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Abstract The Internet of Things (IoT) applications has grown in exorbitant
numbers, generating a large amount of data required for intelligent data pro-
cessing. However, the varying IoT infrastructures (i.e. cloud, edge, fog) and
the limitations of the IoT application layer protocols in transmitting/receiving
messages become the barriers in creating intelligent IoT applications. These
barriers prevent current intelligent IoT applications to adaptively learn from
other IoT applications. In this paper, we critically review how IoT-generated
data is processed for machine learning analysis, and highlight the current chal-
lenges in furthering intelligent solutions in the IoT environment. Furthermore,
we propose a framework to enable IoT applications to adaptively learn from
other IoT applications, and present a case study in how the framework can be
applied to the real studies in the literature. Finally, we discuss the key factors
that have an impact on future intelligent applications for the IoT.
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1 Introduction

The Internet of Things (IoT) paradigm is both revolutionary as well as an
enabler of automated and convenient lifestyles for modern day humans. The
evolution of the IoT can be attributed to a confluence in advances that took
place over the past decade in computing, communication and application de-
sign. The resulting sphere of influence of IoT has expanded rapidly to cover the
whole human race. IoT devices in common use to facilitate our daily activities
include the smart phones, home assistants such as Google Play, smart vehi-
cles, building automation systems comprising smart elevators and temperature
control systems, and unmanned aerial vehicles such as drones for environmen-
tal monitoring and leisure. The large-scale proliferation of IoT devices stretch
beyond these devices to within the storage centers such as back end cloud facil-
ities which are geographically dispersed. As a result, a large volume of data is
generated by IoT devices and their supporting platforms, for transfer and sub-
sequent storage and processing at back end cloud storage centers. IoT devices
generate a constant stream of raw data, which cannot be discerned for mean-
ingful knowledge unless the data is processed through application of techniques
such as knowledge discovery and machine intelligence. The heterogeneity of the
data generated from various IoT deployments is dependent on the application
domain, comprising; smart healthcare, social media, e-agriculture, e-health,
smart electricity grids and smart vehicles. IoT devices are designed with cus-
tom protocols that consider the resource constrained nature of these devices,
in order to preserve power usage associated with device operations. The most
common IoT application-layer protocols are Constrained Application Protocol
(CoAP), Message Queuing Telemetry Transfer (MQTT), Advanced Message
Queuing Protocol (AMQP), and HyperText Transfer Protocol (HTTP) [77].

The MQTT and AMQP protocols are deployed on IoT devices with access
to a continuous power supply, or to a renewable power source. Such proto-
cols facilitate transfer of longer messages, and are thus more power-hungry.
On the other hand, the CoAP protocol is light-weighted and is designed for
highly resource-constrained IoT devices; where resource-constrained devices
are those that have very limited computing resources and network bandwidth.
HTTP protocol is the most resource-intensive IoT communication protocol,
and is best suited for higher end IoT devices, possessing higher communica-
tion, computation and storage capabilities. IoT devices produce a large volume
of data that is locally processed, in limited manner, and transferred to a cen-
tralized computing node or a cloud storage facility, where it can be further
processed or analyzed to produce knowledge. Machine learning is defined as a
family of techniques for analyzing data, wherein the process of model building
on training data, is automated, i.e., requires little to no human intervention.
Consequently, the process of categorizing data into various classes, is fully
automated. The role of data analytics for IoT data processing cannot be un-
derstated, and machine learning is a very strong contributor to facilitate quick
processing of large volume data emerging from IoT devices, for generating
patterns of interest to analysts of the data.
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Contemporary computation and storage paradigms comprise; cloud, fog
and edge computing. Through integration of these paradigms with the IoT, a
robust data collection, storage, processing and analytics framework emerges.
Such a framework has the ability to provide real-time insights into data pat-
terns and also facilitates the application of machine learning techniques for
realizing intelligent data analytics for the IoT. The cloud paradigm is a cen-
tralized model of data storage, that provisions various services such as Software
as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Ser-
vice (IaaS), to enable processing and analysis of IoT data, centrally [26]. Edge
computing on the other hand enables the processing and analysis of IoT data
closer to the IoT network, on localized computing nodes such as base stations.
As a result, the cost associated with transfer of IoT data to centralized nodes,
is avoided. Fog computing is a middle ground solution between Cloud and
Edge computing paradigms, wherein the processing and analysis of IoT data
need not be located at the edge of the network or even in a centralized storage
facility. Rather, the fog paradigm brings forth the concept of a virtual plat-
form, not exclusively located at the edge of the network, for processing and
analysis of IoT data.

In this paper, we study and analyze the role of machine learning to facilitate
data analytics for the IoT paradigm. We present a thorough analysis of the
integration of machine learning with the IoT paradigm in Section 2. In Section
3, we define the application of machine learning for processing and analysis
of IoT data. We propose a novel framework for data analytics on IoT data
emerging from various heterogeneous sources, in Section 4. In Section 5, we
provide future directions of research work in the discipline of machine learning
applications to IoT, and we finally conclude the paper in Section 6.

2 The convergence of machine learning and IoT

The convergence of machine learning and IoT paves the way for a prospec-
tive advancement in efficiency, accuracy, productivity, and overall cost-savings
for resource-constrained IoT devices. When machine learning algorithms and
IoT work together, we can achieve improved performance for communication
and computation, better controllability, and improved decision making. Due
to advanced monitoring from thousands to billions of ubiquitous sensing de-
vices and improved communication capabilities, IoT has enormous potential
to improve the quality of human life and potential applications for industrial
growth (toward Industry 4.0). IoT’s potential has significantly improved with
the convergence of machine learning and Artificial Intelligence. Advanced ma-
chine intelligence techniques have made it possible to mine the huge volume of
IoT sensory data to have better insights into a range of real-world problems, as
well as the ability to make critical operational decisions. There- fore, to solve
real-world complex problems and to meet the computation and communica-
tion requirements successfully, IoT and machine learning must complement
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each other. In recent years, IoT data analytics has gained significant impor-
tance and attention because of the following reasons:

High volume of data generated from distributed IoT devices: According to the
mobility report by Ericsson, the forecasting shows that there will be 18 billion
connected IoT devices globally by 2022 [2]. This number will keep increasing
over time due to the wide adoption of IoT devices in a wide range of critical
applications. Intelligent data analytics will play an important role to identify
and predict the future states of any process or system by mining this huge
amount of data efficiently and intelligently.

High variability of data types from heterogeneous data sources: Due to a wide
range of applications and requirements, a large variety of IoT devices exist,
which include mobile phones, PC/Laptop, tablets to short-range and wide-
area IoT devices. Due to the heterogeneity of the data, the features, formats,
and attributes of the data are different. Also, based on different IoT applica-
tion domains, the data sources also vary. For example, the IoT devices used for
medical applications will be different from a smart home IoT. Moreover, the
quality, processing, and storage of data have also become a challenging task
because of its heterogeneity. In [96], the authors highlight some key questions
arising due to heterogeneity of data sources. It includes answers to critical ques-
tions such as: how to deal with the sampling procedure of the high-frequency
streaming data, noise cancellation and filtering of the data, gathering and
merging of the data from heterogeneous data sources, data interpretation and
interoperability, reasoning, situation awareness and knowledge creation from
the data, gathering and storing data from heterogeneous data sources to meet
application’s constraints [96].

Uncertainty in the IoT data streams: Uncertainty is very common in practical
data analysis [13]. It may arise in the IoT data stream due to the failure of any
IoT device or communication channel during data transfer. Gross errors and
missing data are omnipresent in IoT data streams, which require advanced
analytics to preprocess the data. Even cyber intrusion could be a valid reason
for uncertainty in data[94]. In order to enhance the accuracy during decision
making, it is critical to ensure the proper assessment, propagation, and rep-
resentation of uncertainties and develop models and solutions that can deal
with these factors [96].

Balancing scalability with the efficiency: Most of the IoT data analytics are
performed in the cloud. Transferring data from the IoT device to the cloud
is expensive (in terms of delay), which may be challenging for time-critical
applications especially when the number of IoT devices is high. For example,
in a connected vehicle environment, a large pool of cars may be required to
make decisions in real-time or near real-time. Here, it is important to balance
the speed and accuracy of the analysis when the number of vehicles increases.
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Fig. 1 Major analytical classes

2.1 Classification of various analytics techniques for IoT

In this section, we discuss different types of data analytics techniques. Figure 1
shows the major component of the analytical classes.

2.1.1 Descriptive Analytics

IoT systems can gather data from a few to thousands of smart devices and
transmit them to a cloud environment. Based on historical data, it is always
possible to generate detailed insights into past events by using advanced ma-
chine learning techniques. These groups of machine learning-based algorithms
that process and summarize the raw data and provide actionable insights basi-
cally comprise the field of study called descriptive analytics. data Aggregation,
data summarization, mathematical logical operations, data mining (e.g., clus-
tering algorithms), and so on are some examples of descriptive analytics. De-
scriptive analytics requires a high-volume data. Recent technological advances
have demonstrated that cloud storage is capable of storing huge volumes of
IoT data, and cloud servers can process complex tasks using high-performance
computers, and by applying IoT cloud analytics.

2.1.2 Predictive analytics for IoT

Predictive analytics rely on historical data and utilize advanced statistical or
machine learning techniques to model the behavior or pattern so that it is pos-
sible to predict the likelihood of possible future trends or patterns in data. To
summarize, it predicts what will happen in the future by learning the histor-
ical patterns and data correlations of existing data. Predictive analytics have
been widely used for different applications including predictive maintenance,
prediction of price, supply-demand trend, or prediction of likelihood of any
outcome. According to SAS, which is one of the top leading companies in ana-
lytics, there are two types of predictive models – (i) classification based models
that conduct the prediction analyses by class membership, and (ii) regression-
based models, that predict a number based on the historical observations and
likelihood [5]. State-of-the-art predictive modeling techniques include statis-
tical regression-based models, Decision Trees, and Neural Network or Deep
Neural Network-based models. Some other widely used algorithms are based
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on Bayesian analysis, Gradient boosting, Ensemble model-based analysis, and
so on. These predictive analytics techniques are reliant on data for decision-
making. The IoT paradigm can help facilitate the data gathering process from
smart IoT devices and can provide an analytical framework using the cloud or
the edge of the network.

2.1.3 Prescriptive analytics for IoT

Prescriptive analytics suggests how to respond to any future events based on
data analysis. This class of analysis not only predicts the future states but also
provides recommendations behind the adoption of the outcome. It is more
like a future scenario analysis technique that leverages the benefits of both
descriptive and predictive analytics. While predictive analytics suggests what
and when the event will occur based on future predictions, prescriptive analyt-
ics extends the capability by providing insights of the future predictions with
impact analyses. Prescriptive analytics is widely used to optimize the business
outcome. Prescriptive analytics is suitable in an Industrial IoT (IIoT) setup
where business intelligence-based decisions are made by using the capabilities
of cloud/edge computing, big data analytics and machine learning. Services
within an IoT-cloud platform can help to make optimal decisions through the
deployment of business intelligence tools and through analytics.

2.1.4 Adaptive analytics for IoT

During actual implementation, the outcome obtained from the predictive ana-
lytics needs to adjust with real-time data. For this purpose, adaptive analytics
are used to adjust or optimize the process outcome based on the recent history
of the data and by looking at their correlations. This type of analysis helps
to improve model performance and reduce errors. The advantage of adaptive
analytics is that it can adjust the outcome of the solution when a new set
of input data is received. Especially in an IoT environment, adaptive analyt-
ics are a good fit for real-time stream data processing. Real-time assessment
of evolving data streams, such as those found in malware [102], can also be
subject to adaptive analytics, to carry out data analytics.

2.2 Classification of IoT data analytics based on Technological Infrastructure

2.2.1 Cloud Computing

In a cloud computing paradigm, remotely located computing facilities (servers)
are utilized using the Internet to store, gather, manage, and process the data.
In the past decades, especially more recently, cloud computing has gained much
attention because of the new infrastructure and processing architectures that
it provides to support different services including Software as a Service (SaaS),
Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) [89]. The
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cloud provides a variety of services delivered through the Internet, the concept
of everything as a Service (XaaS) has emerged. In an IoT based environment,
cloud computing can provide several advantages.

IoT interconnects smart devices. Within an IoT paradigm, a huge volume of
generated data needs to be stored and analyzed. A cloud architecture may vary
depending on the use case scenario, e.g., public, private, hybrid or community-
based architecture [89].

2.2.2 Edge Computing

Edge computing simply refers to the analytical capability near the edge of the
network of the IoT devices. The importance of edge computing can be better
understood by realizing the challenges and limitations of cloud computing.
Cloud computing is a centralized way of data processing and may increase the
overhead of processing massive data [101]. Sending the raw IoT data streams to
the cloud would increase the cost and will require high communication band-
width and power. Instead, edge computing enables the computing within the
‘local’ network of the source of the data. Therefore, it solves the bandwidth
problem of sending bulk amounts of data to the central server. Moreover, edge
computing reduces the probability of a single point of failure and increases
analytical efficiency. Compared with the huge and centralized servers as found
in cloud computing, edge computing has smaller edge servers that are dis-
tributed. In [89], it has been highlighted that cloud computing is suitable for
delay-tolerant and complex data analysis, whereas edge computing is suitable
for low-latency real-time operations. Besides, cloud computing requires fairly
complex deployments when compared to edge computing. Fig. 3 shows the
architecture of a collaborative edge-cloud model for IoT networks. From the
figure, the end-devices and the core network cloud are connected through an
IoT gateway where the edge processing is performed. Typically, the deploy-
ment of edge computing requires minimal planning and in most cases can be
ad hoc in nature [89]. As a result, it is predicted that around 45% of the IoT
data will use edge architectures in the near future [90].

2.2.3 Fog Computing

Conceptually, fog computing lies somewhere in between cloud and edge com-
puting and it acts as a bridge between the cloud and edge resources [26].
The idea of fog computing was first proposed by Cisco [21], to address the
issues associated with latency-sensitive applications. According to [21], unlike
edge computing where computing happens at the edge of the network, fog
computing provides networking services between the cloud and end-devices as
well as provides computing and storage facilities through a virtual platform.
As highlighted in the Cisco whitepaper [1], the fog nodes have time-sensitive
data analytics capabilities and are a good fit for applications or services with
response times ranging from milliseconds to minutes. However, the data stor-
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Fig. 2 Convergence of IoT architecture and data analytics: an illustration

ing capabilities of the fog nodes are very limited. On the other hand, cloud
technologies can store data for up to months or even years [1].

Fig. 2 shows various component of IoT and how analytics relate with these
components. Because of the high computational resources and processing ca-
pabilities, most of the analytical approaches are suitable in the cloud server of
an IoT setup. On the other hand, lighweight and online algorithms are better
fit for the edge computing.

2.3 Applications of IoT Data Analytics

2.3.1 IoT data analytics for smart vehicles

IoT has enormous potential in the connected vehicle environment, especially
for efficient and accurate decision making using advanced data analytics. Within
an Internet of vehicle (IoV) paradigm [28], a large number of broadcasting mes-
sages are frequently generated with very high granularity and volume. There-
fore one of the biggest challenges is storing and intelligent management of the
huge amount of data [62]. Another key issue is related to ensuring the security
of the data, as any cyber-related anomalies or cyber intrusion attempts will
jeopardize the system and may cause fatalities. Hence, it is important to look
for intelligent solutions that can deal with such cyber-related incidents. More-
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Fig. 3 A generalized system model for collaborative edge-cloud processing in heterogeneous
IoT networks [89]

over, a centralized solution approach may not be feasible as it is more prone to
a single point of failure. In [62], the authors utilize a blockchain-based approach
for distributed and secure storage of vehicular data. The authors also define
how the nodes in the connected vehicle environment could be integrated into
blockchains through a blockchain-based network architecture. One significant
difference between connected vehicular networks and other IoT application
areas is that vehicles have high-speed mobility. Due to the environmental im-
pact and the nature of the open wireless medium, high-speed mobility could
be a reason for vehicle data faults [114]. This area requires significant research
attention. Haibin et al. proposed the threshold-based fault detection and re-
pairing scheme using a dynamic Bayesian network (DBN) model in [114]. The
model considers both spatial and temporal correlation of the connected vehicle
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data. This work shows that their proposed analytical framework can detect
faults with good accuracy and a low false alarm rate.

He et al. proposed two advanced analytical frameworks for vehicle warranty
analysis in the connected vehicle environment [50]. Two improved data mining
algorithms based on the Bayes model and a Logistic Regression model, are
proposed. These machine learning algorithms are used for effective data mining
service development using cloud data analytics. The authors also demonstrate
the intelligent parking cloud service [50]. Typically, it is very challenging to
find an available parking lot, especially in urban area. Moreover, it may lead
to traffic congestion, stress and increase the probability of accidents. To solve
this challenge, a ‘birth-death’ model is proposed in [50]. The stochastic ‘birth-
death’ is a special case of continuous-time Markov process. This model is
utilized in order to predict the occupancy probability of any parking space.

An autonomous and real-time method has been proposed for crime detec-
tion on public bus services in [78]. The authors highlight the advantages of
IoT technologies and demonstrate the advantage of data analytics within a
fog computing environment. A framework has been developed for intelligent
public safety in a connected vehicle environment. Advanced data analytical
capability for detection, prediction, and prevention of crime has been the key
focus of this study. The proposed framework shows significant improvement in
performance and device survivability over the traditional smart transportation
safety use cases [78]

Other than crime detection, IoT connected vehicular data analytics can
be of use for other critical applications. For example, Luo et al proposed a
three-tier framework of the connected public transportation system for effec-
tive traffic management [73]. Here, the authors propose innovative solutions
for effective scheduling of subway, bus, and shared taxis in an IoT connected
environment. A periodic pattern mining based algorithm is deployed for deter-
mining the passenger and road flows. Finally, the capability of evolutionary-
based algorithms is used to develop a computational model for dynamic bus
scheduling [73]. Fig. 4 shows a three-tier architecture of the IoT based sys-
tem for several applications in a connected vehicular environment using data
analysis and effective communication. In the first layer (Perception layer),
data is gathered from various IoT sensors and devices. For example, a passen-
ger’s smart cell phone can provide the locational information of the passenger,
whereas a smart travel card may contain information related to the passen-
ger’s identification and financial transactions [73]. Other smart IoT devices
of the environment are smart terminal boards, Automatic Vehicle Location
(AVL), Automatic Passengers Counting (APC), digital video cameras, and
devices installed for road safety like smart road cameras, etc. [73]. The sec-
ond layer (Network layer) in the framework is responsible for transferring the
source data to the application layer (final layer) using both wired and wireless
communication. Standard communication technologies are used, e.g., Mobile
Communication (GSM), General Packet Radio Service (GPRS), Code Division
Multiple Access (CDMA), the 3rd Generation communication (3G), and the
4th Generation communication (4G), etc. for public wireless communication
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Fig. 4 A three-tier architecture of an intelligent transportation system based on IoT [73].

and Zigbee, Wi-Fi and Bluetooth for private wireless communication [73]. In
the Application layer, IoT data is used by advanced analytics. Here, optimiza-
tion and machine learning algorithms are used for decision making of various
applications deployed for subway, bus and shared taxi networks.

Intelligent parking space allocation has been the focus of research presented
in [65]. Kong et al. develop a systematic approach using IoT and cloud comput-
ing to solve the parking allocation problem. The scheme utilizes auction-based
mechanisms to solve the parking allocation problem. In [81], Priyashman et
al. explore the capability of two machine learning algorithms for vehicular ac-
cess control and identification. Identification of two key critical factors – signal
strength and tag settings- has been the prime focus of their work. Authors in
[81] show that machine learning algorithms like linear regression and logistics
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regression analysis can provide an acceptable outcome to identify these critical
parameters.

Swarm intelligence-based decision-making approach has been proposed in
[23]. Considering an IoT connected vehicle environment, this work shows that
smart vehicles can make dynamic and adaptive decisions. Here, the authors
show how IoT based communication is effectively utilized for traffic inten-
sity calculations and subsequent utilization of IoT data for dynamic decision
making using swarm intelligence [23].

2.3.2 IoT data analytics for smart healthcare

The rapid growth of IoT has benefited different application areas including
healthcare [110]. IoT technology along with data analytics can help to achieve
more accurate and improved health diagnoses [40] . One critical requirement
is to gather data, predict and make decisions in real-time. In [40], the authors
highlight the importance of the real-time pattern recognition technique deploy-
ment for the construction of genomics-based patient models. A dynamic and
adaptive computational model with intelligence needs to be developed. These
innovative models should be able to capture the data produced by thousands
of IoT connected nodes within the smart healthcare paradigm. Advanced an-
alytics and communication within a connected healthcare system can ensure
lots of benefits including – improved resiliency, seamless fusion with differ-
ent technologies, big data processing and analytics, personalized forecasting
of patient condition, lifetime monitoring of patient health, ease of use of wear-
able devices, overall medical health cost reduction, physician oversight with
real-time patient data, availability and accessibility of the doctors through
advanced communication and efficient healthcare management [40]. It is also
highlighted that the model-based approach, which is widely used in the in-
dustry, may not be a suitable fit for the health domain because medical data
changes continuously and is highly prone to uncertainty. Therefore, instead of
a model-based approach, a data-driven approach could be a better solution
[40]. Fig. 5 shows a multilayer architecture of the eHealth cloud [40]. While
the data generation and communication takes place in Zone 1 (see Fig. 5), the
main computational process is conducted in Zone 2; real-time and streaming
analytics are located here. Tools such as Hive, Spark [29, 35], MapReduce [35],
HDFS, YARN are used for this purpose in Zone 2 [40]. Finally, outcomes are
displayed or actuated based on the requirement of the application or services
in Zone 2.

A smart sleep monitoring system is proposed in [109]. The authors propose
a fog computing-based preprocessing approach implemented on the smart de-
vice. Next, the capability of big data on the cloud is utilized by performing
batch data processing. Predictive analysis is performed to identify the air qual-
ity for the treatment of Obtrusive sleep apnoea (OSA) [109]. The outcome of
the analysis is displayed using web user interface to benefit the health profes-
sionals in real-time irrespective of their location of operation.
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Fig. 5 Multilayer architecture of the eHealth cloud [40].

An IoT enabled automated nutrition monitoring system is proposed in [97].
The authors propose a meal-prediction algorithm using a detailed analysis of
Bayesian networks. To investigate the nutrition balance, another algorithm
is proposed that uses perceptron neural network-based deep learning models.
This computational model utilizes the smart IoT framework for monitoring
and communication.

Early detection of Dyslexia, which is a cognitive disability that affects the
regular activities of an individual, is possible by using a ledger-based tech-
nology within an IoT framework [82]. The proposed approach gathers data
from smart IoT devices such as smartphones, tabs or laptops, and stores the
data using blockchain-based distributed ledger technology. Due to the use of
blockchains, it is available to the medical practitioner for evaluation irrespec-
tive of the location, and it also provides security of the information.

An agent-based IoT simulation testbed has been developed in [44] to in-
vestigate a patient’s sleeping behavior. In the context of a smart bed, the
simulator analyzes the sensor information to detect the posture during sleep
time. An emotion detection model is proposed in [53]. The proposed solu-
tion receives the speech and image signals from IoT devices. These signals are
analyzed on the edge cloud and remote cloud to make the decisions. Fourier
transform, different filtering algorithms and Support Vector Machines (SVMs)
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are used for the detection. The proposed framework is suitable to deploy in a
big data environment.

2.3.3 IoT data analytics in Agriculture

IoT based frameworks can be adopted to improve the operational efficiency
and accuracy by using advanced analytics of the data generated from smart
end devices. Several challenges and benefits of IoT and data analytics-enabled
smart agriculture frameworks are discussed in [36]. In the recent past, the
prospects, opportunities, and feasibility of Wireless Sensor Networks (WSN)
in agriculture have been widely studied [76]. The application of WSN in agri-
culture includes environmental monitoring, precision, agriculture, machine and
process control automation and traceability [58, 36]. Recently the importance
of IoT has been highlighted because of its versatility of the adoption of differ-
ent wired and wireless technologies as well as the capability to integrate with
advanced data analysis mechanisms. IoT in agriculture empowers the farmers
with advanced and improved automation and decision making processes [36].
It also enables seamlessly integration among agricultural products, services
and knowledge to improve the quality and productivity [36].

IoT is deployed for agricultural asset monitoring and management. RFID
based tags are also used for tracking and tracing of supply chain products
[106]. GPS can also be used for the same purpose within an IoT framework
along with edge/cloud data analytics [36]. Typically, the humidity, wind speed,
temperature, cloud transients, rainfall and weather parameters are very criti-
cal for effective farming. IoT with machine intelligence can also help to predict
the localized weather of the agricultural firms. Moreover, the efficiency of agri-
cultural waste and water management can be improved with the smart use of
IoT and the big data paradigm. By using intelligent scheduling algorithms, the
challenge of storage management can be resolved. IoT devices can be placed
strategically to monitor the storage facilities and then cloud technologies can
deploy machine learning and optimization algorithms to make the decisions
[36].

Fig. 6 shows the major component of IoT based smart farming. Out of
the four major components, three are related to the data (highlighted in the
shaded box). The physical structure controls the sensors, actuators and de-
vices and is responsible for the overall precision in data processing [39]. Data
acquisition and data processing are similar to those found in standard IoT
applications, based upon state-of-the-art IoT protocols. For the data analytics
conponent, various algorithms and models are used for data analytics. Some
IoT and data analytics based smart agriculture applications include livestock
health monitoring, stress level monitoring, physical gesture recognition, Ru-
mination, heart rate tracking, livestock location monitoring, climate condition
monitoring, pest identification, irrigation management, greenhouse gas moni-
toring, and so on [39].
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Fig. 6 Major components of IoT-based smart farming [39]
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2.3.4 IoT data analytics in Energy Systems

In recent years, the energy grid has transformed significantly due to the in-
tegration of photovoltaics solar cells, electric vehicles, and storage with the
low-voltage distribution network. These distributed energy resources need to
be effectively coordinated and controlled. One viable solution is to use the
capabilities of smart meter. Within an IoT environment, smart meters are in-
terconnected and linked with each other. Advanced analytical decisions are
necessary for improving the efficiency and reliability of energy operations.
Therefore, in [9], the authors pointed out that the combination of IoT and
Big Data can be used for effective energy management. The authors develop
an energy management system that can be used in a smart home. Based on
the unique ID address for each IoT object, a System-On-Chip (SoC) module
is deployed for data acquisition. A centralized server is used within a Home
Area Network, where data is collected, stored and processed. One advantage
is that the proposed solution is capable of using off-the-shelf business intelli-
gence tools. The solution architecture can significantly improve the efficiency of
high energy consumption applications such as air conditioning. This has been
validated in a lab environment. Considering a smart home architecture, IoT
and sensor data optimization based peer-to-peer energy trading architecture
is proposed in [85, 56]

Complex Event Processing (CEP) is used for reactive applications to pro-
vide a distributed but scalable solution within an IoT environment [8]. The
combination of CEP and historical data has been used to develop a prediction
algorithm using machine learning algorithms in [8]. Here, the authors extend
the work for a dynamic IoT data environment by proposing an adaptive pre-
dictive model using the moving window regression technique. To determine the
optimal window size, authors use a spectral component analysis of the time
series data.

In [11], the authors surveyed the possibilities and opportunities of big data
and cloud analytics for the smart grid. Once data is collected from the smart
meters, tools in a cloud platform can perform advanced analytics. IBM Core-
metrics [4] and Google BigQuery [3] are some examples of cloud-based software
solutions for data analytics.

Predictive analysis for decision support systems of a smart meter IoT net-
work has been presented in [92]. Here, the authors use a machine learning-
based approach for cost prediction and to improve the performance of the net-
work operation. In this work, a Bayesian network model is compared against
three other classifiers including Näıve Bayes, Random Forest and Decision
Trees. The proposed method in [92] is validated using the network coverage
data collected from commercial settings.

The IoT connected smart grid integrated with machine learning can pro-
vide several benefits including predictions of consumption, price, power gener-
ation, future optimum schedule, fault detection, adaptive control, sizing, and
intrusion or anomaly detection [52]. For such applications, connectivity and
data exchange plays a significant role. IoT is being widely deployed for this
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purpose. In [52], the authors also discussed the security issues in IoT data an-
alytics. Lots of research [14, 12, 57, 48] has been done to investigate security
issues of traditional energy grid and Supervisory Control And Data Acqui-
sition (SCADA) systems using various attack detection algorithms [104, 51],
there is a need to analyze the impact of cyber security on IoT connected smart
grid. In [52], the authors also highlighted that machine learning can play an
important role in cyber-attack detection in smart grid.

A machine learning-based multi-stage theft detection system is proposed
in [70]. In the first stage, multi-modal forecasting is used for predicting the
consumption behavior . Multi-Layer Perceptron (MLP), Recurrent Neural Net-
work (RNN), Long Short Term Memory (LSTM), and Gated Recurrent Unit
(GRU) based machine learning models are used in this stage. In the second
stage, decisions are made. Here, a moving average model is used to identify the
anomalies. In the final stage, the historical energy usages are used to decide
whether the anomaly based on stage 2 is an energy theft or not [70].

A lightweight machine learning-based Intrusion Detection System (IDS) for
IoT is developed in [59]. The proposed IDS is capable of detecting Denial of
Service (DoS) attacks successfully. The authors use SVM based classification
techniques to develop the IDS. Unlike other works, the proposed work considers
only one attribute to model the classifier. This assumption made the model
computationally efficient and helped achieve faster solutions. The comparative
results presented in this paper show that the SVM-based IDS outperforms the
state-of-the-art techniques in accuracy.

3 A critical review on data processing and knowledge discovery for
IoT

3.1 Transforming data to knowledge

IoT devices must process data to produce meaningful knowledge. How data
becomes meaningful to its consumer is illustrated through the architecture
shown in Figure 7. In this architecture, the consumer can be a machine or hu-
man. When the consumers expect to receive meaningful information, the data
processing unit consists of AI algorithms such as machine learning techniques.
In this article, meaningful processed data is also referred as ”knowledge”.

Prescriptive, predictive, and adaptive learning in the IoT can be best de-
scribed through how the applications process data to create knowledge. The
above architecture is used throughout this section to organize the evaluation
on how current studies implement AI in the IoT paradigm. This section high-
lights the implementation challenges, discusses how studies address them, and
identify future research opportunities.
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Fig. 7 The architecture of knowledge creation in the IoT, adapted from [99].

Fig. 8 IoT application protocols, i.e. Constrained Application Protocol (CoAP), Message
Queuing Telemetry Transfer (MQTT), Advanced Message Queuing Protocol (AMQP), and
HyperText Transfer Protocol (HTTP). Adapted from [77].

3.2 The application-layer protocol

In machine-to-machine communications, an application-layer protocol is re-
quired to send data in the format that can be encapsulated by the lower
layer protocols. As mentioned previously, the widely used IoT application-layer
protocols are Constrained Application Protocol (CoAP), Message Queuing
Telemetry Transfer (MQTT), Advanced Message Queuing Protocol (AMQP),
and HyperText Transfer Protocol (HTTP). All these protocols allow for ab-
straction from the lower layers.

Constrained devices have limited computing, communication, and storage
resources. Since different IoT devices have varying resource requirements, the
protocols differ in their capabilities to meet these requirements. Resource re-
quirements were derived from the message sizes, overhead, and latency. As
illustrated in Figure 8, CoAP is the most lightweight, while HTTP is the
most resource intensive. CoAP is used in applications where IoT data is col-
lected from constrained devices at the edge. These devices are typically light
in weight and they include wearable devices or the remote, low maintenance
sensors. They have very limited computing resources, power and capability
to transmit data wirelessly. Such applications therefore do not send knowl-
edge back to the IoT devices. Hence, devices employing CoAP are suitable for
prescriptive and predictive AI applications, but not adaptive.

MQTT and AMQP are employed when the applications can afford higher-
end IoT devices. The IoT devices are accessible for power recharge or are
directly connected to the power supply. In these applications, data can be
forwarded to other machines or consumers across the Internet, including back
to the IoT devices. Hence, this scenario can be used for prescriptive, predictive,
and adaptive AI applications.
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Fig. 9 Where data is transformed to knowledge.

On one hand, the application protocols have addressed how constrained de-
vices can send data. On the other hand, machine learning analysis require high
computing resources and a large amount of data to process the collected data
to convert it to meaningful knowledge. Therefore, IoT applications vary the
architecture of knowledge creation (Figure 7) to transform data to knowledge
based on the framework and the network bandwidth available for data trans-
mission. Figure 9 illustrates three models on how the architecture of knowledge
discovery can be applied.

The first model is when a constrained device sends data to a remote system
in a simplex manner. This is the case in data mining, where the data is used or
shared with different applications. Each remote application can have its own
method to transform data to knowledge. Adaptive learning takes place in the
cloud, since feedbacks cannot be sent back to the IoT device. In other words,
the IoT device is unable to adaptively learn.

In the second model constrained devices can send/receive data in duplex
communications. The remote system, e.g. the cloud, processes the data and
brings knowledge back to the device. This model can be seen in many smart-
phone applications. Adaptive learning may be processed either on the data
processor in the cloud or on the IoT device.

In the third model, smart devices have enough computing resources to turn
data to knowledge locally or at the edge. This is suitable for delay-sensitive
applications. Adaptive learning is therefore processed at the edge, either on
the data processing machine or on the IoT device.

Table 1 illustrates how application protocols were employed in the current
literature. The table shows the applications of the studies and the type of data
collected from the sensors to illustrate the suitability of protocols to transfer
the data. The table also shows the type of model (according to Figure 7) that
the studies adopt. The table presents the knowledge to illustrate the results
from the data processing done by the machine learning techniques adopted
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in the studies. The three models show that, although application protocols
address how IoT applications can adopt AI to some extent, there are some
limitations on how IoT devices adaptively learn.

A recent study [108] showed how a combination of these application-layer
protocols can be employed to exchange knowledge in the IoT environment.
Different protocols were selected according to their degree of constraint. CoAP
was used to allow local communication between a wearable device and an IoT
gateway; HTTP was used to exchange knowledge between the IoT gateway and
the cloud solution; and MQTT was used to send alert from the IoT gateway
to the subscribers such as emergency services and family members. As Table
1 shows, combining protocols are commonly adopted to support the varying
resource requirements for different types of applications.

Current studies employing IoT data for machine learning focus on how
the consumers can benefit from the IoT technologies by proposing where the
data should be processed, and how an application layer protocol selection can
be justified to fit its purpose. Literature reviews [77, 10] compared how the
application-layer protocols exchange data based on their client-server archi-
tecture, resource discovery framework such as Representational State Trans-
fer (REST) and Service-oriented Architecture (SOA), the transport proto-
col such as Transport Control Protocol (TCP) and User Datagram Protocol
(UDP), data query method such as Structured Query Language (SQL) and
publish/subscribe, security protocol, and packet header/message size. How-
ever, few studies have compared how the current application layer protocols
adaptively learn knowledge in machine-to-machine communications. Although
Table 1 shows that knowledge is created in these studies, machine-to-machine
autonomous learning was not fully explored. Creating knowledge from data
is considered as the function of a multipurpose box wherein all required data
is assumed to have been available before data processing employing AI or
machine learning techniques.

3.3 The gateway

Simply put, a gateway is a multipurpose box at the edge to perform the nec-
essary action [60]. A gateway converts, routes, or even processes data. It may
be used as a filter that selects data of interest and drops the noise [18, 60], or
as hub that aggregates data from several IoT devices [69]. While aggregated
data at the edge may be too big to be transmitted over the Internet, gateways
can be designed as the data processor to produce and transmit low bandwidth
messages [69, 108]. Depending on the system specification, a gateway may not
be needed, or may be integrated with the devices.

The problem in processing data from the IoT sensors is due to the het-
erogeneity of the data. Consider a health monitoring system that employs
wearable devices to generate data for medical devices [49]. Data heterogene-
ity issue will arise when the number of new wearable IoT sensors grows at a
much faster pace than how the medical devices could adapt to the variety of
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Table 1 Knowledge created from the data produced by different applications.

Application (from the
title of the publication)

Protocol Model IoT data Machine
Learning

Knowledge

Predicting Energy Con-
sumption Through Machine
Learning Using a Smart-
Metering Architecture
[30]

MQTT,
CoAP

1 Energy consump-
tion, tempera-
ture, humidity,
precipitation,
wind speed, time
direction; all at
15-min interval

Random
forest

Predicted
energy con-
sumption

Smart City Traffic Mon-
itoring System Based on
5G Cellular Network, RFID
and Machine Learning [80]

MQTT 1 Magnetic, light,
temperature, fuel
consumption,
time to reach
destination, vehi-
cle weight, road
slope

Azure ma-
chine learn-
ing

Optimum
traffic route

Namatad: Inferring occu-
pancy from building sensors
using machine learning [33]

MQTT 1 Temperature,
CO2, air vol-
ume, HVAC
temperature

Random
forest

Predicted oc-
cupancy level

Lameness Detection as a
Service: Application of Ma-
chine Learning to an Inter-
net of Cattle [25]

MQTT 1 Step count, lying
time, swaps per
hour

Random
forest,
k-NN

Lameness
level (ac-
tive, normal,
dormant)

Case study: Integrating
IoT, streaming analytics
and machine learning to
improve intelligent diabetes
management system [15]

AMQP 1 Blood sugar read-
ing

Azure ma-
chine learn-
ing

Predicted
sugar level

An IoT system to estimate
personal thermal comfort
[67]

AMQP 1 Heart rate, skin
temperature,
room tempera-
ture, humidity,
air speed

Support
vector
machines

Thermal
comfort level

Cloud computing based
smart garbage monitoring
system [63]

MQTT 1 Level of garbage
in a bin, times-
tamp

Decision
forest
regression

Predicted bin
filling pattern

An IoT-Based Solution for
Intelligent Farming [79]

MQTT,
AMQP

1 Sheep posture:
neck inclination
and distance to
the ground

Rule engine Feed on vines
or weeds

IoT and distributed ma-
chine learning powered op-
timal state recommender
solution [86]

MQTT 2 Location, acceler-
ation, heart beat

Kalman fil-
ter

Product rec-
ommendation

Quantifying colorimetric
tests using a smartphone
app based on machine
learning classifiers [93]

AMQP 2 Average red,
green, blue values

Support
vector
machines

Quantified
peroxide
content

On Delay-Sensitive Health-
care Data Analytics at the
Network Edge Based on
Deep Learning [38]

CoAP 3 Pulse rate, res-
piratory rate,
oxygen level,
sleep condition,
fall detection,
gait tracking,
washroom visit
frequency

Deep learn-
ing

Anomalous
health risk

Fall detection system for el-
derly people using IoT and
ensemble machine learning
algorithm [108]

CoAP,
MQTT,
HTTP

3 Accelerometer
data, gyroscope
data

Ensemble
random
forest

Fall (forward,
backward,
lateral) and
normal activ-
ities (walking,
stairs climb-
ing, sitting)

Vibration Condition Mon-
itoring Using Machine
Learning [112]

CoAP 3 Motor vibration
level in mV

Neural net-
work

Motor condi-
tion (normal,
unbalanced)

Early Detection System for
Gas Leakage and Fire in
Smart Home Using Machine
Learning [84]

MQTT 3 Temperature,
humidity, gas,
smoke, CO,
flame, CO2

Classification
and regres-
sion trees

Disaster risk
levels
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Fig. 10 Gateways adapt heterogeneous data from different devices.

the generated data. The data is unlabeled and varies in dimension. Therefore,
preprocessing the data is needed for its use in supervised machine learning
techniques. In this study [49], data from the old IoT devices was adapted to
handle the data from the new devices through a gateway (Figure 10). Clinical
records from doctors were used to train machine learning techniques, to pro-
duce data that can synchronize the old and the new wearable devices. Here,
the gateway serves as a data adaptor.

Data from IoT devices may be represented in raw format. Hence, gateways
are devised to transform raw data to a usable format, such as in the form of
features that can be employed for machine learning analysis [49, 68, 108]. The
transformed data may be encapsulated in a network packet with a header and
other meta-information such as sensor messages and addresses, for transmis-
sion to other devices [61].

As such, gateways can act as an adaptor that convert one protocol to
another. At the application-layer, they adapt based on the protocol used at the
edge to the one used by the cloud. For example, from constrained IoT devices
employing CoAP to a cloud service that communicates through MQTT or
AMQP [61, 108, 46]. They may also convert the lower-layer wireless protocols
of the local, constrained devices for enabling Internet based transmission to the
cloud [30]. At the network layer, gateways may be used to optimize routing,
for example, by selectively prioritizing packets in networks connecting vehicles,
which are bursty in nature. In this case, a gateway is deployed to minimize
the number of delayed packets [107].

Since gateways perform many tasks, it is challenging to determine the com-
puting resources required to deploy one. Therefore, studies show how their re-
source consumption can be measured [66]. Relevant evaluation for deployment
includes how throughput and latency perform under varying loads, such as
increasing the of clients when running a combination of services.

Despite having gateways perform the necessary actions, they were designed
for and evaluated under each specific case study only. Current studies in em-
ploying IoT data for machine learning emphasize on how to adapt data het-
erogeneity from varying sensors, pre-process the data and synchronize com-
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Fig. 11 Complex Event Processing (CEP) engines listen to events from input streams to
process data, adapted from [72].

munications with the cloud. However, the solution was not directly adopted to
adapt heterogeneous data for different studies. In other words, current chal-
lenges include not only adapting data from new devices, but also from new
knowledge, i.e., meaningful data generated from AI machines. While a gate-
way is a device to perform the necessary action, there is a need to integrate it
with the necessary actions required for discovering knowledge.

3.4 Deriving knowledge from data

IoT sensors generate a stream of raw data, much of which is meaningless to
the consumer. Raw data is a blend of insight and noises. It does not show
a change in events, quantization per time, or meaningful attributes and re-
lationships used by the consumers. The challenge to derive meaningful data
from sensors is apparent in the IoT when the pervasive sensor devices deliver
varying context and media. In this case, data processing in the IoT follows the
method described in the Complex Event Processing (CEP) approach, which
takes events from input streams to process data, regardless of the technology
or protocol employed (Figure 11).

Capturing events implies creating processable data out of the raw data.
Data is sent as input streams, events are extracted from some patterns such
as a change of state or time in the data. A series of states can create a pattern
of interest. However, meaningful patterns can become stale when a system fails
to process them within a specific time. Thus, systems that derive meaning from
input patterns implement event listeners.

Event listeners are implemented in many programming languages, with
Java presenting an elegant implementation for parallel processing; and as one
that can integrate low-level events into management-level events [72]. This
management-level information is the knowledge gained. Hence, in CEP, knowl-
edge is implemented as maps between event layers. For example, a global pan-
demic watch system (as knowledge) was implemented as correlations between
various event layers such as news feeds around the globe, Short Message Service
(SMS) messages from trained agents in some designated area, and electronic
reports from health authorities [72].
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When correlating events, a knowledgebase is needed to define what the
correlations are. While the relationship definitions are traditionally provided
by experts, advancements in machine learning techniques allow self-assigned
rule creation from input streams. In this case, the knowledgebase is created
as rules generated from a set of supervised rule-learning algorithms [75]. The
problem with supervised machine learning techniques is that the labeling pro-
cess in creating training datasets still requires expert interventions rather than
reliance on machine-to-machine communications.

Rather than manual intervention, ontologies have been used to address
how machines label data. An ontology is a network of objects describing their
properties and relationships. Given an ontology of a domain, labels can reveal
their meaning within the domain. One method of describing meaning is by
showing the object property in a label-value pair. For example, in the domain
of Vehicles, events such as speed can be labeled with low, medium, and high-
speed, each with a range of values. A recent study showed how machines
can self-assign their labels, given speed values at the input event stream [83].
Another method to describe meaning is by expressing the object relationship
in a subject-predicate-object form. For example, given a knowledgebase with
an entry ”access point X is in location Y” and ”A has phone B”, one may
derive knowledge that ”A is in location Y” upon an event ”B is connected to
access point X” [37]. In both above scenarios, knowledge is derived through
machine-to-machine communications.

While ontologies address how data can be labeled and associated, current
work still requires a holistic system that can share outputs between different
machines [72]. However, current reviews on CEP are concerned with how the
approach is implemented and how the various implementations affect the over-
all throughput, CPU time cost, and communications cost [41]. Consequently,
more recent studies have proposed different optimization strategies such as
query reordering, memory management and parallelization, with each strategy
compared in terms of time complexities. Studies in CEP work are concerned
with CEP performance rather than how machines can exchange meaningful
data.

3.5 Machine-to-machine knowledge exchange

The Semantic Web was proposed to explain how machines can semantically
communicate with other machines [20]. One fundamental component in Se-
mantic Web is the ontologies concept. As previously described, an ontology
is a taxonomy that defines a set of objects and their relationships. It can
therefore represent a set of inference rules in AI.

Figure 12a shows an ontology of a Person in terms of a graph (adapted
from [87]). The nodes represent objects, and the edges represent relationships.
A member of a Person object is Me, which has a name, email, and a title
attribute. These relationships can derive an inference rule ”if an object has an
email, it may be a person.”
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Fig. 12 Ontologies, adapted from [87]. (a) The ontology of a Person. (b) Employing an
application-layer protocol to describe an ontology.

The Semantic Web employs HTTP to exchange the information describing
graphs. This is illustrated in Figure 12b. Each node and edge have a unique
Uniform Resource Identifier (URI), which is manifested in the form of a web
address. Hence, the graph allows machines to follow the ”scent” to find in-
formation about a specific object, such as who Eric Miller is and what his
email address is. This demonstrates how an application-layer protocol, HTTP,
provides a method for knowledge exchange in a machine-to-machine commu-
nication. Locating object properties and relationships is not confined through
URI as described by the Semantic Web. Competing approaches include service-
oriented knowledge discovery, which will be demonstrated in the next section.

In its deployment, a gateway can be installed as a hub at the edge of
network to exchange ontology information with the cloud using HTTP, while
facilitating local communications with the IoT devices under CoAP [108]. The
deployment can be an implementation of a study to alert remote emergency
services when elderly people are in need, such as when a fall is detected. The
method used to recognize a ”fall” requires knowledge about how an anoma-
lous event can be detected by device sensors. In this study, knowledge was
exchanged between the gateway and a remote database to describe what nor-
mal/anomalous daily activity features are. The database is equipped with an
ontology that ”a Device is carried by a User” and that ”a Device has Events”.
Upon receiving a meaningful input event, the gateway (rather than the IoT
devices) can distinguish anomalous from normal daily events.

The above study demonstrates that the problem with adopting Semantic
Web in the IoT is that HTTP is not suitable for constrained devices (as was
previously shown in Figure 10). HTTP requires higher computing and network
resources compared to other IoT application-layer protocols such as CoAP. The
header and message size are limited to a maximum of 2 bytes and 256 MB
respectively in CoAP, compared to the unspecified length in HTTP [77]. These
fundamental differences affect the way they can be adopted in an IoT envi-
ronment. That is, adopting Semantic Web to exchange knowledge degrades
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the system performance when CoAP is employed. Therefore, the current chal-
lenge in machine-to-machine knowledge sharing is how constrained IoT devices
can exchange semantic messages and can globally find the ontology that the
messages belong to. The literature has compared how machines exchange IoT
data but not knowledge. Current work in intelligent IoT applications requires
a review not only in communication protocols and their performance, but also
in how physical/digital modules can smartly communicate.

3.6 Smart objects

Physical or software objects are regarded as smart when they autonomously
exchange knowledge to solve problems. Such smart objects are aware of and
respond to the changes in their environment and recognize some opportunities
to proactively make a decision. They must show sociability with other smart
objects or people to accomplish a goal, and support other applications [105].

Most smart object implementations make use of ontologies, or some ap-
proach that involves a knowledgebase system consisting of objects, their prop-
erties and relationships [42]. For example, in a task analysis domain, such a
knowledgebase can consist of a hierarchy of task decomposition starting from
the goal, a breakdown of the state changes, to the low-level task definitions
[24].

Many implementations have local rather than shared knowledgebases. An
example of a rich knowledgebase digital system is a Building Information
Model (BIM), which is a digital platform originally employed for managing
building constructions for planning and cost effectiveness. The model breaks
down the information of a building, from room layouts to construction mate-
rials required, forming a hierarchy of properties and relationships. With the
introduction of IoT, BIM applications advanced to build green buildings by
predicting and simulating energy models [22]; and promote safety by detect-
ing hazardous gases on the location where the building workers were situated
[27]. Despite having state-of-the-art tools for designing knowledgebases, BIM
applications do not have a universally defined ontology to eliminate data in-
teroperability issues [17].

Challenges in implementing smart objects include how to discover and lo-
cate shared knowledgebases. Hence, design frameworks proposed in the liter-
ature present a discovery module to find how a system relates to other smart
object systems and their ontologies [42]. Such a module is analogous to a
gateway. In discovering how other systems accomplish a goal, the module al-
lows smart objects to hierarchically break down how a task is described by a
knowledgebase [43], where a task consists of a range of events, and relation-
ships express inference rules. This is illustrated in Figure 13. The decision from
processing these events and rules represents the services that a smart object
can advertise to other objects. Newly discovered services can be updated in the
knowledgebase, extending the ontology, and in return creating new knowledge.
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Fig. 13 Smart Objects share their services, enabling them to learn the breakdown of rules
to a set of tasks and events.

Despite smart objects having shown the ability to exchange and share
knowledge, the use of the constructed ontology is not widely deployed. Current
work is focused on the development and evaluation of ontologies rather than
the usage of the constructed ontologies [16]. Although ontologies allow objects
to define and share properties and relationships of a domain, the ability to
semantically identify services disintegrates when the ontology is used in other
domains. In the various BIM ontologies for example, different situations cause
dividing interpretations into whether certain data is mandatory or optional
[34]. In addition, rule inference tasks have shown to be difficult to adapt given
the varying BIM ontologies. A survey indicated that two-third of the ontologies
reviewed were not reused, while there was no indication whether the remaining
one-third reused ontologies could be applied to a different domain [31].

3.7 Summary

Message exchange between IoT devices is constrained by their computing
power and network bandwidth. On the other hand, smart applications re-
quire big data and massive computing resources for machine learning-based
analysis. Therefore, current smart applications adapt to such limitations by
proposing machine learning analysis at the gateway or in the cloud. These
applications generate prescriptive and predictive analysis; but implementing
adaptive applications has shown to be challenging in a constrained comput-
ing environment. Adaptive applications require feedback from either human
or other smart machines, which require a duplex communication channel. In
addition, feedbacks are processed by algorithms that are evolutionary, which
require more resources than what can be achieved by constrained devices.
Hence, IoT devices are limited in their ability to autonomously learn, build,
and share knowledge.

To address its limitations, IoT applications employ ontologies, i.e. databases
describing a network of objects through their properties and relationships. This
allows IoT solutions to locate inference rules or knowledge that is built in other
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machines or the cloud, creating intelligent systems for an application. Despite
ontologies being widely applied to build smart applications, adopting one on-
tology to a different domain has shown to be difficult. The ability of an IoT
application to semantically identify the meaning of messages weakens when
applying an ontology from a different domain.

4 A framework for machine learning and knowledge discovery for
IoT

Despite the pervasiveness of IoT devices, the inadequacy of machines to adap-
tively learn becomes the barrier in the proliferation of intelligent IoT sys-
tems. Little has been studied in how machines can autonomously share knowl-
edge when the data come from different domains or case studies. Thus, this
section proposes a framework on how machines can autonomously exchange
knowledge, create new knowledge, and adaptively learn from the knowledge
so that they can become applicable across different domains or case studies.
The framework is adopted from how humans learn and classify knowledge.
To begin with, this section reviews the various case studies associated with
intelligent big data analytics for IoT.

4.1 A review of intelligent big data analytics for IoT

Table 1 shows the various case studies that have leveraged big data analytics to
address IoT challenges by employing machine learning techniques. The stud-
ies can be grouped into four domains: smart city, production (i.e. farming &
manufacturing), building management, and health. The following discussions
describes the studies given in Table 1.

The smart city domain is concerned with bringing efficient and enjoyable
daily living activities. Some examples include providing optimum traffic route
[80], predicting garbage bin filling pattern for collection [63], recommending
a product based on one’s location [86], and predicting energy consumption in
smart meters [30]. In predicting energy [30], Support Vector Machines were
used to analyze the past energy consumption and the environment data of a
building such as the temperature and humidity [30], resulting in a predicted
energy consumption with 1.7 kWh difference between the actual and predicted
consumption in a 30-day window.

In the production-farming domain, in [25], the authors proposed to detect
lameness symptoms in dairy cows. Diseased cows affect milk productions, and
their symptoms are usually displayed through inactive behaviors such as lying
down for a duration of time. Thus, IoT sensors were placed on cows to collect
their activity data such as lying time, swaps per hour, and step count. Machine
learning techniques revealed three kinds of behaviors such as active, normal
and dormant in cows. Random Forest gave an accuracy of 91 percent, detected
1 day before some visual signs can be observed; and k-Nearest Neighbors
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gave an accuracy of 81 percent, detected 3 days before their symptoms were
noticeable through the visual signs.

In the production-manufacturing domain, the maintenance of machinery
is essential to minimize production interruptions due to failed motors. Thus,
a study [112] placed 3-axes accelerometers on factory motors to collect vibra-
tion data such as the amplitude and frequency of the motors. With Neural
Networks, the study was able to identify faults from normal motor conditions
with 100 percent accuracy, with confidence level between 80 percent and 99
percent.

Building management may be seen as a domain that connects the smart
city and manufacturing domain, because their solutions may be applied to both
domains. A study [33] predicted the occupancy level of a building by observing
the temperature, CO2, air volume, and air conditioning data. Random Forest
was employed to classify the data and yielded 95 percent accuracy in predicting
the occupancy level of rooms within the building. Another study [84] collected
building sensor data such as temperature, humidity, gas, smoke, CO, flame
and CO2 to equip the building with a early detection system against gas
leakage and fire hazard. The study arranged four risk levels, from no risk to
high risk; and the regression trees algorithm achieved 99.93 percent accuracy
in predicting the risk levels.

The health domain may be the most pervasive applications because the
IoT devices are attached to individuals. The applications predict sugar level
for diabetes management [15], estimate thermal comfort level at a workplace
[67], and detect when a person falls at home [108]. A study [38] employed deep
learning to detect ambulation events such as abnormal walking pattern, sleep-
ing habits, and washroom visits. The study provides a real-time solution to
detect anomalous health risks from wearable device data collecting heart rate,
respiration rate, and so on, and yielded a 94 percent accuracy. Such a solution
may be viewed as a smart home application because they also bring efficiencies
in daily activities (e.g. providing a cyber guardian for elderly people).

4.2 Learning from human-computer interaction

How a human can interact with websites can teach how machines should in-
teract with other machines. The most relevant property of a website is that its
presentation can be understood by humans. Users can semantically navigate
websites to accomplish the goals required of a task. Websites consist of words
in the language that is understood by the human users. In addition, website
layouts are arranged in a meaningful structure exhibiting their ”information
scent” so that the users can naturally navigate to find the information being
searched.

There are two characteristics of knowledge sharing that can be drawn from
human-computer interaction. Thus, we propose the following theorems.

Theorem 1 Naming an entity (i.e. object, properties, relationship and ser-
vices) must use words that humans understand.
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Table 2 The categories of knowledge.

Knowledge gained through: Kant [64] Locke [71] Descartes [32]

Definition A priori Primary Innate
Experience A posteriori Secondary Adventitious
Imagination - - Invented

Theorem 2 Information must be arranged semantically in a way that it al-
lows human to derive meaning by following its structure.

Naming an entity must use words in human language rather than abbre-
viation, codes, or binary mapping that only machines can interpret, despite
the latter being technically more efficient in terms of storage space or network
bandwidth.

In arranging information semantically, the use of ontologies is the model
itself. It allows humans to retrieve information based on semantic queries. In
this work, we propose the use of ontologies for machines to autonomously
share knowledge and adaptively learn from other machines. How this can be
articulated may be derived from how human classify knowledge.

4.3 Epistemology

The philosophy of knowledge, or epistemology, provides the breakdown of how
a human gains knowledge. Fundamental in this area is ”a priori” and ”a pos-
teriori” knowledge. A priori is gained through the definitions, such as the
classification; apples are fruits. A posteriori is gained through experience and
observations, such as apples are red.

Variations from the above definition are also used to describe ideas and
human understanding. This is illustrated in Table 2. Kant’s [64] a priori and
a posteriori description of knowledge are parallel to Locke’s [71] primary and
secondary quality in human understanding. Primary quality includes the prop-
erties of an object independent of an observer, e.g. an apple has weight, size
and color. Secondary quality refers to some object properties according to an
observer, e.g. apples are red. Descartes [32] used an additional term, i.e. in-
vented, which denotes ideas gained from imagination, such as the mermaids
and the unicorns.

Henceforth, in this work we adopt the word Primary, Secondary, and In-
vented to classify knowledge.

– Primary knowledge is built into ontologies, such as the definition of ”If the
soil is wet then crops flourish”.

– Secondary knowledge is gained from the IoT sensors, such as ”The soil is
dry”.
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– Invented knowledge is created after abduction inferences, speculating what
else serve as the indicators to have the crops flourished such as the sunlight
and fertilizers.

Secondary knowledge can become Primary knowledge when the quality it
describes can be generalized. This agrees with Berkeley [19] who contemplated
that primary knowledge comes from something that is perceived. Similarly,
when Invented knowledge (such as a hypothesis) has been scientifically proven,
the parameters it describes become Secondary knowledge. This agrees with the
verificationism theory [74], which serves as the groundwork for the proposed
framework of machine knowledge in our paper explained below.

4.4 A framework of machine knowledge

The framework is adapted from the verificationism theory [74] which provides
a breakdown of scientific methods. It is a school of thought where knowledge is
gained from experimentally verified observations. As the society has developed
through this scientific pathway, its framework in gaining knowledge through
observations can be borrowed for the design of autonomous learning machines.
The framework of machine knowledge proposed in our paper is shown in Figure
14.

The framework describes how Smart Objects (SOs) can autonomously ex-
change knowledge from other SOs. It consists of three databases, namely the
Ontology, Parameters, and Hypotheses database. When sending data from the
databases, SOs tag the services to signify the Primary, Secondary, or Invented
level of knowledge, accordingly. SOs exchange knowledge by advertising and
searching for services with other SOs as what previously was shown in Figure
13.

The Ontology database contains inference rules. It takes rules either di-
rectly from other SOs as the Primary knowledge, or from a well-established
ontology definition, or from its Parameters database.

The Parameters database contains the name-value pairs of data. It takes
values either from the IoT devices as the Secondary knowledge, or from its Hy-
potheses database. Secondary knowledge can become Primary knowledge after
the rules in the database has been verified through some inductive learning. A
family of machine learning techniques such as rule learning, classification and
Bayesian inference can be employed for inductive learning.

The Hypotheses database contains the non-verified inference rules. It takes
rules either directly from other SOs as the Invented knowledge, or from any
ontology definition, or from its ontology database. Invented knowledge can
become Secondary knowledge after some observations that the values have
converged to a distribution or a pattern. Statistics can be employed to observe
the distribution of data.

The Hypotheses database also learns from the Ontology database. Primary
knowledge from the Ontology database can become Invented knowledge after
speculative rules are created through abduction techniques. For example, given
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Fig. 14 Smart Objects share their services, enabling them to learn the breakdown of rules
to a set of tasks and events.

a rule ”apples are red,” the speculative rule seeks to conclude if the object is
an ”apple” when ”red” is observed. In this framework, abduction is triggered
when an observed value (i.e. red) fails to conclude the class (i.e. apple).

In creating speculative rules, the framework implements two theorems
previously discussed. First, it employs Natural Language Processing (NLP)
techniques to understand human language. The NLP can find the synonyms,
homonyms and categories of a word. In ”apples are red,” the NLP finds that
”red” is a color, and that ”apple” is a noun. It therefore seeks to find other
nouns, hence creating a rule such as ”[noun] are red”. The use of NLP in this
process implements Theorem 1.

Second, the framework exchanges ontologies with other SOs. Ontologies
are structured in the way that the inference rules are understandable by hu-
mans. Although SOs are machines, the structure of the ontologies must convey
meaning. The Semantic Web ontology illustrated in Figure 12 serves this pur-
pose, as the properties it describes reflect the model in the real world. Hence,
it implements Theorem 2.
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Fig. 15 Illustration of entity relationship network of SO1 Ontology database. The shaded
ones are learned from SO2.

4.5 Case Study

This section provides an example how the framework can be implemented. It
takes the ontology and parameters from published articles and adapts these so
that SOs can autonomously build knowledge using the proposed framework.

4.5.1 Initialization

A recent study proposed to detect an event when a person falls, for the pur-
pose of sending alerts for support in a smart home domain [108]. The study
classifies normal daily activities from abnormal activities such as when the
person falls. The ontology was described by the non-shaded entities in Figure
15. In this case study, a Smart Object hereby would be named SO1, and its
ontology database is populated accordingly from the fall detection study. Its
parameters database is populated with the accelerometer values representing
the forward/backward/lateral fall and the name-value pairs representing nor-
mal events such as walking and sitting. Its hypotheses database is still empty.

Another study proposed to detect lameness symptoms in dairy cows in the
farming domain [25] because such a condition is related to milk production’s
effectiveness. It places IoT devices on cows to detect lying time, swaps per
hour, and step count to derive whether the cows were normal, dormant, or ac-
tive. Adapting this case to the framework of machine knowledge, the ontology
database would have the relationships as shown in Figure 16. The parameters
database would contain the name-value pairs of the lying time, swaps per hour
and step count. The hypotheses database would be empty. The system would
be named as SO2 in this case.
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Fig. 16 Illustration of entity relationship network of SO2 Ontology database.

4.5.2 Exchange Primary knowledge with other SO

SO1 learned to expand its knowledge from SO2. It sends a broadcast query to
indicate whether other SOs had any Primary knowledge of Event and Sensor
or not. SO2 replies by describing its Primary knowledge, i.e. {Normal, Active,
Dormant} element Event; and {Lying time, Swaps/hour, Step count} element
Sensor. At this point, SO1 Ontology database is illustrated as shown in Figure
13, having both the shaded and non-shaded entities together.

Since SO1 adopted such Primary knowledge, SO1 queried SO2 to send its
Secondary knowledge. Hence, SO2 sends the name-value pairs from the Param-
eters database. However, the values learned might not be instantly adaptable
to SO1 because these values were learned from cows. In contrast, human lying
time and step count would have different values to reflect their normal, active,
or dormant condition. Similarly, swaps/hour might be a relevant observation
for cows but not human.

4.5.3 From Secondary knowledge becoming Primary knowledge

The framework guides how to accept or reject the knowledge learned. When
Secondary knowledge is generalized through induction, it becomes Primary
knowledge. In this case, if it could be verified that SO1 lying time values
reflects an SO1 Event (normal, active, dormant, fall), then lying time becomes
accepted as an element of the SO1 Sensor. Suppose that after some time, SO1
has collected enough data and updated its lying time values from humans, it
will find a range of values that were used to classify some events. Therefore,
these lying time values will be accepted as the Secondary knowledge and lying
time as an element of Sensor is reflected in the Ontology database. In contrast,
swaps per hour are rejected from the Ontology database because its values
failed to classify Event.



Machine Learning and Data Analytics for the IoT 35

Fig. 17 The ontology learned to know what relationships a ”patient” has.

4.5.4 From Primary knowledge becoming Invented knowledge

Rejecting an entity would trigger the framework to perform abduction infer-
ences. It exhaustively tests all rules in the Ontology database. One path is
given here as an example: swaps per hour was measured by a sensor; a sensor
was a unit of a device; a device was carried by a user. Through abductive
reasoning, SO1 speculates that its ”user” was a ”person” (rather than a cow).

To have the above reasoning outcome, SO1 went through two processes.
First, it employed NLP to find the synonyms of the word ”user”, which resulted
in many new words such as ”customer”, ”client”, ”patron”, ”prospect”, and
”patient”.

Second, SO1 exchanged Primary knowledge with other SOs to get the on-
tology structure from the new words. It performed the steps as what previously
described to expand knowledge from other SOs, and obtained the relationships
as illustrated in Figure 17 (the shaded entity was adapted from a study to
monitor traffic in the smart city domain [45] and the network (formed by the
non-shaded entities) was adapted from a study in the health domain [113]).

Thus, the Ontology database had the following relationships: a Device is
carried by a User; a Device is carried by a Patient; a Driver is a Patient; a
Driver is a Person; a User is synonymous to a Person. Through abduction in-
ference, SO1 speculated that SO1 User is a Person; and a Person is an element
of a Role. This relationship was committed in the Hypotheses database.

Hence, SO1 knowledge would be described as shown in Figure 18. The
dashed entities were added through the above procedure; and the dashed ar-
rows represent the abduction inferences in the Hypotheses database. There
would be more inferences drawn which would create a meshed network, but
the Figure illustrates only what is relevant for the following discussion.

4.5.5 From Invented knowledge becoming Secondary knowledge

In scientific methods, knowledge is gained through observations. When statis-
tics show an acceptable confidence interval from the samples then the hypoth-
esis can be accepted. Therefore, to trigger the statistical analysis, SO1 must
have enough data samples. To have enough samples, SO1 should be adopted
by the various IoT applications to collect relevant values.

Suppose that SO1 was adopted by a study [67] to predict personal thermal
comfort based on heart rate and body temperatures obtained from IoT sensors.
The human programmer adopted the SO1 ontology described in Figure 18
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Fig. 18 From the attributes of the Sensor, SO1 knows that a User is like a Person.

and created a relationship that ”a Device is attached to a Pedestrian” and
”Comfortable is an Event”. Upon deployment, data samples were collected
from the person’s heart rate and body temperature. This showed that the
following path had been activated (only one path shown as an example): Heart
rate is a unit of a Sensor; a Sensor is a unit of a Device; a Device is carried
by a Person; and a Pedestrian is a Person. From this application, there was a
sample indicating that ”a Pedestrian is a Person”.

Interestingly, heart rate, location, and acceleration values were the compo-
nents used by another study [86] to send tailored advertising messages. The
human programmer then adopted the solution from the study and added a
relationship that ”Location is a unit of a Sensor”. Hence, this application
activated two different paths to name its user:

– Heart rate→ Sensor→Device→ Person (learned from the thermal comfort
study [67]).

– Accelerometer → Sensor → Device → User (learned from the smart home
study [108]).

Once SO1 had collected data samples whose values explained the other
relevant relationships (e.g. fall, normal, comfort), then the relationships that
were activated were asserted. In this example, the fact that the application
indifferently named ”Person” and ”User” to accomplish a task asserts what
earlier was speculative that its User was a Person.
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4.6 Discussion

This section demonstrates how the proposed intelligent framework can be
applied to various IoT domains (i.e. smart home, farming, smart city, and
health) to autonomously exchange and build knowledge. However, the pro-
posed framework does not address how IoT devices can adaptively learn in
constrained environments where computing and network resources are very
limited (as described by Model 1 in Figure 9). How better computing and
network performance can be achieved is not the focus of our study; rather, we
showed how adaptive learning can be achieved within the current IoT mod-
els. Hence, the framework leverages the fact that learning, i.e. transforming
data to knowledge, can be implemented in the cloud (as in Model 2) or use a
high-performance computing solution at the edge (as in Model 3).

4.6.1 Latency

By adopting Model 2 and 3 as in Figure 9, the framework can use ontologies in
integrating IoT devices with intelligent systems. Selecting either model would
involve assessing how critical the application is. For example, in considering the
proper model for a remote, mission-critical application, one can adopt Model 2
(i.e. having the resources in the cloud) provided that the network latency and
network availability requirements have been optimized for the remote applica-
tion. The advantage of this model is that the SO in the cloud can learn from
remote SOs in the background, regardless of the network latency connecting
to the remote application. The disadvantage is that the network latency can
become the bottleneck when the need for real-time decisions increases. As an-
other consideration, one can adopt Model 3 (i.e. having all resources close to
the consumer). In this model, the SO can deliver real-time knowledge to the
consumer, but it relies on the capacity and availability of the communications
network to initiate knowledge exchange with remote SOs.

4.6.2 Natural Language Processing for machine-to-machine communications

The framework addresses the current gap in reusing ontologies in various do-
mains by mandating the use of human language in naming the entities and
relationships. The branch of AI, Natural Language Processing (NLP), is pro-
posed to intelligently adapt different meaning represented by the ontologies.
Hence, in addition to the abovementioned, the contribution of this section is
to expand the use of NLP in machine-to-machine communications.

Perhaps the closest parallel with our work is the one described in [95],
wherein machine databases gain knowledge from human through NLP pars-
ing, converting semantic representations into logical syntax. The work de-
scribed the consumers as both human and machines, that build knowledge
to and retrieve information from the knowledgebase. Similarly, the work in
[98] proposed NLP-parsed messages to build a knowledgebase, allowing ma-
chines to build knowledge from human language. Our work differs from these
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work in that it proposed three databases in the system, i.e. the Ontology, Pa-
rameters, and Hypotheses database that allow machine-to-machine commu-
nications. Furthermore, our work demonstrated a novel case where machines
can autonomously expand their knowledge through the scientific, abduction
method.

4.6.3 Drawbacks

Although the framework addresses the current challenge of reusing ontologies,
it adopts a weak definition of intelligent systems. The Smart Objects given
in the case study (i.e. SO1, SO2) are aware of and respond to the changes
in their environment, proactively make a decision, and show sociability with
other smart objects as well as help others. In addition to these, strong AI
would involve displaying emotion and desire, forming a personal character
when exposed to a range of situations. However, there is little discussion on
whether IoT systems should display a strong AI character, or whether it may
be counterproductive. Hence, the framework is sound in proposing new insights
in intelligent IoT systems.

5 Future research opportunities

The convergence of IoT and large-scale data analytics has created enormous
opportunities. Machine intelligence based on IoT data has merged the cyber
and physical worlds together and has improved significantly for investigating
the real-world challenges from a cyber-physical perspective. The efficiency and
reliability of the processes and systems have improved significantly. Now the
system operators have better monitoring and control of their systems and pro-
cesses, and business intelligence people have better insights in understanding
their challenges and making informed decisions. Although the convergence of
machine intelligence and IoT has opened up many opportunities, there are
a few challenges which have constrained their growth. These future research
opportunities will enable the seamless integration of IoT with data analytics.
The following section addresses some of the possible future directions.

5.1 Improved cyber security

For improved decision making, machine learning algorithms heavily rely on IoT
data generated and transmitted from the IoT devices. Within an IoT frame-
work, different IoT layers, e.g., perception layer, transportation layer, and ap-
plication layer, are vulnerable to cyber-attacks. For example, malicious code
injection, node tampering, impersonation, Denial of Service Attacks, Rout-
ing Attacks, and Data Transit Attack (man-in-the-middle attack, sniffing) are
some of the examples of cyber-attacks in an IoT system model [88]. To secure
the IoT system against these cyber threats, it is important to ensure a proper
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trust management framework. IoT devices themselves require proper attention
because most of the devices lack proper security mechanisms. As highlighted
in [88], the challenges of ensuring IoT security is different compared with the
traditional IT security, as discussed below.

First, users can add security solutions in a traditional IT scenario any
time; however, most of the IoT devices lack security solutions and others have
built-in security solutions, and most of the devices do not support additional
security patches, solutions or updates at a later point of time, post-device
production.

Second, because of the low memory and processing constraints, only lightweight
algorithms are used. As pointed out in [88], it is always challenging to strike
the proper balance between lower capability and higher security.

Third, in an IoT environment, a wide variety of devices are used. Due to
this heterogeneous nature, the security risk is increased due to the integration
of devices from different types, technologies, and vendors.

Fourth, the application layer of IoT suffers from privacy issues. Data leak
and eavesdropping could be potential consequences. Fifth, IoT communica-
tion protocols are also vulnerable to cyber-attacks and threats including data
transit attacks, routing and DoS Attacks, issues in key management, high
computational cost of TLS, and lack of user control for privacy.

Our proposed framework for machine learning and knowledge discovery
for IoT is the sixth dimension to address cyber security challenges. Intelli-
gent machines communicating with human language may wrongly interpret
messages such as, for example, when interpreting homonyms (i.e. the same
words that have different meanings such as a ”file” which can mean either
data or a queue). Current active research in this area is lexical-semantic anal-
ysis [54] to tell that ”april in paris lyrics” refers to the name of a song, while
”vacation april in paris” refers to holiday information of a city. However, in
the context of collaborating IoT devices sharing knowledge, a malicious node
or smart object can intentionally spread fake news. This is possible because
homonyms and the varying lexical-semantics can manipulate the content of
a message to deceive others [100]. Thus, cyber security concerns expand to
include machine-to-machine deception techniques.

Therefore, future IoT devices, communication protocols, technologies and
the entire platform require improved security solutions by design. Device man-
ufacturers must provide robust in-built security solutions within the devices.
Cryptographic algorithms need to be improved and key management must
be made effective. More research is needed on authentication schemes and on
Public Key Infrastructure (PKI), focusing on the various IoT technologies and
applications. Lightweight but robust intrusion detection techniques need to be
developed at the device level, edge or at the cloud of the infrastructure.
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5.2 Machine learning at the edge

IoT applications will require faster processing and decision making, which
trend would move data processing closer to the consumer [47]. Sending data
to the cloud requires time and high bandwidth. Therefore, analytics at the
edge node of the IoT has opened the door for future opportunities.

One drive behind for this trend is that the use of sensors proliferates in
many areas of life and businesses, such as vehicles, manufacturing and health,
creating continuous streams of data [47, 103]. Such large amount of data be-
comes the raw material for businesses and governments to gain insights and
new knowledge by employing machine learning techniques. The motivations
include competition or creating better policies set out when data is abundant,
engendering the urgency to draw knowledge from the data [103].

Another drive is the convergence between the IoT and critical infrastruc-
ture due to their demand for mission-critical applications [111]. As discussed
in section 4.6.1, data is processed closer to the consumer when low latency
is critical. The current trend is that trivial applications tend to become criti-
cal, or can be repurposed to support critical applications. The authors of [91]
pointed out that e-commerce users need faster time in listing the content of
their shopping carts; urban cameras can be deployed to detect a missing child;
and self-driving vehicles and air planes generate a large amount of data and
require fast decision. Interestingly, the authors of [91] pointed out that, in such
situation, collaborative learning between the edge devices will increase because
ad-hoc machine-to-machine communications do not depend on the cloud data
sharing policies.

The challenge against this trend is that edge devices (e.g. mobile devices)
tend to have lower computing capabilities than a cloud data center. On the
other hand, machine learning data analytics require high processing power
and storage. In this context, our proposed framework for machine learning
in the IoT environment can address the challenge. Its future work may com-
prise the study of a federation of edge devices sharing their knowledge. An
edge device that is equipped with the highest computing performance can
perform the data processing task. An edge device that has the highest band-
width can communicate with the cloud to offload their computing tasks [6].
In [55], a community of IoT devices with enough resources were tasked with
making decision on whether an access permission can be granted, on behalf of
a low-resource device. In other words, we can further examine a hybrid model
comprising Models 2 and 3 (as Figure 9 illustrates) where a group of edge de-
vices communicate to vote which device is responsible to transform data into
knowledge.

5.3 Scalability

IoT technologies have enabled the platform to communicate amongst a large
number of connected peers. When critical applications and end users require
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a big number of interconnections, scalability becomes an issue which needs to
be addressed. For example, large amounts of data need to be distributed to
several end devices, where the devices simultaneously solve computing chal-
lenges. Hence, distributed machine learning algorithms with edge computing is
a potential solution. It enables computing decisions to take place at the edge,
which is closer to the IoT devices. One work in this context is context-aware
processing [7], where scalability was achieved by exchanging knowledge rather
than some changes in threshold values (as discussed in section 3.4, traditional
IoT devices exchange information as a change of state or time). In context-
aware processing, information is exchanged in terms of context, allowing the
term ”morning” to be flexibly defined as ”8 am to 12 pm”, or when the road
traffic is seen as ”130 vehicles/hour”. This method enables a scalable solution
for a network of collaborating devices because only the required information
according to the context is exchanged, rather than communicating a number
of possible values.

In regard to the framework for machine learning proposed in our work,
we note that advancements in NLP research will foster the performance of
machine learning tasks in a distributed system. NLP puts context behind data
values, allowing connected IoT devices to collaboratively assign labels to their
data, learn knowledge from other devices, thereby representing distributed
machine learning to solve computing challenges.

5.4 Hyper convergence

Within a hyper convergence setting, storage facilities are shared amongst a
large number of distributed nodes and their combined performance helps to
recover from the resource sharing problem. This paradigm has been shown
as the desired architecture for an IoT data analytics framework [101]. Our
framework for machine learning in the IoT environment opens the door to
this pathway. The databases shown in Figure 14 (i.e. the Ontology, Param-
eters, and Hypotheses database) are designed to share their data with other
IoT devices in their community network, and their combined knowledge helps
to address cross-domain convergence as discussed in section 4.5. However, as
pointed in [101], the challenge is that current network systems are designed
for specific applications. Nodes in a community network are connected with
various physical layer technologies and bandwidths, with some nodes being
administratively more powerful (e.g. routing information, access control) than
others. How a new node can be seamlessly added to an existing community
network in the presence of some faults has not been fully addressed. Further-
more, there is a need to examine how a large (and increasing) amount of data
can be shared across large-storage nodes such as data centers. Thus, there is a
further need to design intelligent solutions for the hyper convergence setting.

Additionally, the convergence of intelligent IoT devices should not only
solve the technical challenges but also address regulatory issues. It is essential
to justify how intelligent devices can be beneficial in serving humanity rather
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than only satisfying breakthrough enthusiasts. An example of a current issue
is that distributed system solutions consume a large amount of power, which
starts to compete with human basic needs [111]. Thus, future directions include
more studies on regulating the convergence of intelligent machines.

6 Conclusion

The IoT paradigm has become an integral part of our daily lives. However,
IoT devices are constrained in computation and communication resources,
which are the bottlenecks in the development of adaptive, intelligent solutions
employing machine learning techniques. Although advances in technologies
and platform enhancements pave the way for a future that comprises rapid
IoT proliferation, application deployment, and strong analytics of high volume
IoT data, we have argued that integrating intelligent solutions from different
domains has been proven to be difficult. In this paper, we have justified that
our proposed framework for machine learning and knowledge discovery for
IoT pave ways to integrate adaptive learning techniques locally, at the edge,
through a fog or in the cloud. Consequently, the power of machine learning
can be fully harnessed to provide value and benefits to the consumers of IoT
technology, in the larger context of things.

Our proposed framework opens up some new challenges for future work in
machine-to-machine communications. In cyber security, research can include
the study of influence of malicious machines on other devices, that may lead to
system compromise. In distributed systems, machines need to be configured
to seamlessly distribute resources (hyper convergence), and allow the scala-
bility of connected IoT devices. When a federation of edge devices converge,
the concurrent advances in machine learning technology are thus realizable in
resource constrained IoT systems, and the future of IoT-enabled human lives,
is thus realized.
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109. Yacchirema DC, Sarabia-Jácome D, Palau CE, Esteve M (2018) A smart
system for sleep monitoring by integrating iot with big data analytics.
IEEE Access 6:35988–36001

110. Zeadally S, Bello O (2019) Harnessing the power of internet of things
based connectivity to improve healthcare. Internet of Things p 100074

111. Zeadally S, Adi E, Baig Z, Khan I (2020) Harnessing artificial intelligence
capabilities to improve cybersecurity. IEEE Access 8:23817–23837

112. Zekveld M, Hancke GP (2018) Vibration condition monitoring using ma-
chine learning. In: IECON 2018-44th Annual Conference of the IEEE
Industrial Electronics Society, IEEE, pp 4742–4747

113. Zeshan F, Mohamad R (2012) Medical ontology in the dynamic health-
care environment. Procedia Computer Science 10:340–348

114. Zhang H, Zhang Q, Liu J, Guo H (2018) Fault detection and repairing for
intelligent connected vehicles based on dynamic bayesian network model.
IEEE Internet of Things Journal 5(4):2431–2440, DOI 10.1109/JIOT.
2018.2844287


	1 Introduction
	2 The convergence of machine learning and IoT
	3 A critical review on data processing and knowledge discovery for IoT
	4 A framework for machine learning and knowledge discovery for IoT
	5 Future research opportunities
	6 Conclusion

