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Abstract.The present paper addresses the problem ofMHD forced convective flow in a fluid saturated
porous mediumwith Brinkman-Forchheimer model, which is an important physical phenomena in en-
gineering applications. The paper extends the previous models to account for effects of variable fluid
properties on the forced convective flow through a porous medium in the presence of radiative heat
loss using bivariate spectral relaxation method (BSRM). The dynamic viscosity µ and thermal con-
ductivity of the newtonian fluid are assumed to vary linearly respectively, with temperature whereas
the contribution of thermal radiative heat loss is based on Rosseland diffussion approximation. The
flow model is described and expressed in form of a highly coupled nonlinear system of partial dif-
ferential equations. The method of solution BSRM as proposed by Motsa [25] seeks to decouple the
original system of PDEs to form a sequence of equations that can be solved in a computationally effi-
cient manner. BSRM is an approach that applies spectral collocation independently in all underlying
independent variable is executed to obtain approximate solutions of the problem. The proposed algo-
rithm is supposed to be a very accurate, convergent and very effective in generating numerical results.
The results obtained show a significant effects of the flow control parameters on the fluid velocity
and temperature respectively. Consequently, the wall shear stress and local heat transfer rate of the
present paper are compared with the available results in literatures. Remarkable impacts and a good
agreement are found.

Introduction

Theoretical and applied research in fluid flow, heat and mass transfer in porous media has received
remarkable attention over the past three decades.This is due to the importance and relevance of this
research area in many engineering applications. Significant advances have been made in modeling
fluid flow, heat and mass transfer through a porous medium including clarification of many important
physical phenomena. For instance, the non-darcy effects on momentum, energy amd mass transport
in porous media have been studied in depth for various geometrical configurations and boundary
conditions.Many of the research works in porous media for the past couple of decades uses what is
now known as the Brinkman-Forchheimer-extended darcy or simply refer as generalized model by
Vafai [1].

Magnetohydrodynamic forced convective flows in a fluid saturated porousmedia are of great value
in various engineering, scientific and industrial applications in heat and mass transfer which occurs in
the fields of design of chemical processing equipment,formation and dispersion of fog,distributions of
temperature and moisture over agricultural fields and groves of fruit trees and damage of crops due to
freezing and pollution of the environment,grain storage systems, heat pipes, packed microsphere insu-
lation, distillation towers, ion exchange column, subterranean chemical waste migration system,solar
power absorbers etc. A sizeable number of studies have been reported in literature with focus and em-
phasis on the problem of combined heat and mass transfer in porous media. The qualitative analysis of
convective transport in a porous medium in the presence of non-darcian effects has also been a subject
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of investigation in the recent years. Due to its important application in many field, a full understand-
ing for combined heat and mass transfer by non-darcy natural convection from a heated flat surface
embedded in fluid saturated porous medium is very important and meaningful. The inertia effect is
significant in any flow field at a higher flow rate and it can be accounted for through the addition of
a velocity squared term in the momentum equation. This is known as the Forchheimer’s extension
of darcy law. A detailed review of convective heat transfer in darcian and non-darcian porous media
including an exhaustive list of references can be found in the book by Nield and Bejan [2] and Srini-
vasacharya et. al [6], Ingham and Pop [3] and Pop and Ingham [4] reviewed a good number of articles
in their books.

These revealed the level of understanding on the momentum, heat and mass transfer phenomena
in porous media. However, many of the previous literatures in this area of research work have been on
the investigation of either convection in plane walls or in a channel bounded by the porous medium.
Till date there are very limited research works on convective heat andmass transfer from heated bodies
of higher complexity, such as circular cylinder embedded in saturated porous medium. Magnetohy-
drodynamic flow, heat and mass transfer from a horizontal cylinder immersed in a fluid saturated
porous medium have practical importance in engineering applications such as seen in compact heat
exchangers, solar power collectors and nuclear reactors. El-Amin [5] investigated a combined effect of
viscous dissipation and joule heating on MHD forced convection flow over a non-isothermal horizon-
tal cylinder embedded in a fluid saturated porous medium. The influence of both first and second order
resistance due to the solid matrix of non-darcy porous medium,joule heating and viscous dissipation
on forced convection flow over a horizontal cylinder under the action of transverse magnetic field
were adequately examined with constant dynamic viscosty and thermal conductivity in the absence of
thermal radiation.

Cheng [7] studied the combined heat and mass transfer in natural convection flow from a vertical
wavy surface in a power-law fluid over a saturated porous medium with thermal and mass stratifi-
cation. Mukhopadhyay [8] examined the effects of thermal radiation on unsteady mixed convection
flow and heat transfer over a porous stretching surface in porous medium.

Pantokratoras [9] made a startling theoretical study on the effect of variable viscosity on the flow
and heat transfer over a continuous plate. Adegbie and Alao [10] obtained an exact analytical so-
lutions for the solution of temperature-dependent viscous fluid between parallel heated walls in the
presence of viscous dissipation. Ahmad et al. [11] investigated non-similar solutions of mixed convec-
tion boundary layer flow past an isothermal horizontal circular cylinder with temperature-dependent
viscosity. they concluded that flow and heat transfer characteristics are significantly influenced by
temperature-dependent viscosity. It is remarkable to note that the study of magnetohydrodynamic
flow has an important application in engineering and industries and may also be used to deal with
the problem such as cooling of nuclear reactors by liquid sodium and induction flow meter, which is
determine by the potential difference in the fluid in the direction perpendicular to the motion of fluid
and the magnetic field, see Ganesan [12].

Thermal radiation is one of the fundamental mechanisms of heat transfer and its influence plays
a significant role in controlling heat transfer process in polymer processing industry. The quality of
final product depends to a large extent on the amount of heat energy such object is exposed to and
the level of heat controlling factors. Thermal radiation occurring within these systems is as a result of
thermal emission by the hot walls and working fluid. These effects become more significant especially
when the temperature difference between the wall surface and the ambient temperature is large. At
high operating temperature, thermal radiation effects can be quite significant and the knowledge of
radiation heat transfer is very important for the design of pertinent equipment Seddeek [13]. Hence
thermal radiation is one of the vital factors controlling the heat and mass transfer Dulal [14]. Observ-
ing various researches into the dynamics of MHD flow, it is seen that there are varying focuses on
terms like viscosity and thermal diffusivity, heat generation or absorption coefficient, magnetic in-
duction, electrical conductivity, Eckert number, heat dissipative term and a host of others. According
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to Mahmoud [15], in most studies, the viscosity and thermal conductivity of the working fluid are
usually assumed a constant value. In recent development, Promise [16] examined steady-state solu-
tion to Magnetohydrodynamic thermally radiating and reacting thermo-solutal viscous flow through a
channel with porous medium. The chemical reaction is assumed to be strongly exothermic under the
generalized Arrhenius kinetics neglecting the consumption of the material. An approximate solutions
were obtained for the model’s governing equations usingWKBJ approximations. The results obtained
were observed to be relative on the dimensionless controlling parameters.

Salema and Fathy [19] examined the effects of variable properties on MHD heat and mass transfer
flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation.
Minkowyez and Haji-Sheikh [20] analyzed heat transfer in parallel plate and circular porous passage
with axial conduction. The study of the problem of mixed convection flow from a vertical flat plate
with temperature-dependent viscosity was examined by Hossain [21]. Non-darcy unsteadymixed con-
vection flow near the stagnation point on a heated vertical surface embedded in a porous medium with
thermal radiation and variable viscosity was investigated by Hassanien [22]. Recently, Sharma [23]
delved into the problem ofMHD flow, heat and mass transfer about a horizontal cylinder in a saturated
porous medium. The previous investigations on the field ofMHD flow provide some clarifications and
insights in understanding several pertinent aspects of modeling of transport phenomena in porous me-
dia but without combined effects of variable viscosity and thermal conductivity in the presence of
thermal radiation. In most of the previous investigations of these types of problem, the viscosity and
thermal conductivity of the working fluid were assumed to be of constant value without consideration
for heat loss by thermal radiation (see references cited).

However,it is an established fact that these thermo-physical properties change significantly with
temperature variation. When variable viscosity and thermal conductivity of the fluid are taken into ac-
count in the transport phenomena through a porous medium, the flow characteristics are significantly
changed as compared to a constant property case of the fluid. Thus to accurately predict the flow be-
haviour, it is necessary to take into account the variation of viscosity and thermal conductivity of fluid
with temperature. Consequently, the present study extends the work of El-Amin [5] to examine the
problem of MHD forced convection flow over a non-isothermal horizontal cylinder embedded in a
fluid saturated porous medium with variable viscosity µ(T ) and thermal conductivity λ(T), which are
modeled as a function of temperature,in the presence of thermal radiation. The governing boundary
layer equations are transformed using suitable similarity variables to yield a highly coupled non-linear
system of partial differential equations. The transformed governing equations are approach using spec-
tral relaxation method. Spectral relaxation method is a newly proposed numerical scheme often use to
solve non-linear systems of boundary value problems.

The method is developed by defining a rule of solution expression based on bivariate Lagrange
interpolation. The spectral relaxation method algorithm is applied to decompose the governing non-
linear PDEs into a sequence of linear PDEs. The resulting linear sequence of PDEs contains vari-
able coefficients and is impossible to solve exactly. Consequently, the Chebyshev spectral collocation
method with bivariate Lagrange interpolation is applied independently in the space and time indepen-
dent variables Motsa et al. [27]. In view of the application of the combination of bivariate interpolation
and spectral collocation differentiation, Motsa et al. [25] called the new method bivariate spectral re-
laxation method (BSRM).

Governing Equations

Consider a steady two-dimensional magnetohydrodynamic flow of a viscous incompressible electrical
conducting forced convection flow from a horizontal impermeable circiular cylinder with radius r
saturated in a porousmediumwith variable dynamic viscosity and thermal conductivity in the presence
of thermal radiation. In order to account for the variation in thermo-physical properties of the fluid, it is
valid to consider the mathematical model of temperature dependent viscosity model used in Sivagnana
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et al. [28] which was developed using the experimental data reported in (Batchelor (1987)) together
with the mathematical model of temperature dependent thermal conductivity model of Charraudeau
(1975) as

µ(T ) = µ∞(1 + γ(Tw − T )), (1)

λ(T ) = λ∞(1 + α(T − T∞)). (2)

Here α and γ , are constants and their values depend on the reference states µ∞ and λ∞, and thermal
properties of the fluid. In general, It is worth noting that if γ > 0 the flow model is designed for
liquids and if γ < 0 the flow model is designed for gases. Tw and T∞ (with Tw > T∞ ) are the
surface temperature and free stream temperature respectively. The operation of the flow in saturated
porous medium requires high Reynold number and small Prandtl number respectively. The surface
temperature of the working fluid is assumed to vary with the stream-wise direction of the flow, i.e.

Tw − T∞ = d(1− cosω)p, 0 ≤ ω ≤ π, (3)

where d and p are constants.We notice that we have isothermal wall temperature case. The contribution
of thermal radiation is modeled using Rosseland approximation. Most of the effort in understanding
fluid thermal radiation is devoted to the derivation of reasonable simplification Aboeldahab and El-
Gendy [17] and Md Miraj et. al. [18] . Rosseland approximation requires that the medium is optically
dense and radiation travels only a short distance before being scattered or absorbed. Therefore, a
simplified model for Radiative Transfer Equation (RTE) based on Rosseland approximation MdMiraj
et. al. [18] is given as

qr = − 4σ∗

3K∗
∂T 4

∂y
, (4)

where σ∗ is the stefan-boltzmann constant andK∗ is known as absorption coefficient.We assumed that
the temperature difference within the flow regime are sufficiently small such that T 4 can be expressed
as a linear function of the free stream temperature T∞. This is simplified by expanding T 4 in taylor
series about T∞ and forgone the higher order terms. Considering the Taylor’s series expansion of a
function f(x) about x0

f(x) = f(x0) + (x− x0)f
′(x0) +

(x− x0)
2

2!
f ′′(x0) + ...+

(x− x0)
n

n!
fn(x0), (5)

Likewise, expansion of T 4 about T∞. Setting f(x) = T 4 and f(x0) = f(T∞) = T 4
∞ in above equation.

Neglecting higher order, we obtain T 4 = 4T 3
∞ − 3T 4

∞.Thus

1

ρcp

∂qr
∂y

= −16σ∗T 3
∞

3ρcpK∗
∂2T

∂y2
. (6)

The pressure imposed on the flow is assumed to be relatively similar to that of the inviscid non-
conducting fluid flow about a circular cylinder given as:

1

ρ

∂P

∂x
=

4u2∞
r

sinω cosω. (7)

On applying the boundary layer approximation (x ≫ y) and Boussinesq approximation with the
statement of facts from equations (1)-(7), the flow model following El-Almin [5] can be given as:

∂u

∂x
+
∂v

∂y
= 0, (8)

u
∂u

∂x
+v

∂u

∂y
=

4u2∞
r

sinω cosω+
1

ρ

∂

∂y

(
µ(T )

∂u

∂y

)
+gβ(T−T∞) sinω− σβ2

0u

ρ∞
− κεu

K
−Fε2u2√

K
, (9)
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u
∂T

∂x
+ v

∂T

∂y
=

1

ρcp

∂

∂y

(
λ(T )

∂T

∂y

)
+
σβ2

0u
2

ρ∞cp
+
µ(T )

ρCp

(
∂u

∂y

)2

+
16σ∗T 3

∞
3ρcpK∗

∂2T

∂y2
. (10)

With the boundary conditions:

u(x, 0) = v(x, 0) = 0, T (x, 0) = Tw,
∂u(x,∞)

∂y
→ 0, T (x,∞) → T∞. (11)

The following relations are introduced to (8)

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (12)

Here, ψ(x, y) represents the stream function and equation (8) is automatically satisfies by (12). Fol-
lowing El-Amin [5], we introduce the following similarity variables and dimensionless temperature

θ =
T − T∞
Tw − T∞

, ξ(x) = 4 sin2
w

2
, ω =

x

r
, η(x, y) = y

√
2u∞
ξϑr

sinw, ψ =
√

2ϑru∞ξf(ξ, η).

(13)
The dimensionless form of viscosity and thermal conductivity variation parameters Dγ and Dα are
written as Dγ = γ(Tw − T∞), and Dα = α(Tw − T∞) respectively. Now substituting (1) - (7) and
(13),into equation (8) - (10) we obtain the following

(1 +Dγ − θDγ)
∂3f

∂η3
−Dγ

∂θ

∂η

∂2f

∂η2
+
∂2f

∂η2
f +

((
2ξ − 4

4− ξ

)
+

(
2ξ√

4ξ − ξ2

))
k2

(
∂f

∂η

)2

± N

4− ξ
+

4− 2ξ

4− ξ
− 2

4− ξ
(Mn+K1)

∂f

∂η
= 2ξ

(
∂f

∂η

∂f ′

∂ξ
− ∂2f

∂η2
∂f

∂ξ

)
, (14)(

1

Pr
(1 +Dα(θ − 1)) +

4Ra

3

)
∂2θ

∂η2
+
∂θ

∂η
f − 2n

∂f

∂η
θ +

Dα

Pr

(
∂θ

∂η

)2

+ 2ξEcMn

(
∂f

∂η

)2

+Ecξ(4− ξ) (1 +Dγ − θDγ)

(
∂2f

∂η2

)2

= 2ξ

(
∂f

∂η

∂θ

∂ξ
− ∂θ

∂η

∂f

∂ξ

)
. (15)

The flow boundary conditions (11) are transformed to

∂f(0, ξ)

∂η
= 0, f(0, ξ) + ξ

∂f(0, ξ)

∂ξ
= 0, θ(0, ξ) = 1, (16)

∂2f(∞, ξ)

∂η2
= 0, θ(∞, ξ) = 0. (17)

It is important to note that in the absence of variable viscosity parameter, thermal conductivity param-
eter and heat loss by thermal radiation (i.e Dα = Dγ = Ra = 0), we obtained the model equations
analyzed by El-Amin [5].
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let α1 = 1, α2 = Dγ, α3 =

((
2ξ−4
4−ξ

)
+

(
2ξ√
4ξ−ξ2

))
k2, α4 =

(
2ξ−4
4−ξ

)
α5 = ± N

4−ξ
, α6 =

− 2
4−ξ

(Mn+K1), α7 = 2ξ, α8 =
1
Pr
, α9 = Dα, α10 =

4Ra
3
, α11 =

Dα
Pr
, α12 = 2ξEcMn, α13 =

Ecξ(4− ξ), α14 = −2n. Hence equations (14)-(15) become:

(α1 + α2(1− θ)) f ′′′ − α2f
′′θ′ + α1f

′′f + α4 + α5θ + α6f
′α3f

′2

= α7

(
f ′∂f

′

∂ξ
− f ′′∂f

∂ξ

)
, (18)

(α8(α1 + α9(θ − 1)) + α10) θ
′′ + α1θ

′f + α14f
′θ + α11θ

′2 + α12f
′2 + α13 (α1 + α2(1− θ)) f ′′2

= α7

(
f ′∂θ

∂ξ
− θ′

∂f

∂ξ

)
. (19)

In practical engineering application ,the physical parameters of practical values are the local skin
friction coefficient and local nusselt number of the flow. Thewall skin friction and local nusselt number
defined are defined as follows:

Skin friction coefficient

Cf = 4

√
2 sin2 ω
Reξ

f ′′(ξ, 0),

Nusselt number
Nu =

qw
Tw − T∞

r

k
= −

√
2 sinω√

ξ
Re

θ′(ξ, 0).

Method of solution : BSRM

In this section, we present the application of bivariate spectral relaxation method (BSRM) to solve the
governing coupled non-linear system of partial differential equation (18) - (19). BSRM in its formu-
lation apply Gauss-Siedel relaxation technique to re-arrange and decouple non-linear systems to form
a linear sequence of partial differential equations that can be solved in succession over a number of
iterations. Consequently, re-arranging equations (18) - (19) and apply the Gauss-Siedel lineariazation
scheme, we obtain:

a0,r(η, ξ)
∂2gr+1

∂η2
+ a1,r(η, ξ)

∂gr+1

∂η
+ α6gr+1 + a2,r(η, ξ)

= a3,r
∂gr+1

∂ξ
, (20)

∂fr+1

∂η
= gr+1, (21)

b0,r
∂2θr+1

∂η2
+ b1,r(η, ξ)

∂θr+1

∂η
+ b2,r(η, ξ)θr+1 + b3,r(η, ξ)

= b4,r(η, ξ)
∂θr+1

∂ξ
, (22)

subject to

gr+1(0, ξ) = 0, fr+1(0, ξ) + 2ξ
∂fr+1(0, ξ)

∂ξ
= 0, θr+1(0, ξ) = 1, (23)

∂gr+1(∞, ξ)

∂η
= 0, θr+1(∞, ξ) = 0, (24)
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where the coefficients are defined as

a0,r(η, ξ) = α1 + α2(1− θr), a1,r(η, ξ) = −α2
∂θr
∂η

+ α2fr + α7
∂θr
∂η

∂fr
∂ξ

,

a2,r(η, ξ) = α3g
2
r + α4 + α5θr, a3,r(η, ξ) = α7gr,

b0,r(η, ξ) = α8α1 − α8α9 + α8α10 + α8α9θr, b1,r(η, ξ) = α1fr + α7
∂θr
∂η

∂fr
∂ξ

,

b2,r(η, ξ) = α13α1

(
∂θr
∂η

)2

+ α13α2

(
∂θr
∂η

)2

− α13α2g
2
r + α4gr, b3,r(η, ξ) = α11θ

2
r + α2g

2
r ,

b4,r(η, ξ) = α7gr.

The set of equations (20) -(24) are solve iteratively starting from r = 1, 2, . . . , and using a given
initial approximations, denoted here as g0, f0 and θ0 until approximate solutions are obtained that is
consistent with a given tolerance level. By adopting the similar procedures as stated in a related paper
by Motsa et al. [26], spectral collocation method can be used to discretize the independent variables
η and ξ domains. The Chebyshev collocation technique as applied in spectral collocation methods
requires that the domain of the problem be transformed from [0,∞] to [−1, 1]. Hence, using linear
transformation, we transform η ∈ [0, η∞] and ξ ∈ [0, 1] to τ ∈ [−1, 1] and ζ ∈ [−1, 1], respectively.
Here η∞ is a finite value that is introduced to facilitate the application of the numerical method at
infinity. The spatial and time domains are disctretized using Chebyshev Gauss-Lobatto points defined
as

τi = cos
(
πi

Nx

)
, ζj = cos

(
πj

Nt

)
, i = 0, 1, . . . , Nx; j = 0, 1, . . . , Nt. (25)

Considering that the linear system of PDEs (20) - (22) is decoupled, each equation can be solved
independently of the other equations in the system. For example, in solving (20) it is assumed that
the solution for g(η, ξ) can be approximated by a bivariate Lagrange interpolation polynomial of the
form:

g(η, ξ) ≈
Nx∑
m=0

Nt∑
j=0

g(τm, ζj)Lm(τ)Lj(ζ), (26)

which interpolates g(η, ξ) at the collocation points defined by equation (22).We remark that, for ease of
notation, we have dropped the subscripts r+1. The functions Lm(τ) are the well-known characteristic
Lagrange cardinal polynomials

Lm(τ) =
Nx∏
m=0
m ̸=k

τ − τk
τm − τk

, Lm(τk) = δmk =

{
0 if m ̸= k
1 if m = k

. (27)

The function Lj(ζ) is defined in a similar manner. Equation (26) is then substituted in equation
(20) and (21). A key step in the substitution process is the evaluation of the derivatives of Lm(τ) and
Lj(ζ) with respect to τ and ζ respectively. Several formulas exist for computing the derivatives when
the collocating points are chosen to be Chebyshev Gauss-Lobatto points of the form (25). The method
of discretization of PDEs using the bivariate approach described above has also been used in [30] who
solved one equation of PDEs for different models of non-linear evolution parabolic PDEs.

Following [31, 32], we define the derivatives of g(η, ξ) with respect to η and ξ at the collocating
points τk and ζi as follows:
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∂g

∂η

∣∣∣∣
(τk,ζi)

=
2

η∞

Nx∑
m=0

Nt∑
j=0

g(τm, ζj)
dLm(τk)

dτ
Lj(ζi) = DGi, (28)

∂2g

∂η2

∣∣∣∣
(τk,ζi)

= D2Gi, (29)

∂g

∂ξ

∣∣∣∣
(τk,ζi)

= 2
Nx∑
m=0

Nt∑
j=0

g(τm, ζj)
dLj(ζi)

dζ
Lm(τk) = 2

Nt∑
j=0

dijGj, (30)

here di,j (i, j = 0, 1, . . . , Nt) are values of the standard Chebyshev differentiation matrix d = [di,j]
of size (Nt +1)× (Nt +1) (see, for example [31, 32]), D = (2/ηe)[Dr,s] (r, s = 0, 1, 2, . . . , Nx) with
[Dr,s] being an (Nx + 1)× (Nx + 1) Chebyshev derivative matrix, and the vector Gi is defined as

Gi = [gi(τ0), gi(τ1), . . . , gi(τNx)]
T . (31)

Applying the collocation method with the above definitions on equations (20) gives

AiGr+1,i + a2,r(ξi)− 2a3,r(ξi)
Nt∑
j=0

di,jGr+1,j = 0, i = 0, 1, 2, . . . , Nt, (32)

subject to the boundary conditions:

gr+1,i(τNx) = 0,
Nt∑
i=0

Dgr+1,i = 0, (33)

where

Ai = a0,r(ξi)D2 + a1,r(ξi)D+ α6I,

am,r(ξi) (m = 0, 3) is the diagonal matrix of size (Nx + 1) × 1 of vector form
[am,r(τ0), am,r(τ1), . . . , am,r(τNx)]

T .
Expanding equation (32) and imposing boundary conditions for i = 0, 1, . . . , Nt gives the follow-

ing matrix equation: 
A0,0 A0,1 · · · A0,Nt

A1,0 A1,1 · · · A1,Nt

... ... . . . ...
ANt,0 ANt,1 · · · ANt,Nt



Gr+1,0

Gr+1,1
...

Gr+1,Nt

 =


R1,0

R1,1
...

R1,Nt

 , (34)

where

Ai,i = Ai − 2a3,r(ξi)di,iI, i = 0, 1, . . . , Nt − 1, (35)
Ai,j = −2a3,r(ξi)di,iI, when i ̸= j, (36)
R1,i = −a2,r(ξi), (37)

where I is an (Nx + 1)× (Nx + 1) identity matrix.
Similarly, applying the bivariate collocation as described above on equations (22) gives

BiΘr+1,i + b3,r(ξi)
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− 2b4,r(ξi)
Nt∑
j=0

di,jΘr+1,j = 0, i = 0, 1, 2, . . . , Nt, (38)

under the boundary conditions:

θr+1,i(τNx) = 1, θr+1,i(τ0) = 0, (39)

where

Bi = b0,r(ξi)D2 + b1,r(ξi)D+ b2,r(ξi),

Θi = [θi(τ0), θi(τ1), . . . , θi(τNx)]
T ,

bm,r(ξi) (m = 0, 4) are the diagonal matrix of size (Nx + 1) × 1 of the vector form
[bm,r(τ0), bm,r(τ1), . . . , bm,r(τNx)]

T .

Expanding equations (38) and imposing the boundary conditions for
i = 0, 1, . . . , Nt − 1 gives the following matrix equations:

B0,0 B0,1 · · · B0,Nt

B1,0 B1,1 · · · B1,Nt

... ... . . . ...
BNt,0 BNt,1 · · · BNt,Nt



Θr+1,0

Θr+1,1
...

Θr+1,Nt

 =


R2,0

R2,1
...

R2,Nt

 , (40)

where

Bi,i = Bi − 2b4,r(ξi)di,iI, i = 0, 1, . . . , Nt, (41)
Bi,j = −2b4,r(ξi)di,iI, when i ̸= j, (42)
R2,i = −b3,r(ξi), (43)

In order to obtain an approximate solutions for the unknown functionals as described above,we set the
initial approximations as

f0(η, ξ) = 1− e−η2 , θ0(η, ξ) = e−2η, (44)

with a view to satisfy with the boundary conditions (23)- (24)
Hence, starting from the initial approximations f0(η, ξ) and θ0(η.ξ) as given by equation ((44)),
An approximate solutions for f(η, ξ), g(η, ξ) and θ(η, ξ) are derived by iteratively solving the matrix
equations ((34)) and ((40)), in turn, for r = 0, 1, 2, . . . . until a solution is obtained that converges to a
given level of accuracy.

Results and Discussion

The governing system of equations (14) - (15) subject to (16) have been solved using the bivariate
spectral relaxation method (BSRM) as described previously. In this section, we present the numerical
computations for velocity, temperature, skin friction coefficient and local heat transfer rate profiles
for the various pertinent parameters. For purpose of discussing our results, an important parameters
such as (Dγ,Dα,Ra,N,Mn, and ξ) have been varied at a fixed values of k2 = 0.05, k1 = 0.5, Ra =
0.5;Ec = 0.01, n = 1,= 0.0 to obtain a clear insight into the physics of the problem. In computing
the numerical results presented in this paper, unless otherwise stated, the following values of physical
parameters were used :Dγ = 0.5,Pr = 0.7, ξ = 0.0,Dα = 0.1,ω = 18o,Mn = 0.5 andN = 2. Grid
independence tests revealed that at collocation points ofNx = 80 andNt = 1.5 in the η and ξ domain
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respectively, an accurate and consistent results were attained with a few iteration. A further increase
in the number of collocation points did not result in a change in the computed results. Furthermore,
the minimum number of iterations required to give results that are consistent within a tolerance level
of 10−7 were used. In all the results presented below, it was found that 60 iterations were sufficient to
give consistent results. The value of η∞ was set to be 10.

Table 1: Comparison of present study with El- Almin [5] on the variation of wall shear stress f ′′(ξ, 0)
and local heat transfer rate −θ′(ξ, 0) when Dγ = 0, Dα = 0, R = 0.

Mn k1 k2 El-Amin[5] Present study
f ′′(ξ, 0) −θ′(ξ, 0) f ′′(ξ, 0) −θ′(ξ, 0)

0.0 0 0 2.9389 0.5932 2.9342 0.5983
0.5 2.7050 0.5527 2.7088 0.5542
1 2.5091 0.5211 2.5135 0.5245

0.5 0 2.6322 0.5516 2.6346 0.5513
0.5 2.4279 0.5147 2.4349 0.5149
1 2.2876 0.4896 2.2790 0.4861

1 0 2.3400 0.5054 2.3317 0.5146
0.5 2.2036 0.4791 2.2096 0.4713
1 2.1057 0.4607 2.1021 0.4616

0.5 0 0 2.7929 0.5664 2.7458 0.5607
0.5 2.5661 0.5267 2.5349 0.5248
1 2.3978 0.4991 2.3872 0.4968

0.5 0 2.4855 0.5216 2.4709 0.5146
0.5 2.314 0.4907 2.3096 0.4877
1 2.1958 0.4699 2.1821 0.4627

1 0 2.2244 0.4795 2.2299 0.4793
0.5 2.1132 0.459 2.1930 0.4533
1 2.0231 0.4513 1.9875 0.4438

In order to test our method of solution, we first solve special case of our problem which are also
compared with El- Amin [5] in Table 1. Table 1 is drawn for a special case when pertinent parameters
Dα = Dγ = R = 0. The available results obtained in [5] and the present results are compared. The
comparison shows that the present results obtained using BSRM were in excellent agreement with
the solution of El-Amin [5]. The results from the table 1 are consistent with the observations made in
Fig. 5 where the wall shear stress and local heat transfer are observed to decrease with an increase in
Mn. This is because the magnetic force and the medium pores has the capacity to retard the fluid flow
in conjunction with the adverse pressure to resist the flow. The magnetic force and porous medium
pores work against the inertial force and this consequently reduce the absolute value of the local heat
transfer. The velocity gradient at the wall surface f ′′(ξ, 0) that is, the wall shear stress decreases with
increase in magnetic parameter Mn . From the Table 1, we noticed that an increase in the values of
magnetic force Mn on the flow regime results to the narrowing of the horizontal velocity of the fluid.
The transverse contraction on the velocity boundary layer of the flow is due to the applied magnetic
field, which consequently invokes lorentz force producing noticeable opposition to the flow of the
fluid. Hence, the magnetic parameter Mn influences the control of surface shear stress.

Table 2 gives account of the effect of viscous variation parameter Dγ, thermal conductivity vari-
ation parameter Dα and thermal radiation parameter R on the local heat transfer rate. Consequently,
It is observe that an increase in thermal radiation parameter R, viscous variation parameter Dγ and

56 Volume 9



Table 2: Computed values of wall shear stress f ′′(ξ, 0) and local heat tranfer rate−θ′(ξ, 0) for different
values of Dγ, Dα and Ra when Pr = 0.7, n = 0.0, N = 10.0, Ec = 0.01, k2 = 0.5, k1 = 0.05,
ω = 30◦,Mn = 0.0

Ra Dγ Dα −θ′(ξ, 0)

0.0 0 0 0.5466
0.5 0.5305
1 0.5179

0.5 0 -0.0322
0.5 -0.0572
1 -0.0766

0.5 0 0 0.4624
0.5 0.4488
1 0.4381

0.5 0 0.1403
0.5 0.1213
1 0.1065

1.0 0 0 0.4081
0.5 0.3964
1 0.3872

0.5 0 0.1799
0.5 0.1646
1 0.1525
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Fig. 1: Effect of viscous variation parameter (Dγ) on velocity,temperature,skin friction coefficient
and local heat transfer rate profiles
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Fig. 2: Effect of thermal conductivity variation parameter (Dα) on velocity, temperature, skin friction
coefficient and local heat transfer rate profiles
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Fig. 3: Effect of thermal radiation (R) on velocity, temperature, skin friction coefficient and local heat
transfer rate profiles
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Fig. 4: Effect of Bouyancy parameter (N ) on velocity, temperature, skin friction coefficient and local
heat transfer rate profiles
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Fig. 5: Effect of magnetic parameter (Mn) on velocity, temperature, skin friction coefficient and local
heat transfer rate profiles

thermal conductivity variation parameter Dα of the viscous fluid causes a notable decrease in local
heat energy transfer within the flow regime. In Fig.Fig. 1, we present variation of viscous parame-
ter (Dγ) and its effects on the fluid velocity, temperature, skin friction and local heat transfer. We
observe that increase in viscous parameter cause a slight significant increment in the fluid velocity,
temperature and local heat transfer respectively, whereas a remarkable increment is notice in the skin
friction. Figure 2 presents variation of thermal conductivity parameter (Dα) and its effect on the fluid
velocity, temperature, skin friction and local heat transfer. It is obvious from Fig. 2 that increase in
thermal conductivity parameter cause slight increment in the fluid velocity and temperature whereas
significant increment and decrement are observed in skin friction and local heat transfer respectively.
Figure 3 gives account of variation of thermal radiation parameter (R) over the fluid velocity, tem-
perature, skin friction and local heat transfer. It is apparent that noticeable increment in fluid velocity
and temperature are observed as thermal radiation parameter increases whereas remarkable increment
and reduction are noticed in skin friction and local heat transfer respectively. The results qualitatively
agree with the report from literature that one of the tangible effect of thermal radiation and surface
temperature on flow is to enhance the rate of heat energy transfer. Hence, one can easily control the
rate of heat transfer characteristics using thermal radiation mechanism.

The flow profiles for various values of buoyancy parameter N is shown in Fig. 4. It is obvious
that increment in Buoyancy parameter induces r=the fluid velocity and temperature to increase and
decrease respectively, whereas we notice a significant increment in skin friction and local heat transfer
respectively. Fig. 5, displays the influence of magnetic field force on fluid velocity, temperature, mo-
mentum boundary layer profile as well as the local heat transfer rate profile. We notice remarkable re-
duction and increment in fluid velocity and temperature as magnetic parameter increases respectively,
whereas significant reduction is observed in skin friction and local heat transfer. It is remarkable to
point that magnetic force contribute to the damping effect on the flow velocity field by creating drag
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force which opposes the fluid motion thereby causing reduction in the velocity of the flow. This indi-
cates that transverse magnetic field on the flow opposes the transport phenomena. More importantly
variation of magnetic parameterMn corresponds to variation of lorentz force due to the applied mag-
netic field, thereby offers more resistance to the transport phenomena. Hence, momentum boundary
layer thickness becomes larger and the separation of boundary layer is attained early. The effect of
Lorentz force on velocity profiles generated a kind of friction on the flow; this friction in turn gener-
ated more heat energy which eventually increases the temperature distribution in the flow . That is,
increasing the magnetic force on the flow regime has positive impact on the temperature distribution
in the flow flow and thereby decreases the wall gradient. Meanwhile,its increases the thickness of the
thermal boundary layer.

Conclusion

Magnetohydrodynamic forced convective flow over a non-isothermal horizontal circular cylinder em-
bedded in a fluid saturated porous medium has been investigated with the consideration of the effects
of variable viscosity and thermal conductivity in the presence of thermal radiation. The viscosity and
thermal conductivity of the working fluid have been modeled as a linear function of temperature.
Rosseland diffusion approximation have been used to describe and model the radiative heat loss on
the flow. In this paper, a new spectral collocation based method expressed in terms of bivariate La-
grange interpolation polynomials and adapted to coupled non-linear systems of partial differential
equations using relaxation techniques has been applied. The derivation of the method was found to be
straightforward because it does not depend on any linearisation expansions and the discretization of
the ordinary and partial derivatives was based on simple formulas. The influence of various physical
parameters such as varuable viscosity Dγ, thermal conductivity parameter Dα, thermal radiation Ra
and magnetic parameterMn were also investigated and analyzed. The results from this study indicate
that variable viscosity and thermal conductivity have strong influence on the flow field regime. Other
parameters which appear to have a marginal influence on the velocity and temperature profiles also
have strong impact on the surface shear stress and local heat transfer rate. Comparison with previous
study was performed and the results were found to be in good agreement. Our findings reveal that:

⋄ An increase in the magnitude of viscous variation parameterDγ and thermal conductivity varia-
tion parameterDα of the working fluid increases the flow velocity and temperature distribution
in the boundary layer region.

⋄ The variation of thermal radiation parameter shows a significant influence on the proportion of
boundary layer thickness. (i. e. velocity and temperature profiles). An increase in thermal radi-
ation parameter R lead to a significant increase in both axial velocity and temperature profiles
within the boundary layer region but lower the local heat transfer rate.

⋄ Increasing the magnetic field strength of the magnetohydrodynamics forced convective flow
brings about reduction in the wall shear stress and the local heat transfer rate whereas, there
is corresponding increase in the velocity and temperature profiles. Hence, using magnetic field
force one can easily control the flow direction and the amount of heat transfer characteristics.

⋄ The results obtained in this investigation have clearly shown that the assumption of constant
values case for the fluid properties may contribute severe errors when predicting and modeling
the proportion of surface shear stress and rate of heat transfer in transport phenomena .
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Nomenclature
English
symbols
B1 Difference in the temperature between the wall and the flow stream temperature (Tw − T∞)
cp The specific heat at constant pressure
Dα Thermal conductivity variation parameter (αB1)

Dγ Viscous variation parameter (γB1)

Ec Eckert number ( u2
∞

B1cp
)

F Empirical constant
g Acceleration due to gravity
Gr Grashof mass number (gβ(Tw−T∞)r3ρ2

k
)

Ha Hartmann number (β0r
√

σ
k
)

k1 First order solid matrix resistance ( rεϑ
Ku∞

)

k2 Second order solid matrix resistance parameter (Frε2√
K
)

K Permeability
P Pressure of the fluid
Mn Magnetic parameter (Ha2

Re
)

N Buoyancy parameter ( Gr
Re2

)

Pr Prandtl number (ρ∞ϑ

λ∞
)

qr Radiative heat flux
Re Reynold number (u∞rρ

ϑ
)

Ra Thermal radiation parameter (4σ
∗T 3

∞
ϑK∗ )

T∞ Free stream temperature of the working fluid
u,v Velocity component in x- and y- direction respectively
Cf Skin- friction coefficient
f Dimensionlesss stream function
Nu Nusselt number
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Greek symbols
µ Dynamic viscosity
ρ Density of the fluid
ϑ kinematic viscosity
α Thermal diffusivity term
β0 Magnetic field of constant strenght
σ∗ Electrical conductivity
τw Wall shear stress
η Similarity variable
ψ Stream function
β Thermal expansion coefficient
λ Thermal conductivity
ω Angular velocity
ε Porosity
θ Dimensionless temperature function
ρ∞ Ambient density of the working fluid
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