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A new iterative scheme has been constructed for findingminimal solution of a rationalmatrix equation of the form𝑋+𝐴
∗

𝑋
−1

𝐴 = 𝐼.
The new method is inversion-free per computing step. The convergence of the method has been studied and tested via numerical
experiments.

1. Introduction

In this paper, we will discuss the following nonlinear matrix
equation:

𝑋 + 𝐴
∗

𝑋
−1

𝐴 = 𝐼, (1)
where 𝐴 is an 𝑛 × 𝑛 nonsingular complex matrix, 𝐼 is the unit
matrix of the appropriate size, and 𝑋 ∈ C𝑛×𝑛 is an unknown
Hermitian positive definite (HPD) matrix that should be
found. It was proved in [1] that if (1) has an HPD solution,
then all its Hermitian solutions are positive definite and,
moreover, it has the maximal solution 𝑋

𝐿
and the minimal

solution 𝑋
𝑆
in the sense that 𝑋

𝑆
≤ 𝑋 ≤ 𝑋

𝐿
for any HPD

solution 𝑋.
A lot of papers have been published regarding the iterative

HPD solutions of such nonlinear rational matrix equations
in the literature due to their importance in some practical
problems arising in control theory, dynamical problems, and
so forth (see [2, 3]).

The most common iterative method for finding the
maximal solution of (1) is the following fixed-point iteration
[4]:

𝑋
0
= 𝐼,

𝑋
𝑘+1

= 𝐼 − 𝐴
∗

𝑋
−1

𝑘
𝐴.

(2)

The maximal solution of (1) can be obtained through
𝑋
𝐿

= 𝐼 − 𝑌
𝑆
, where 𝑌

𝑆
is the minimal solution of the dual

equation 𝑌 + 𝐴𝑌
−1

𝐴
∗

= 𝐼.
In 2010, Monsalve and Raydan in [5] proposed the

following iterationmethod (also known as Newton’s method)
for finding the minimal solution:

𝑋
0
= 𝐴𝐴

∗

,

𝑋
𝑘+1

= 𝑋
𝑘
(2𝐼 − 𝐴

−∗

(𝐼 − 𝑋
𝑘
) 𝐴
−1

𝑋
𝑘
) ,

(3)

which is an inversion-free scheme. Since, 𝐴
−1 should be

computed only once in contrast to the matrix iteration (2).
Note that 𝐴

−∗

= 𝐴
−1
∗

, and similar notations are used
throughout.

Remark 1. We remark that there are several other well-known
iterativemethods for solving (1) rather thanNewton’smethod
(3). To the best of our knowledge, the procedure of extending
higher-order iterative methods for finding the solution of (1)
has not been exploited up to now. Hence, we hope that this
interlink among the fields of root-finding and solving (1) may
lead to discovering novel and innovative techniques.
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The rest of this paper is organized as follows. In Section 2,
we develop and analyze a new inversion-freemethod for find-
ing roots of a special map 𝐹. In Section 3, we provide some
numerical comparisons by employing some experiments in
machine precision. Some concluding remarks will be drawn
in Section 4.

2. A New Iterative Method

An equivalent formulation of (1) is to find an HPD matrix
𝑋 such that 𝐹(𝑋) = 0. Toward this goal, we write 𝐹(𝑋) :=

𝑋 + 𝐴
∗

𝑋
−1

𝐴 − 𝐼 = 0. Furthermore, we have

𝐹 (𝑋) = 𝐴
∗

𝑋
−1

𝐴 + 𝑋 − 𝐼

= 𝐴
∗

𝑋
−1

𝐴 − (𝐼 − 𝑋)

= 𝐴
∗

𝑋
−1

𝐴 − (𝐴
−∗

− 𝑋𝐴
−∗

) 𝐴
∗

= 𝐴
∗

𝑋
−1

𝐴 − 𝐴(𝐴
−1

𝐴
−∗

− 𝐴
−1

𝑋𝐴
−∗

)𝐴
∗

= (𝐴
−1

𝑋𝐴
−∗

)
−1

− 𝐴 (𝐴
−1

𝐴
−∗

− 𝐴
−1

𝑋𝐴
−∗

)𝐴
∗

.

(4)

Now, using a change of variable as 𝑍 = 𝐴
−1

𝑋𝐴
−∗, we could

simplify (4) as follows:

𝐺 (𝑍) = 𝑍
−1

− 𝐴 (𝐴
−1

𝐴
−∗

− 𝑍)𝐴
∗

= 0. (5)

In order to obtain an iterative method for finding the
minimal HPD solution of (1), it is now enough to solve the
well-known matrix equation 𝑍

−1

− 𝐵 = 0, at which 𝐵 =

𝐴(𝐴
−1

𝐴
−∗

−𝑍)𝐴
∗. One of such ways to challenge this matrix

inversion problem is via applying the Schulz-type iteration
methods (see, e.g., [6–10]). ApplyingChebyshev’smethod [11]
yields

𝑋
0
= 𝐴𝐴

∗

,

𝑋
𝑘+1

= 𝑋
𝑘
[3𝐼 − 𝐴

−∗

(𝐼 − 𝑋
𝑘
)

× 𝐴
−1

𝑋
𝑘
(3𝐼 − 𝐴

−∗

(𝐼 − 𝑋
𝑘
) 𝐴
−1

𝑋
𝑘
)] .

(6)

We remark that there is a tight relationship between
iterative methods for nonlinear systems and the construction
of higher-order methods for matrix equations ([12, 13]).

The matrix iteration (6) requires 𝐴
−1 to be computed

only once at the beginning of the iteration and this makes
the iterative method fall in the category of inversion-free
algorithms for solving (1).

In the meantime, it is easy to show that the zeros of the
map𝐺(𝑍) = 𝑍

−1

−𝐵 are equal to the zeros of the map 𝐹(𝑋) =

𝑋
−1

− 𝐻, wherein 𝐻 = 𝐴
−∗

(𝐼 − 𝑋)𝐴
−1. To be more precise,

we are finding the inverse of the matrix𝐻which matches the
minimal HPD solution of (1).

Remark 2. Following Remark 1, we applied Chebyshev’s
method for (1) in this work and will study its theoretical
behavior.The extension of the other well-known root-finding
schemes for finding the minimal solution of (1) will remain
for future studies.

Lemma 3. The proposed method (6) produces a sequence of
Hermitian matrices using the Hermitian initial matrix 𝑋

0
=

𝐴𝐴
∗.

Proof. The initialmatrix𝐴𝐴
∗ isHermitian, and𝐻

𝑘
= 𝐴
−∗

(𝐼−

𝑋
𝑘
)𝐴
−1.Thus,𝐻

0
= 𝐴
−∗

𝐴
−1

−𝐴
−∗

𝐴𝐴
∗

𝐴
−1 is alsoHermitian;

that is, 𝐻∗
0

= 𝐻
0
. Now using inductive argument, we have

(𝑋
1
)
∗

= (𝑋
0
[3𝐼 − 𝐻

0
𝑋
0
(3𝐼 − 𝐻

0
𝑋
0
)])
∗

= (3𝑋
0
− 3𝑋
0
𝐻
0
𝑋
0
+ [𝑋
0
𝐻
0
𝑋
0
𝐻
0
𝑋
0
])
∗

= 3𝑋
0
− 3𝑋
0
𝐻
0
𝑋
0
+ 𝑋
0
𝐻
0
𝑋
0
𝐻
0
𝑋
0

= 𝑋
1
.

(7)

By considering (𝑋
𝑙
)
∗

= 𝑋
𝑙
, (𝑙 ≥ 𝑘) we now show that

(𝑋
𝑙+1

)
∗

= (𝑋
𝑙
[3𝐼 − 𝐻

𝑙
𝑋
𝑙
(3𝐼 − 𝐻

𝑙
𝑋
𝑙
)])
∗

= (3𝑋
𝑙
− 3𝑋
𝑙
𝐻
𝑙
𝑋
𝑙
+ [𝑋
𝑙
𝐻
𝑙
𝑋
𝑙
𝐻
𝑙
𝑋
𝑙
])
∗

= 3𝑋
𝑙
− 3𝑋
𝑙
𝐻
𝑙
𝑋
𝑙
+ 𝑋
𝑙
𝐻
𝑙
𝑋
𝑙
𝐻
𝑙
𝑋
𝑙

= 𝑋
𝑙+1

.

(8)

Note that 𝐻
𝑙

= (𝐻
𝑙
)
∗ has been used in (8). Now the

conclusion holds for any 𝑙+1.Thus, the proof is complete.

Theorem 4. By considering that 𝐴 and 𝑋
𝑘
are nonsingular

matrices, the sequence {𝑋
𝑘
} generated by (6) is convergent to

the minimal solution using the initial matrix 𝑋
0
= 𝐴𝐴

∗.

Proof. Let us consider 𝐻
𝑘

= 𝐴
−∗

(𝐼 − 𝑋
𝑘
)𝐴
−1. We therefore

have

𝐼 − 𝐻
𝑘
𝑋
𝑘+1

= 𝐼 − [𝐴
−∗

(𝐼 − 𝑋
𝑘
) 𝐴
−1

]

× (𝑋
𝑘
[3𝐼 − 𝐴

−∗

(𝐼 − 𝑋
𝑘
) 𝐴
−1

𝑋
𝑘

× (3𝐼 − 𝐴
−∗

(𝐼 − 𝑋
𝑘
) 𝐴
−1

𝑋
𝑘
)])

= (𝐼 − 𝐻
𝑘
𝑋
𝑘
)
3

.

(9)

Taking a genericmatrix operator norm fromboth sides of (9),
we obtain

𝐼 − 𝐻
𝑘
𝑋
𝑘+1

 ≤
𝐼 − 𝐻

𝑘
𝑋
𝑘



3

. (10)

On the other hand, Chebyshev’s method for matrix
inversion problem is convergent if the initial approximation
reads ‖𝐼−𝐻𝑋

0
‖ < 1.That is to say, ‖𝐼−[𝐴

−∗

(𝐼−𝑋)𝐴
−1

]𝑋
0
‖ <

1. This together with the initial matrix 𝑋
0
= 𝐴𝐴

∗ gives
𝐴
−∗

𝑋𝐴
∗ < 1, (11)

which is true when 𝑋 is the minimal HPD solution of (1).
Note that since

0 < 𝑋
𝑆
= 𝐼 − 𝐴

∗

𝑋
−1

𝑆
𝐴

= 𝐴
∗

[𝐴
−∗

𝐴
−1

− 𝑋
−1

𝑆
] 𝐴 = 𝐴

∗

[𝑋
−1

0
− 𝑋
−1

𝑆
] 𝐴,

(12)
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we obtain that 𝑋
−1

0
> 𝑋
−1

𝑆
; thus 𝑋

0
< 𝑋
𝑆
. And subsequently

usingmathematical induction, it would be observed that {𝑋
𝑘
}

tends to 𝑋
𝑆
.

The only problem that happens in this process is the
fact that the convergence order is 𝑞-linear. In fact, although
Chebyshev’s method for matrix inversion has third local
order of convergence, this rate will not be preserved for
finding the minimal HPD solution of (1).

The reason is that the matrix 𝐻, which we must compute
its inverse by Chebyshev’s method, is dependent on the 𝑋

itself. That is to say, the unknown is located in the essence
of the matrix 𝐻 = 𝐴

−∗

(𝐼 − 𝑋)𝐴
−1.

Theorem 5. The sequence of matrices produced by (6) satisfies
the following error inequality:

𝑋𝑘+1 − 𝑋
𝑆

 ≤
𝜆𝑘



𝑋𝑘 − 𝑋
𝑆

 , (13)

where 𝜆
𝑘

= −𝑋
−1

𝑆
𝛿
𝑘
+𝑋
𝑘
𝑋
2

𝑆
𝛿
𝑘
+3𝑌
𝑘
−𝑋
𝑘
𝑋
−1

𝑆
𝑌
𝑘
−𝑌
𝑘
𝑋
−1

𝑆
𝑋
𝑘
+

𝑌
𝑘
𝐴
−∗

𝐴
−1

𝑋
𝑘
and 𝑌

𝑘
= 𝑋
𝑘
𝐴
−∗

𝐴
−1

𝑋
𝑘
.

Proof. First since lim
𝑘→∞

𝑋
𝑘

= 𝑋
𝑆
and by using (6) we have

𝑋
𝑘+1

− 𝑋
𝑆

= 𝑋
𝑘
[3𝐼 − 𝐴

−∗

(𝐼 − 𝑋
𝑘
) 𝐴
−1

𝑋
𝑘

× (3𝐼 − 𝐴
−∗

(𝐼 − 𝑋
𝑘
) 𝐴
−1

𝑋
𝑘
)] − 𝑋

𝑆

= [3𝑋
𝑘
− 3𝑋
𝑘
𝐴
−∗

(𝐼 − 𝑋
𝑘
) 𝐴
−1

𝑋
𝑘
+ 𝑋
𝑘
𝐴
−∗

× (𝐼 − 𝑋
𝑘
) 𝐴
−1

𝑋
𝑘
𝐴
−∗

(𝐼 − 𝑋
𝑘
) 𝐴
−1

𝑋
𝑘
] − 𝑋
𝑆

= [3𝑋
𝑘
− 3𝑋
𝑘
𝐴
−∗

((𝐼 − 𝑋
𝑆
) − (𝑋

𝑘
− 𝑋
𝑆
)) 𝐴
−1

𝑋
𝑘

+ 𝑋
𝑘
𝐴
−∗

((𝐼 − 𝑋
𝑆
) − (𝑋

𝑘
− 𝑋
𝑆
)) 𝐴
−1

𝑋
𝑘
𝐴
−∗

× ((𝐼 − 𝑋
𝑆
) − (𝑋

𝑘
− 𝑋
𝑆
)) 𝐴
−1

𝑋
𝑘
] − 𝑋
𝑆

= [3𝑋
𝑘
− 3𝑋
𝑘
𝑋
−1

𝑆
𝑋
𝑘
+ 3𝑋
𝑘
𝐴
−∗

(𝑋
𝑘
− 𝑋
𝑆
) 𝐴
−1

𝑋
𝑘

+ 𝑋
𝑘
(𝑋
−1

𝑆
𝑋
𝑘
)
2

− 𝑋
𝑘
𝑋
−1

𝑆
𝑋
𝑘
𝐴
−∗

(𝑋
𝑘
− 𝑋
𝑆
)

× 𝐴
−1

𝑋
𝑘
− 𝑋
𝑘
𝐴
−∗

(𝑋
𝑘
− 𝑋
𝑆
) 𝐴
−1

𝑋
𝑘
𝑋
−1

𝑆
𝑋
𝑘
+ 𝑋
𝑘
𝐴
−∗

× (𝑋
𝑘
− 𝑋
𝑆
) 𝐴
−1

𝑋
𝑘
𝐴
−∗

(𝑋
𝑘
− 𝑋
𝑆
) 𝐴
−1

𝑋
𝑘
] − 𝑋
𝑆

= − [𝑋
𝑆
− 3𝑋
𝑘
+ 3𝑋
𝑘
𝑋
−1

𝑆
𝑋
𝑘
− 𝑋
𝑘
(𝑋
−1

𝑆
𝑋
𝑘
)
2

]

+ 3𝑋
𝑘
𝐴
−∗

(𝑋
𝑘
− 𝑋
𝑆
) 𝐴
−1

𝑋
𝑘
+ 𝑋
𝑘
(𝑋
−1

𝑆
𝑋
𝑘
)
2

− 𝑋
𝑘
𝑋
−1

𝑆
𝑋
𝑘
𝐴
−∗

(𝑋
𝑘
− 𝑋
𝑆
) 𝐴
−1

𝑋
𝑘

− 𝑋
𝑘
𝐴
−∗

(𝑋
𝑘
− 𝑋
𝑆
) 𝐴
−1

𝑋
𝑘
𝑋
−1

𝑆
𝑋
𝑘
+ 𝑋
𝑘
𝐴
−∗

× (𝑋
𝑘
− 𝑋
𝑆
) 𝐴
−1

𝑋
𝑘
𝐴
−∗

(𝑋
𝑘
− 𝑋
𝑆
) 𝐴
−1

𝑋
𝑘
.

(14)

Note that we have used the fact that (𝐼 − 𝑋
𝑆
) = 𝐴

∗

𝑋
−1

𝑆
𝐴.

Relation (14) yields

𝛿
𝑘+1

= −𝛿
𝑘
𝑋
−1

𝑆
𝛿
𝑘
+ 𝑋
𝑘
𝑋
2

𝑆
𝛿
2

𝑘
+ 3𝑋
𝑘
𝐴
−∗

(𝛿
𝑘
) 𝐴
−1

𝑋
𝑘

− 𝑋
𝑘
𝑋
−1

𝑆
𝑋
𝑘
𝐴
−∗

𝛿
𝑘
𝐴
−1

𝑋
𝑘
− 𝑋
𝑘
𝐴
−∗

𝛿
𝑘
𝐴
−1

𝑋
𝑘
𝑋
−1

𝑆
𝑋
𝑘

+ 𝑋
𝑘
𝐴
−∗

𝛿
𝑘
𝐴
−1

𝑋
𝑘
𝐴
−∗

𝛿
𝑘
𝐴
−1

𝑋
𝑘

= 𝜆
𝑘
𝛿
𝑘
,

(15)

wherein 𝛿
𝑘

= 𝑋
𝑘

− 𝑋
𝑆

and 𝜆
𝑘

= −𝑋
−1

𝑆
𝛿
𝑘

+

𝑋
𝑘
𝑋
2

𝑆
𝛿
𝑘

+ 3𝑋
𝑘
𝐴
−∗

𝐴
−1

𝑋
𝑘

− 𝑋
𝑘
𝑋
−1

𝑆
𝑋
𝑘
𝐴
−∗

𝐴
−1

𝑋
𝑘

−

𝑋
𝑘
𝐴
−∗

𝐴
−1

𝑋
𝑘
𝑋
−1

𝑆
𝑋
𝑘

+ 𝑋
𝑘
𝐴
−∗

𝐴
−1

𝑋
𝑘
𝐴
−∗

𝐴
−1

𝑋
𝑘
. We remark

that 𝛿
𝑘
𝐴
−1

𝑋
𝑘

= 𝐴
−1

𝑋
𝑘
𝛿
𝑘
.

Consequently, one has the error inequality (13). This
shows the 𝑞-linear order of convergence for finding the
minimal HPD solution of (1). We thus have

0 < lim sup
𝑘→∞

𝑋
𝑘+1

− 𝑋
𝑆

𝑋
𝑘
− 𝑋
𝑆

< 1, (16)

which is guaranteed since

0 < lim sup
𝑘→∞

𝜆𝑘
 < 1. (17)

3. Numerical Comparisons

In this section, we mainly investigate the performance of
the new method (6) for matrix equation (1). All experiments
were run on a Pentium IV computer, using Mathematica 8
[14]. We report the number of required iterations (Iter) for
converging. In our implementations, we stop all considered
methods when the infinity norm of two successive iterates is
less than given tolerance.

Note that recently Zhang in [15] studied a way to accel-
erate the beginning of such iterative methods for finding
the minimal solution of (1) via applying multiple Newton’s
method for matrix inversion. This technique could be given
by

𝑋
𝑘+1

= 𝑋
𝑘
((𝑡 + 1) 𝐼 − 𝑡𝐻

𝑘
𝑋
𝑘
) , (18)

for any 1 ≤ 𝑡 ≤ 2. Subsequently, we could improve the
behavior of the new method (6) using (18) as provided in
Algorithm 1.

We compare Algorithm 1, denoted by PM, with (2)
denoted byM1, (3) denoted byM2, and themethod proposed
by El-Sayed and Al-Dbiban [16] denoted by M3, which is
a modification of the method presented by Zhan in [17], as
follows:

𝑋
0
= 𝑌
0
= 𝐼,

𝑌
𝑘+1

= (𝐼 − 𝑋
𝑘
) 𝑌
𝑘
+ 𝐼,

𝑋
𝑘+1

= 𝐼 − 𝐴
∗

𝑌
𝑘+1

𝐴.

(19)
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(1) Choose 𝑋
0
= 𝐴𝐴

∗

(2) for 𝑘 = 0, 1, . . . , 𝑙, use (18)
(3) end for
(4) set 𝑋

0
= 𝑋
𝑙

(5) for 𝑘 = 0, 1, . . . until convergence (
𝑋𝑘+1 − 𝑋

𝑘

 < 𝜖), use (6)
(6) end for

Algorithm 1: A hybrid method for computing the minimal HPD solution of (1).

0 20 40 60 80 100 120

0.01

1

PM
M3

M2
M1

10
−4

10
−6

10
−8

(a)

0 5 10 15

0.1

PM
M3

M2
M1

10
−4

10
−7

10
−10

(b)

Figure 1: Number of iterations against accuracies for experiment 1 (a) and experiment 2 (b).

Example 1 (see [18]). In this experiment, we compare the
results of different methods for finding the minimal solution
of (1) when the matrix 𝐴 is defined by

𝐴 = (

0.37 0.13 0.12

−0.30 0.34 0.12

0.11 −0.17 0.29

) , (20)

and the solution is

𝑋
𝑆
= (

0.215981 −0.0960406 0.101305

−0.0960406 0.331082 −0.154487

0.101305 −0.154487 0.241782

) . (21)

The results are given in Figure 1(a) in terms of the number
of iterations when the stopping criterion is ‖𝑋

𝑘+1
− 𝑋
𝑘
‖
∞

≤

10
−8.

Note that PM and M2 converge to 𝑋
𝑆
, whereas all the

other schemes converge to 𝑋
𝐿
; thus we use other schemes

to find the maximal solution of the dual equation 𝐷(𝑋) =

𝑋 + 𝐴𝑋
−1

𝐴
∗

− 𝐼 in our written codes so as to have fair
comparisons. Here 𝑡 = 2 has been chosen for PM (with
𝑙 = 19). This 𝑙 = 19 for the number of iterations in the
inner finite loop of Algorithm 1 has been considered in the
numerical report.

Furthermore, we have chosen this number empirically.
In fact, varying 𝑙 shows us that we even can obtain better or
worse results than the reported ones in different examples.

In Example 1, we have used 𝑡 = 2. In fact we have chosen
this value for 𝑡 since we are solving an operator equation
in essence. To be more precise, we wish to consider the
solution of the operator equation to be of multiplicity 2.
This considerationmakes the algorithm converge faster at the
initial phase of the process and when we are enough close to
the solution, then we flash back to the ordinarymethods, that
is, treat the solution as a simple zero (solution) of the operator
equation.

Example 2 (see [19]). Applying the stopping criterion
‖𝑋
𝑘+1

− 𝑋
𝑘
‖
∞

≤ 10
−12, we compare the behavior of various

methods for the following test matrix:

𝐴 = (

0.1 −0.15 −0.2598076

0.15 0.2125 −0.0649519

0.2598076 −0.0649519 0.137

) , (22)

with the solution as

𝑋
𝑆
= (

0.112684 −0.0000130161 0.000142799

−0.0000130161 0.078409 0.0198307

0.000142799 0.0198307 0.101129

) .

(23)

The results are illustrated in Figure 1(b), wherein 𝑡 = 1.2 has
been chosen for PM (with 𝑙 = 1).
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4. Conclusions

We have studied the fact that the minimal HPD solution of
(1) is equivalent to the roots of a nonlinear map. This special
map has been solved by the well-known Chebyshev method
as a matrix inversion problem.

The developed method requires the computation of one
matrix inverse at the beginning of the process and it is hence
an inversion-free method. The convergence and the rate of
convergence have been studied for this scheme. Furthermore,
using a proper acceleration technique from the literature,
we have further speeded up the process of finding the HPD
solution of (1).
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