solar radiation values and thus
higher order Markov chain models are necessary.

3) Higher Order Markov chain Model with K = 10: In
the case of K = 10, each derived state now comprises of 10
basic states of the first order model. Fig. 5 shows real solar
radiation values and predicted values generated by the 10th
order ASIM model for the locations under consideration. The
results indicate good agreement between real and predicted
values in all cases and the ability of the ASIM model to
capture the diurnal nature of the solar radiation data. This is
supported by the results of Table II which indicate that up to
81% of the predicted values lie within one standard deviation
away from the actual value of the original data. The higher
accuracy of the generated predictions is also indicated by the
results of Table III. The table shows that the 10’th order model
achieves the smallest normalized means squared errors with the
minimum value being 0.1 corresponding to the Sonnblick data
set, and the maximum value being 1.36 which corresponds
to the Algeria data set. An average value of 0.78 has been
achieved.

TABLE III. NORMALIZED RMSE

Location Normalised RMSE
K=1 K=5 K=10

Sonnblick, Austria 1.39 1.38 0.68
Valentia, Ireland 3.36 2.83 0.99
Bondville, IL, USA 2.65 1.4 1.36
Tamanrasset, Algeria 0.2 0.18 0.1

V. COMPLEXITY ANALYSIS OF ASIM

In the previous section, we have shown that ASIM is
capable of predicting solar irradiance value with reasonable
accuracy. We have also seen that the accuracy of model
increases with an increase in the order of Markov Chain up
to K=10. An increase in K beyond 10 has marginal or no
impact on the accuracy of prediction. This is shown in Figure
6. However, the Markov Chain order K=10 results into a

Fig. 6. K order vs. No. of NRMSE

fairly complex structure due to a very large number of states
involved which may deem the ASIM model impractical. This
warrants an analysis of state complexity and possible reduction
in number of states without losing significant accuracy. In
ASIM, the number of states are governed by the equation given



Fig. 5. Comparison between original and the predicted data for K=10

below

N =

(
Dmax

W

)K

(7)

where N is the total number of states, K is the order of
Markov chain, Dmax represents the maximum irradiance value
for the given location and W is the bin size which refers to
the range of irradiance values lying in a single state. Equation
(7) suggests that a linear increase in the order of the Markov
chain K results in an exponential increase in the number of
states. A linear decrease in the bin size W also increases
the number of states. While decreasing K and increasing
W in isolation may result into a Markov chain with small
number of states, it is not guaranteed to provide accurate
predictions. Considering both the variables simultaneously is
expected to provide optimal regions where the number of
states is small and the accuracy is also acceptable. In order
to demonstrate this, we compare the complexity and accuracy
of two scenarios: one with K=3 and W=5 and the other one
with K=10 and W=100. The first scenario is characterized by
smaller complexity as it requires a smaller number of states to
be implemented. The accuracy achieved by the two models is

TABLE IV. NORMALIZED RMSE

Location Normalized RMSE
K = 3
w =5

K = 10
W =100

Sonnblick, Austria 0.738 0.68
Valentia, Ireland 1.132 0.99
Bondville, IL, USA 1.68 1.36
Tamanrasset, Algeria 0.0982 0.1

evaluated based on the NRMSE and one standard deviation
measurements. Table IV shows the Normalized RMSE for
both ASIM models (complex with K=10, W=100 and reduced
complexity with K=3, W=5). It can easily be observed from
the table that the two models achieve similar error values. The
Algeria data set is of particular significance as the reduced

complexity ASIM model reports smaller error. This means
that reduction in the implementation complexity can in some
cases lead to improved accuracy. This is also demonstrated in
the One Standard Deviation results summarized in table V.
For the Ireland data set, the reduced complexity ASIM model
has improved the accuracy up to 5.75%. In order to compare

TABLE V. ONE STANDARD DEVIATION ANALYSIS

Location Total
Points

Poins under one
Standard Deviation Improvement

Percentage %K = 3
w = 5

K = 10
w = 100

Sonnblick, Austria 3651 2724 2699 0.68
Valentia, Ireland 1827 1434 1329 5.75
Bondville, IL, USA 1827 1340 1359 -1.04
Tamanrasset, Algeria 1096 902 891 1.0

the complexity of the two models, in table VI we show the
number of states corresponding to each model. Given that
the maximum data value is 3800, the complex ASIM model
requires 6.278x1015 states for its implementation, whereas the
reduced ASIM model with K=3 and W=5 requires 4.389x108.
This demonstrates that the reduced complexity model requires
1.43x107 times less states than the complex ASIM. In the
future, we aim at further investigating the complexity issue
and find ranges of (K,W) duple which achieve high prediction
accuracy and low implementation complexity.

VI. UTILIZATION OF ASIM IN WSNS

Application fidelity and virtually infinite life time are two
desired but conflicting features of wireless sensor networks. In
traditional sensor networks, it is not possible to achieve both
because of limited power supply. Sensor networks harvesting
energy from ambient sources and making use of accurate
energy prediction models - such as ASIM - can potentially
achieve both the objectives. For illustration purposes, we
outline such a mechanism for a few applications below.



TABLE VI. COMPLEXITY REDUCTION IN TERMS OF TOTAL NUMBER
OF STATES

Order K Bin size W Dmax/W Total States X times Reduction

10 100 (3800/100) 6.27x1015 1
3 5 (3800/5) 4.38x108 1.43x107

Consider an energy aware routing protocol. Typically, path
selection in such protocols is dictated by residual energy in a
node or set of nodes. Since state of the art protocols do not take
advantage of accurate prediction of future state of harvested
energy, only viable option to maintain longer life time is to
use a sub-optimal path - compromising application fidelity. If
the routing algorithm is aware of energy to be harvested in
future along with residual energy level, it can choose a node
as next hop even though the node may appear to have scarce
energy.

Similarly, consider a topology control protocol where the
objective is to maintain connectivity between all the nodes all
the time even though the residual energy reduces gradually.
The application fidelity in this case is level of connectivity. As
the energy level in nodes goes down, in traditional networks,
the level of connectivity also goes down to maintain longer
life time. If topology control protocols are aware of future
prospects of energy to be harvested, they can still maintain
high level of connectivity even though current energy levels
are low.

Apart from improving application fidelity, accurate energy
availability models like ASIM can also be used prior to the
deployment of sensor networks. For instance, based on study
of solar availability characteristics of a particular geographic
location and application requirement, an optimal battery can
be designed.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose ASIM, a prediction model for
solar radiation which is based on higher order Markov chains.
We have used real world data sets at four different locations
around the world to train and evaluate our model. It is observed
that as we increase the order of the underlying Markov chain
the accuracy of the prediction also increases and that a 10th
order model is adequate to generate predictions of reasonable
accuracy. Higher order Markov chains (beyond K=10) are not
observed to improve the prediction performance of the model.
The 10th order model achieves an accuracy of 81% and an
average normalized root mean square error equal to 0.78 with
the minimum reaching a value 0.1. In the future, we aim at
extending our model to be used for other types of data sets, we
aim at reducing the implementation complexity of the system
without compromising the achieved performance and accuracy
and we aim at integrating the approach in the design of
harvesting enabled WSNs demonstrating its beneficial effects
in extending the network lifetime.
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