
P R IMA R Y R E S E A R CH A R T I C L E

Phenotypic distribution models corroborate species
distribution models: A shift in the role and prevalence of a
dominant prairie grass in response to climate change

Adam B. Smith1 | Jacob Alsdurf2 | Mary Knapp3 | Sara G. Baer4 | Loretta C. Johnson2

1Center for Conservation and Sustainable

Development, Missouri Botanical Garden,

St Louis, MO, USA

2Division of Biology, Kansas State

University, Manhattan, KS, USA

3Weather Data Library, Kansas State

University, Manhattan, KS, USA

4Department of Plant Biology and Center

for Ecology, Southern Illinois University

Carbondale, Carbondale, IL, USA

Correspondence

Adam B. Smith, Center for Conservation and

Sustainable Development, Missouri Botanical

Garden, St Louis, MO, USA.

Email: adam.smith@mobot.org

Funding information

U.S. Department of Agriculture, Grant/

Award Number: 2008-3510004545; Kansas

Academy of Science; Alan Graham Fund in

Global Change.

Abstract

Phenotypic distribution within species can vary widely across environmental gradi-

ents but forecasts of species’ responses to environmental change often assume spe-

cies respond homogenously across their ranges. We compared predictions from

species and phenotype distribution models under future climate scenarios for Andro-

pogon gerardii, a widely distributed, dominant grass found throughout the central

United States. Phenotype data on aboveground biomass, height, leaf width, and

chlorophyll content were obtained from 33 populations spanning a ~1000 km gradi-

ent that encompassed the majority of the species’ environmental range. Species and

phenotype distribution models were trained using current climate conditions and

projected to future climate scenarios. We used permutation procedures to infer the

most important variable for each model. The species-level response to climate was

most sensitive to maximum temperature of the hottest month, but phenotypic vari-

ables were most sensitive to mean annual precipitation. The phenotype distribution

models predict that A. gerardii could be largely functionally eliminated from where

this species currently dominates, with biomass and height declining by up to ~60%

and leaf width by ~20%. By the 2070s, the core area of highest suitability for A. ger-

ardii is projected to shift up to ~700 km northeastward. Further, short-statured phe-

notypes found in the present-day short grass prairies on the western periphery of

the species’ range will become favored in the current core ~800 km eastward of

their current location. Combined, species and phenotype models predict this cur-

rently dominant prairie grass will decline in prevalence and stature. Thus, sourcing

plant material for grassland restoration and forage should consider changes in the

phenotype that will be favored under future climate conditions. Phenotype distribu-

tion models account for the role of intraspecific variation in determining responses

to anticipated climate change and thereby complement predictions from species

distributions models in guiding climate adaptation strategies.
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1 | INTRODUCTION

Although local adaptation is commonly observed, species are often

treated as functionally homogenous units when predicting responses

to global change (Behrman, Keitt & Kiniry, 2014; H€allfors et al.,

2016). Local adaptation arises from selective regimes that vary

across an environmental gradient (Joshi et al., 2001; Linhart & Grant,

1996). Although local adaptation can enhance fitness under current

conditions, it could serve as a liability during periods of environmen-

tal change if local adaptation reduces each population’s niche

breadth. In this situation, the persistence of locally adapted popula-

tions could be threatened if they are unable to respond in situ to

changing conditions through rapid selection (Shaw & Etterson,

2012), phenotypic plasticity (Jump & Pe~nuelas 2005), or dispersal.

Thus, incorporating intraspecific phenotypic variation in climate vul-

nerability analyses is an important challenge in predicting population

responses to global change (Wittmann, Barnes, Jerde, Jones &

Lodge, 2016).

Several approaches have been used to address the role of

intraspecific variation in determining species’ responses to global

change. Most of these methods rely on splitting species into distinct

genotypes or ecotypes, modeling each unit as if it were a different

species, then aggregating the separate models (e.g., H€allfors et al.,

2016). Many of these studies have found that accounting for

intraspecific variation produces very different outcomes compared

with more simplistic scenarios that assume species respond homoge-

nously across populations. This method is appropriate for species

that exhibit distinct populations, but may be inappropriate for spe-

cies that span environmental gradients and show clinal phenotypic

change (Clausen, Keck & Hiesey, 1940; Etterson, 2004; McMillan,

1959). An alternative approach is to account for intraspecific varia-

tion directly using models that predict performance in new environ-

ments based on environmental differences between ‘home’ and

‘away’ habitats (e.g., Behrman et al., 2014). Although powerful, this

method requires reciprocal common garden experiments to calibrate

models, and with a few exceptions, has typically only been applied

to economically valuable plant species such as trees (Behrman et al.,

2014; Benito-Garz�on, Ruiz-Benito & Zavala, 2013). A third approach

is to use models that capture the response of a phenotypic variable

(i.e. a trait) as a function of environmental conditions. These ‘pheno-

typic distribution models’ [(PDMs) sensu Michel, Chien, Beachum,

Bennett & Knouft, 2017; hereafter ‘PDMs’] provide a richer depic-

tion of a species’ gradual phenotypic cline in response to environ-

mental change. With the exception of phenological modeling, this

type of approach has seldom been applied in the context of global

change (Michel et al., 2017).

Andropogon gerardii Vitman (Big Bluestem) is a widely studied,

ecologically important, warm-season (C4) grass distributed through-

out the central grasslands of North America (Weaver & Fitzpatrick,

1932). Predicting this species’ response to climate change is impor-

tant because A. gerardii can comprise up to 80% of biomass in the

tallgrass prairie (Rogler, 1944); plays a key role in determining the

structure of natural (Collins & Calabrese, 2012) and restored (Baer,

Blair & Collins, 2016) tallgrass prairie communities; is a major forage

source for livestock and wildlife (Rogler, 1944); and has promise for

bioenergy production (Zhang, Johnson, Vara Prasad, Pei & Wang,

2015). The conservation and agricultural importance of A. gerardii

has led to many studies of this species’ phenotypic and genetic

responses to climatic variation (phenotype: McMillan, 1959; Epstein,

Lauenroth, Burke & Coffin, 1996; Epstein, Laurenroth, Burke & Cof-

fin, 1998; Silletti & Knapp, 2002; Madakadze, Stewart, Madakadze &

Smith, 2003; Kakani & Reddy, 2007; Collins et al., 2012; Mendola,

Baer, Johnson & Maricle, 2015; and many others; genetic: Rouse

et al., 2011; Gray et al., 2014; and others). Many studies demon-

strate that drier conditions reduce the biomass and stature of A. ger-

ardii. In contrast, A. gerardii’s phenotypic response to higher

temperature is more idiosyncratic, either increasing (Kakani & Reddy,

2007), decreasing (Silletti & Knapp, 2002), responding unimodally

(Madakadze et al., 2003), or not responding at all (Epstein et al.,

1996), although the direction of the response may depend on initial

temperature. Consistent with these observations, A. gerardii

increases in stature and productivity with increasing precipitation

(Epstein et al., 1996; Johnson et al., 2015; McMillan, 1959; Olsen,

Caudle, Johnson, Baer & Maricle, 2013). Tellingly, a reciprocal com-

mon garden experiment established across a ~1200 km transect

from western Kansas to Illinois demonstrated local adaptation and

strong genetic control over growth-related traits in this species (e.g.,

biomass, height; Johnson et al., 2015; Mendola et al., 2015). The

strong correlation between growth and climatic gradients (Gray

et al., 2014; McMillan, 1959) suggests that adaptive, genetically con-

trolled phenotypic differences could play an important role in pre-

dicting the distribution of A. gerardii in response to climate change.

The North American central grasslands are expected to experi-

ence greater variability in climate, including higher temperatures and

increased frequency and severity of drought in the coming century

(Polley et al., 2013). Our objective was to compare predictions from

a species distribution model (SDM) trained using >5,000 herbarium

specimen records to PDMs using the same climate variables and

population-level measures of individual plant biomass, height, leaf

width, and photosynthetic capacity of plants grown under common

conditions in a greenhouse. We focused on data from the current

core of the species’ range in the central grasslands. Within the mid-

dle of the central grasslands, A. gerardii is the dominant tallgrass spe-

cies (McMillan, 1959), whereas it is sub-dominant in the western

and northern peripheries of the central grasslands. We also com-

pared the relative importance of climate variables to the distribution

of the species and its phenotype.

2 | MATERIALS AND METHODS

2.1 | Environmental data

We used 10-arcmin climate predictors obtained from the WORDL-

CLIM data set as predictors in the SDM and PDMs (Hijmans,

Cameron, Parra, Jones & Jarvis, 2005). Current climate conditions

were represented by average values over 1950–2000 and future

4366 | SMITH ET AL.



periods by ensemble averages of eight global circulation models

(Table S1) centered on 2070 (2061–2080) for each of two green-

house gas emissions pathways (IPCC scenarios RCP4.5 and RCP8.5),

which bracket the most likely emissions pathways. RCP4.5 repre-

sents moderately strong abatement of the rate of greenhouse gas

emissions, while RCP8.5 represents no abatement. Variables were

selected from a larger set including the 19 BIOCLIM variables, BIO-

CLIM-like climatic water balance variables (difference between pre-

cipitation and potential evapotranspiration), precipitation of the

establishment, and primary growing season (generally April-June),

and total annual potential incoming solar radiation. Of these vari-

ables, we chose those that we expected exert direct control on the

distribution and life cycle of A. gerardii (see Johnson et al., 2015;

Madakadze et al., 2003; McMillan, 1959), and within those we

selected variables with low pairwise correlations (|q| < 0.7). The

SDMs and PDMs were trained with the five predictors we selected

in this process: maximum temperature of the warmest month, mean

monthly temperature range, annual temperature range, mean annual

precipitation, and annual solar radiation. We also explored using

growing season climatic water balance and growing season precipita-

tion (which were all highly correlated), but results were qualitatively

similar so we retained mean annual precipitation.

2.2 | Phenotypic and species data

Phenotypic data were obtained from plants grown under greenhouse

conditions to reveal genetic differences among populations and to

remove environmental variation. Seeds were obtained from 33 native

populations spanning the distribution of A. gerardii across the central

grasslands (Fig. S1 and Table S3). In 2014, seeds were germinated and

grown in SunGro� Metromix� 510 Standard Soil Mix in a greenhouse

under natural light. Upon germination, seedlings were separated and

transferred individually to pots. Plants were watered to field capacity

as needed. We measured fitness-related phenotypic traits: end-of-sea-

son aboveground biomass, height, leaf width, and chlorophyll content

(the soil-plant analyses development [SPAD]-index calculated from

absorption at 650 and 940 nm measured with a Minolta Soil-Plant

Analyses Development-502 chlorophyll meter; Caudle, Johnson, Baer

& Maricle, 2014). Data on biomass, height, leaf width, and chlorophyll

content were taken 144, 28, 48, and 34 days after germination,

respectively. Measurements were averaged across ~23 individuals per

population prior to use in the PDMs (Table S3). To determine how well

phenotypes of plants grown in the greenhouse reflected responses of

plants grown in the field despite common conditions experienced by

plants in the greenhouse, we calculated the correlation between the

heights of field-grown plants (13 sites from Johnson et al., 2015) with

mean annual precipitation at those sites.

Species records were obtained from Johnson et al. (2015), TRO-

PICOS, GBIF, VegBank, BISON, and 41 other state and provincial

herbaria and museums. The combined data set represented >13,000

records, of which we retained 5,254 after data cleaning. These

records comprised 1,432 geographically unique records with high-

quality coordinates and an additional 3,822 records georeferenced to

the level of a county, parish, district, or municipality (‘county-level’

records). Full details on record vetting are presented in Appendix S1.

2.3 | Modeling the species’ niche

To model the relationship between the species’ presences and cli-

mate, we used boosted regression trees (BRTs; Elith, Leathwick &

Hastie, 2008), MAXENT Ver. 3.3.3k (Phillips, Anderson & Schapire,

2006), and generalized additive models (GAMs). Detailed descrip-

tions of the modeling procedures, including background selection

and methods for handling county-level records and for model train-

ing and evaluation, are described in Appendix S1. Briefly, we used all

records with high-quality coordinates as-is and augmented these

with sets of ‘pseudopresences’, which represented county-level

records (Bombi & D’Amen, 2012). For each set, we trained five mod-

els for which a geographically distinct group of sites were withheld

for model evaluation (Fig. S2). We evaluated model performance

using the Continuous Boyce Index, area under the receiver-operator

curve, mean Fpb, and the point-biserial correlation (see Table S2 for

definitions and interpretation). For each of 30 sets of presence/

pseudopresences and background sites, we also calculated one addi-

tional ‘full’ model with all presences/pseudopresences and back-

ground sites. Across these full models, we calculated the median

prediction and used this to predict responses to climate change. We

defined the present and future core of the species’ range by identi-

fying areas with predictions that fell within the top 2.5th percentile

of current predicted values. Using higher (or lower) thresholds

decreased (or increased) the core area but indicated qualitatively

similar changes in location and direction of shift under climate

change.

2.4 | Modeling phenotypic variation

We modeled the relationship between climate variables and mean

population biomass, height, leaf width, and chlorophyll content using

BRTs and boosted GAMs (Hothorn, M€uller, Schr€oder, Kneib &

Brandl, 2011). The response variable in each model was the average

phenotypic value for each population. To ensure that the predicted

values of responses were >0, we used a gamma error distribution

with a log link function (Hothorn et al., 2011). We experimented

with including spatially varying coefficients of climate variables but

found this produced non-random patterns in the residuals so did not

include them in the final models. We adjusted the parameterization

for each model based on examination of residuals in predictor space

and geographic space (Figs S7–S14).

2.5 | Importance of environmental variables

We evaluated the importance of each variable in the SDM and

PDMs using a permutation procedure (Breiman, 2001). First, we

made predictions to each site from which seeds were obtained. We

then permuted the value of each climate variable in turn and calcu-

lated the correlation coefficient between the ‘observed’ predictions

SMITH ET AL. | 4367



and predictions with permutation. For the SDMs we used each of

the 30 models trained using all presences and averaged results

across 100 permutation iterations each. For the PDMs, we averaged

results across 100 permutation iterations. Finally, we subtracted the

mean correlation coefficient from 1 to create an index of variable

importance (Breiman, 2001). Lower values connote less importance

because predictions that are relatively unaffected by the variable will

be similar to those with the predictor of interest permuted.

2.6 | Extrapolation

To understand the models’ behavior when extrapolating beyond cur-

rent climate conditions, we visually examined response curves for each

variable in which each predictor was changed systematically from its

minimum to its maximum observed value across North America both

now and in future periods while holding the other variables at their

median value across the phenotyped populations. We also compared

the range of each predictor variable across the phenotyped popula-

tions and species to its expected range under scenarios of climate

change to determine how well sampling of the phenotype and species

covered the range of current and future climate. Finally, we assessed

the degree of extrapolation in multivariate climate space by mapping

the current location of the future climate expected to predominate in

the area from which we phenotyped populations. To do this, we used

SDMs in ‘reverse’, training them with future climate at the locations of

phenotyped populations and then projecting the model backward to

the present to produce an index of multivariate climatic similarity

between the present and future.

3 | RESULTS

Although our results were not strongly affected by extrapolation, we

focus on predictions in the geographic region represented by the

phenotyped source populations. The BRT and MAXENT SDM

algorithms out-performed GAMs for each metric of model perfor-

mance (Table S2). Both BRTs and Maxent had equivalent perfor-

mance metrics when tested against geographically distinct hold-out

data (Table S2). Likewise, the predicted location and areal coverage

of the current core of the distribution (the top 2.5% of predicted val-

ues) were very similar between algorithms and in all cases fell within

the area covered by the populations that we phenotyped (Fig-

ures 1a, S2a, and S3a; mean area � SD across 30 replicates:

6.7 � 0.3 9 105 km2 for BRTs, 6.2 � 0.4 9 105 for MAXENT, and

6.8 � 0.2 9 105 km2 GAMs). However, there was more agreement

between the trends predicted by the BRT PDM and BRT SDM than

between other combinations of PDM and SDM algorithms. Predic-

tions from the BRT SDM were also similar to geographic responses

predicted for crops in the region (some of which fall in the same

subtribe as A. gerardii) that have current distributions similar to the

distribution of A. gerardii (Lant, Stoebner, Schoof & Crabb, 2016).

For these reasons, we have more confidence in predictions from the

BRT SDM. Results from the other SDM algorithms appear in the

Appendix S1 (Figs S3 and S4).

Both PDM algorithms (BRTs and GAMs) predicted the current

distribution of phenotypic variables well (Figures 2 and S6). They

both also predicted a general decline in stature (biomass, height, and

leaf width) and little change in chlorophyll content, but the magni-

tude of predicted change was much larger for GAMs (Fig. S6). Boot-

strapped GAMs displayed very erratic fits, demonstrating high

sensitivity to data values (Figs S11–S14). As a result, we have more

confidence in predictions from the BRT PDMs and therefore focus

on results from these models, although regardless of which algorithm

used the trends in predictions (increase/decline) were the same.

Results for the GAM PDMs are in the Appendix S1 (Fig. S6).

By 2070, the species as a whole and the phenotyped populations

are predicted to experience roughly equivalent magnitudes of cli-

mate change. Under RCP4.5, the phenotyped populations experience

an average increase in mean annual temperature of 3.1°C, while the

species’ range as a whole (calculated across all presences)

F IGURE 1 Predicted current (a) and future climatic suitability for the dominant prairie grass Andropogon gerardii in 2070 for RCP4.5 (b) and
RCP8.5 (c) using the BRT algorithm. Crosses represent locations of phenotyped populations. Contour lines represent the core of the species’
range (predictions falling in the top 2.5th percentile of current predicted values). Under both future scenarios the core shifts northeast of its
current location toward the Great Lakes region
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F IGURE 2 Predicted current phenotypic measures (leftmost column) and predicted percent change (middle and right columns) in biomass
(a–c), plant height (d–f), leaf width (g–i), and chlorophyll content (j–l) of Andropogon gerardii using the BRT algorithm. Percent change is
calculated as (1009 the future predicted value divided by current predicted value)– 100. Circles denote locations of phenotyped populations.
Color scales for the middle and right columns are comparable across traits. Colors of populations in the left panels reflect observed values.
Colors of populations in the middle and right panels represent their predicted values. The irregular polygon represents the species-level range
core distribution area calculated from the SDM (same as in Figure 1). In general, the area encompassed by the current core of the species’
distribution is predicted to suffer large declines in biomass, height, and leaf width
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experiences an average increase of 3.0°C. For RCP8.5, the pheno-

typed populations experience an average increase in mean annual

temperature of 4.5°C, while the species’ range experiences an

increase of 4.4°C. Mean annual precipitation under RCP4.5 declines

across phenotyped populations by 16% and across the entire spe-

cies’ range by 10%. Mean annual precipitation under RCP8.5 decli-

nes across phenotyped populations by 15% and across the species

range by 8%.

3.1 | Species

Currently, the core of the species’ range (areas in the top 2.5% of

predicted values) extends from northern Arkansas and Oklahoma in

the south, through eastern Kansas, Missouri, and Illinois, then north-

ward to southeastern Nebraska, Iowa, and southern Wisconsin

(Figure 1a). Under both emissions scenarios, the core distribution area

is predicted to shift northeast of its current location into the Great

Lakes region of the United States and Canada. Under RCP4.5, the

southern edge of the future core overlaps with the northern edge of

the current core distribution, while under RCP8.5 there is almost no

overlap between current and future core distribution (Figure 1c). Con-

currently all but the northeastern side of the current core distribution

suffers a general decline in suitability so much that it resembles areas

that are currently on the periphery of the species’ range.

3.2 | Field vs. greenhouse phenotypes

The height of individual plants grown under field conditions was

highly and positively correlated with mean annual precipitation at

their region of origin (r2 = .78, p < 10�4; Fig. S5), suggesting that

responses observed in the greenhouse are largely genetically deter-

mined and indicative of the species’ response to field (vs. green-

house) conditions. Nonetheless, actual phenotypic values may differ

between field and greenhouse environments. Hence, we focus on

proportional change in predicted phenotypic values rather than abso-

lute change under the expectation that the ratio of future to current

values is less sensitive to the difference between phenotypic mea-

surements from the greenhouse and the field.

Biomass, height, and leaf width were highly intercorrelated

across phenotyped populations (r ≥ .73 with p < .001 in each case),

but uncorrelated with chlorophyll content (r between �.21 and

�.13; p > .2 in each case).

3.3 | Biomass

Across populations the proportional difference between minimum

and maximum mean biomass was 95% ((maximum–minimum)/maxi-

mum), ranging from 3.036 g per plant in the eastern part of the core

distribution in Illinois to 0.135 g in the western periphery of the

range in Colorado. This gradient in biomass was captured by the

PDM (Figure 2a–c). Biomass in the current core distribution is pre-

dicted to decline by up to ~60% under RCP8.5, although increases

up to 10% relative to current values are predicted for the northern

central grasslands and the Great Lakes region where the core distri-

bution is predicted to shift.

3.4 | Height

Observed plant height varied by 71% between populations, with sta-

ture decreasing from east to west across the central grasslands, a

trend also reflected in predictions from the PDM (Figure 2d–f).

Under both emissions scenarios, declines in height are predicted for

the current core distribution by up to ~60% of current values (espe-

cially for RCP8.5). Areas of moderate increase will lie largely north

of the current core distribution in the Great Lakes region.

3.5 | Leaf width

Observed leaf width varied by 52% between populations, with width

decreasing from southeast to the northwest, a pattern captured by

the PDM (Figure 2g–i). Compared to biomass and height, leaf width

responded less strongly and had a different geographic pattern of

change, showing a decline in the southeast of the current core distri-

bution by up to 20% and an increase in the northwest by up to

50%.

3.6 | Chlorophyll content

Compared with the other phenotypic variables, there was less differ-

ence between populations in chlorophyll content, with the minimum

mean population value of only 22% less than the maximum

(Table S3). Generally, chlorophyll content increased from east to

west, although the gradient was more variable compared to other

variables (Figure 2j). The PDM predicted chlorophyll content will

respond weakly to climate change, declining in the middle of the cur-

rent core distribution by up to 10% and increasing along the north-

eastern edge by ≤10% (Figure 2k-l).

3.7 | Importance of environmental variables

The permutation test indicated that maximum temperature of the

warmest month had the strongest influence on the distribution of

the A. gerardii (1 minus correlation between the SDM with predictors

as-is vs. predictions with maximum temperature permuted was 0.44;

higher values connote greater importance). In contrast, mean annual

precipitation was the most important climatic predictor of biomass,

height, and leaf width in the PDMs (test statistics from 0.49 to 0.77;

Table 1). Patterns in chlorophyll content were best predicted by

incoming solar radiation (test statistic 0.77).

3.8 | Extrapolation of predictions

These results are subject to the ability of the SDMs and PDMs to

extrapolate into climate space beyond the range of the training data.

The current range of the training data for the SDM almost entirely

encompassed the expected range of each of climate variable under

4370 | SMITH ET AL.



any scenario of climate change (Fig. S7–S10), so we expect that the

species-level prediction is minimally affected by extrapolation.

The phenotyped populations represent the core distribution plus

areas on the western and northern periphery of the range, but not

farther south or east. Nonetheless, for three of the five predictors,

the phenotyped populations sample nearly all of the environmental

range occupied by the species (Figures 3 and S7–S10). For the other

two variables, the central grasslands is not expected to experience

climates indicative of the ‘unsampled’ portions of the range of these

variables (temperature annual range and mean annual precipitation;

Figs S7–S10). Hence, sampling of climate space by the phenotyped

populations is either as broad as it could be given the species’ distri-

bution or adequate given expected change in climate.

The models do extrapolate beyond the environmental range of

the species (and phenotyped populations) in temperature of the hot-

test month by up to 67% of the current range of this variable across

the species (Figs S7–S10). However, within the range of the training

data, the PDMs predict a declining trend for all traits in response to

higher levels of temperature of the hottest month (Figs S7–S14), and

we do not expect this trend to be reversed as temperatures increase.

Indeed, other data suggest a diminishing trend with increasing tem-

peratures in the phenotypic variables we examined: in closely related

species photosynthesis ceases and pollen loses viability just above

the average maximum temperature experienced by the species

(~35°C; Herrero & Johnson, 1980), and the productivity of A. gerardii

declines just south of the southernmost populations we sampled for

phenotypic analysis (Epstein et al., 1998). We note that BRTs ‘clamp’

predictions to the last predicted value when extrapolating outside

their training range and thus do not predict further decline/increase.

In contrast, GAMs and Maxent (with the settings we used) predict

continued decline/increase with extrapolation, but we found these

responses to be very erratic (GAMs: Figs S11–S14) or predicted

presence in climate much hotter than the species currently occupies

(Maxent).

Finally, we found that the current location of climate most similar

to conditions expected to prevail across the phenotyped populations

in the 2070s lies almost entirely within the region encompassed by

the phenotyped populations (Fig. S15). Thus, we expect our models

extrapolate only to a minor degree in multivariate climate space.

4 | DISCUSSION

We found that the area of highest climatic suitability of the domi-

nant prairie grass Andropogon gerardii is predicted to shift northeast-

ward 700 km or more from the central United States to the Great

Lakes region. Concurrently, the current core distribution is predicted

to suffer a decline in climatic suitability, with simultaneous declines

in biomass and height by up to 60% and leaf width by 20%.

Although predicted declines in these traits are dramatic, they fall

within the range of phenotypic variation observed across populations

of this species and do not necessarily mean that the A. gerardii will

be eliminated from its current core distribution. The magnitude of

reduction in growth-related traits strongly suggests A. gerardii could

become a less dominant species. Current populations that resemble

the phenotypes predicted to be the most suited to the future condi-

tions in the core distribution in Kansas and Missouri presently occur

~800 km westward in the more arid conditions of eastern Colorado.

In contrast, areas northeast of the current core distribution (such as

in Wisconsin and Michigan) are predicted to become more suitable

for large-statured plants currently found ~700 km to the southwest

in present-day Kansas and Missouri. Overall our results indicate that

decreases in species-level suitability will be manifested by reduced

biomass and stature. These predictions have important conse-

quences for prairie restoration (Baer et al., 2016), ecosystem func-

tion (Fay et al., 2011), and forage and bioenergy production (Rogler,

1944; Zhang et al., 2015). More broadly, our results demonstrate

that to understand species-level dynamics under global change we

need to account for intraspecific phenotypic variation of fitness-

related traits and how it mediates species’ responses to climate

change.

4.1 | The fate of the tallgrass prairie ecosystem

Presently, A. gerardii plays a dominant role in the core of its range

by exerting strong controls over plant diversity (Baer et al., 2016;

Collins & Calabrese, 2012) and comprising the majority of above-

ground productivity (Rogler, 1944). To some degree, the species is

resistant to water stress (Collins et al., 2012) owing to a root system

that enables rapid capture of surface water (Nippert, Wieme, Ochel-

tree & Craine, 2012) and a C4 photosynthetic pathway that reduces

water loss from photorespiration. Nonetheless, A. gerardii is not

immune to sustained droughts like those that occurred during the

TABLE 1 Importance of climatic and spatial predictor variables
used in the SDM and PDMs. Values are 1 – r, the correlation
between predictions at sites with phenotyped populations and
predictions at the same sites with each predictor variable permuted
in turn. Higher values reflect greater importance of the predictor
because predictions in the permuted model are more different from
the model with un-permuted predictors. The most important variable
for the species and each phenotypic variable are shown in bold

SDM

PDMs

Biomass Height
Leaf
width Chlorophyll

Diurnal temperature

range

0.27 0.00 0.01 0.08 0.04

Maximum

temperature of

warmest month

0.44 0.07 0.37 0.05 0.07

Temperature

annual range

0.04 0.01 0.00 0.13 0.03

Mean annual

precipitation

0.16 0.56 0.77 0.49 0.01

Potential solar

radiation

0.09 0.06 0.02 0.02 0.77
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1930s ‘Dust Bowl’ when plants with shorter phenotypes dominated

(Weaver & Albertson, 1936). Notably, under greenhouse conditions,

plants from drier western and northern populations were smaller

than plants from the more mesic south and east (Table S3). The

observed phenotypic clines agree with results from reciprocal com-

mon garden field experiments (Johnson et al., 2015).

Will A. gerardii remain an important species of the central grass-

land ecosystem? Given that phenotypic variation in this species is in

large part genetically controlled (Gray et al., 2014; Johnson et al.,

2015; Mendola et al., 2015) and not because of phenotypic plastic-

ity, for several reasons we expect that A. gerardii will likely not be

able to acclimate or adapt quick enough to future climate conditions.

First, most reproduction in this species is asexual through rhizomes’

production of clones (Weaver & Fitzpatrick, 1932). Thus, selection

has little opportunity to act on variation in propagules produced by

outcrossing, thereby obviating rapid adaptive change. Second, disper-

sal of phenotypes adapted to more favorable climate seems unlikely

across the vast distances and fragmented landscape of the prairie

ecosystem. Moreover, even if dispersal can effectively deliver appro-

priately adapted seeds to a site, their establishment might be sup-

pressed by preexisting plants which have greater ability to capture

resources owing to larger stature and existing rootstocks which

might allow them to persist - albeit in a declining state - as climate

becomes unfavorable to them. Based on the phenotypic predictions

(Figure 2), we expect existing phenotypes not be matched with cli-

mate in their region of origin barring rapid selection, plasticity, and/

or gene flow and migration.

These results have important implications for ecosystem services

provided by the central grasslands. For example, the US Conservation

Reserve Program has restored >2.3 million ha of grassland on what had

been marginal agriculture land (USDA Soil Conservation Service 2012).

A. gerardii is a common component of seed mixes, and dominates many

of these restored areas. Currently, cultivars with the closest germplasm

origin are generally recommended for these plantings. These results,

however, suggest that sourcing seed from geographically more distant

populations may be needed to facilitate phenotype-environment

matching favored under future climate conditions. For most species,

information regarding the geographic distance and environmental con-

ditions defining ‘local’ is incomplete, so ecological restoration has relied

on genetic principles to develop guidelines (Hufford & Mazer, 2003)

and a ‘best guess’ of a species’ adaptive potential (Broadhurst et al.,

2008). Local population sources have long been advocated for use in

F IGURE 3 Climatic distribution of the species, phenotypes, and available background. The axes represent the two variables that were most
important in the PDMs and SDMs, mean annual precipitation and maximum temperature of the hottest month, respectively. The size of points
representing phenotyped populations is scaled to the magnitude of each phenotypic variable. Although the phenotyped populations come from
a limited geographic distribution, they cover nearly all the environmental space covered by the species. Biomass, height, and leaf width display
greater variation across the precipitation gradient than the temperature gradient
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restoration based on logical assumptions that germplasm from nearby

environments will establish better in the same climate conditions, exhi-

bit appropriate phenology for provisioning resources to high trophic

levels, and minimize the evolutionary risk to nearby natural populations

(Hufford &Mazer, 2003). Including non-local sources, however, may be

needed to maximize genetic diversity and restored populations’ adap-

tive potential (Broadhurst et al., 2008). Our study suggests collecting

germplasm of A. gerardii from drier and hotter regions may be needed

to restore populations that will be resistant to future conditions in the

historically more mesic eastern extent of tallgrass prairie. Local adapta-

tion to soil, however, could hinder non-local genotypematching to envi-

ronments with favorable climate conditions projected under future

emissions scenarios (Mendola et al., 2015).

We encourage thoughtful consideration of human-assisted gene

flow (Aitken & Whitlock, 2013) of phenotypes preadapted to chang-

ing environmental conditions. Indeed, given that individuals of A. ger-

ardii can live up to ~50 year (Keeler, Williams & Vescio, 2002), it

may be important to include seeds from preadapted individuals

when restoring prairie. However, we emphasize that before assisted

gene flow is implemented, several important outstanding questions

need to be addressed. Should seeds be sourced exclusively from pre-

adapted populations? If so, which populations (i.e., single populations

or mixtures)? Or should source seed represent a mix of both ‘local’

and preadapted populations? If so, how will preadapted phenotypes

perform under current conditions, and will mixing populations lead

to mal-adaptive responses in subsequent generations as a result of

outcrossing depression? These questions are germane to other

ecosystems as well.

4.2 | Intraspecific responses inform species-level
responses to global change

Integrating SDMs and PDMs provide a richer understanding of the

factors driving species’ distributions and functional roles within com-

munities. Whether SDM output is interpreted as a probability of

occurrence or an index thereof, it describes only one dimension of

potential response to environmental change. However, recent work

demonstrates predictions from SDMs correlate with population-level

or physiological traits that directly relate to species’ persistence and

roles within their communities (Michel et al., 2017; Wittmann et al.,

2016). Hence, expanding the remit of ‘species’ distribution modeling

to include functional and physiological traits opens promising avenues

for forecasting responses to global change (Michel et al., 2017).

Currently, the vast majority of climate vulnerability assessments

assume species react to changing climate as if they were homoge-

nous units (Behrman et al., 2014; ). The assumption of homogenous

response is a convenience ecologists use to make evaluations of cli-

mate vulnerability tractable, albeit an assumption belied by numerous

studies documenting intraspecific variation (e.g., Behrman et al.,

2014; Linhart & Grant, 1996; Malyshev et al., 2016). Other work has

demonstrated the power of considering continuous phenotypic varia-

tion when evaluating responses to global change. For example,

range-wide models that account for differences in growth and

mortality across populations demonstrate that a delicate balance

between these two forces drives the present and future distributions

of Iberian trees, in contrast to standard SDMs that tend to predict a

more optimistic future (Benito-Garz�on et al., 2013). We expect our

approach to be generalizable because many species display pheno-

typic clines along environmental gradients (Clausen et al., 1940;

Etterson, 2004; McMillan, 1959). Indeed, narrow-ranged species are

often expected to be more vulnerable to climate change owing to

their presumed narrow climatic tolerances, but wide-ranging species

often exhibit more phenotypic variation across their ranges (Van

Tienderen, 1997). If each phenotype of a widespread species is

locally adapted to immediate conditions and unable to track shifting

climate thorough adaptation or migration, the species will likely be

more vulnerable.

We expect that some correlative SDM algorithms differ in their

ability to capture within-species differences. Some methods, like

those used here (BRTs, Maxent, and GAMs) are ‘local’ learners,

meaning that they are sensitive to changes in the form of response

to different parts of the same environmental gradient. In contrast,

other algorithms are less flexible. The ability of locally sensitive algo-

rithms to capture (perhaps unknown) intraspecific variation deserves

more attention.

Differences in the importance of climate variables in determining

the distribution of the species vs. the phenotype illustrate the oppor-

tunity provided by comparing SDMs and PDMs. We found that

A. gerardii’s distribution is more sensitive to temperature, whereas

phenotype is more sensitive to precipitation (Table 1). This suggests

different processes determine the overall extent of the range of

A. gerardii and its phenotype. Indeed, biomass, height, and leaf width

vary more across the gradient in precipitation occupied by the spe-

cies than across temperature (Figure 3). Experimental work has

shown that decreasing precipitation affects physiology and water

balance but increases in temperature add little to preexisting effects

of drought (e.g., Mainali et al., 2014). These studies corroborate the

strong relationship between precipitation and phenotype in our

PDMs (Table 1). However, these same studies also undermine the

importance of temperature in the SDMs. Perhaps, range edges of

grasses are especially sensitive to temperature, but given thermal

conditions are sufficient within the range, precipitation plays a more

influential role in determining variation in productivity (Fay et al.,

2011). We hypothesize temperature’s effect on phenotype is

because of its role in defining the seasonal window for growth and

reproduction in this species, while precipitation determines the

degree to which the species can take advantage of otherwise favor-

able temperatures (Fay et al., 2011). More broadly, these results

raise the intriguing possibility that range-limiting factors of species

are different from factors driving variation in phenotype.

Why would the factors driving species’ distributions differ from

the factors driving phenotypic distributions? Generally niches are

assumed to belong to species, but we posit that they can also belong

to trait values. For example, smaller statured individuals are favored

in regions with ~400 to ~800 mm of annual precipitation (Figure 3).

Above this range, larger individuals are common, while below this
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range the species does not occur. We suspect that regions with

<~400 mm/yr of precipitation are so dry that were the species to

disperse there individuals would be too small to allow sustained

resource capture and reproduction, thereby curtailing the species-

level distribution (cf. Epstein et al., 1996). In this case, limits on the

phenotypic niche constrain the species-level niche. Indeed, traits

related to growth and reproduction can impose hard limits on bio-

geographical distributions by reducing individual fitness (Chuine,

2010).

A combined modeling approach predicts that A. gerardii will likely

not remain a dominant species in the central grasslands of North

America. Our results suggest that the small-statured phenotypes char-

acteristic of the dry western shortgrass prairies will become favored in

the current core distribution where tallgrass forms currently predomi-

nate. These changes have important implications for diversity and pro-

ductivity of restored prairies (Collins et al., 2012; Mendola et al.,

2015), the livestock industry (Rogler, 1944), and bioenergy production

(Zhang et al., 2015). The degree to which the species will actually

respond in a manner that matches our predictions depends on the

potential for in situ selection (Jump & Pe~nuelas, 2005; Shaw & Etter-

son, 2012), sexual reproduction, and dispersal to more suitable sites,

perhaps aided by assisted gene flow (Aitken & Whitlock, 2013; Broad-

hurst et al., 2008; Hufford & Mazer, 2003).

More broadly, our results demonstrate the power and impor-

tance of confronting the convenient yet untenable assumption that

species always respond homogenously to environmental change. Tra-

ditional species-level niche models interpreted at face value can pre-

dict very different outcomes than models accounting for intraspecific

variation (Behrman et al., 2014; Benito-Garz�on et al., 2013; H€allfors

et al., 2016). Even when predictions from both types of models coin-

cide, as they do here, PDMs can provide valuable information for

conservation, management, and restoration as they can pinpoint

phenotypic responses that are fundamental to facilitating expected

change (e.g., Michel et al., 2017). This study raises important ques-

tions: what phenotypic traits are important for predicting variation in

range-wide responses to climate change, and do factors that limit

ranges differ from those that determine phenotypic variation?
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 13 

Climate data 14 

Climate data was obtained from the WORLDCLIM Version 1.4 Release 3 data set (Hijmans et 15 

al., 2005) at 10-arcmin resolution for the periods 1950-2000, 2041-2060, and 2061-2080 for each 16 

of two emissions pathways (RCP4.5 and RCP8.5) from the fifth Coupled Model Intercomparison 17 

Project (CMIP5). The current climate data is calculated from weather station data that is 18 

interpolated using elevation as a covariate (Hijmans et al., 2005). Future climate data is based on 19 

the delta method downscaling which subtracts current high-resolution surfaces from future 20 

predictions at course grain sizes after resampling the latter to the finer grain (USAID 2014). 21 

Future climate surfaces for the WORLDCLIM dataset consists of predictions from 19 global 22 

circulation model (GCM) predictions. Of these, we chose 8 and calculated the average monthly 23 

precipitation, maximum temperature, and minimum temperature, then from these layers the 19 24 

BIOCLIM variables plus climatic water balance (see main text). We chose these 8 GCMs 25 



2 

 

because they had predictions for each of the RCPs we were interested in (RCP4.5 and 8.5). 26 

Several GCMs were represented by multiple predictions (e.g., HadGEM2-AO, HadGEM2-CC, 27 

and HadGEM2-ES). When choosing among these, we gave preference to variants that included 28 

the largest number of system components (e.g., HadGEM2-AO models only the troposphere, 29 

land surface and its hydrology, aerosols, and ocean/sea-ice dynamics, while Had2GEM-CC 30 

models these plus ocean biogeochemistry, and Had2GEM-ES incorporates all of these 31 

components plus atmospheric chemistry—and thus was chosen to represent the “HADGEM2” 32 

family; Martin et al., 2011). 33 

Solar radiation was calculated using the Potential Incoming Solar Radiation module in 34 

SAGA GIS Ver. 2.1.4 (Conrad et al., 2015) and the elevation layer from the WORLDCLIM data 35 

set (Hijmans et al. 2005). 36 

We also considered climatic water balance (CWB, the difference between precipitation 37 

and potential evapotranspiration or PET) and BIOCLIM-like variants of CWB (e.g., CWB of the 38 

warmest quarter) but in preliminary analysis found it has as much influence as mean annual 39 

precipitation so decided to retain the latter.  PET was calculated using a modified, semi-empirical 40 

Hargreaves equation that uses mean temperature, precipitation, and latitude as input (Hargreaves 41 

et al. 1985; Droogers & Allen 2002). 42 

 43 

Table S1. Global circulation models (GCMs) used to create ensemble climate predictions for 

predicting responses of Andropogon gerardii to climate change. 

GCM (Abbreviated) GCM (Full Name) Representative citation 

BCC-CSM1-1 Beijing Climate Center Climate 

System Model 

Xin et al., (2012) 

CCSM4 Community Climate System 

Model 

Gent et al., (2011) 

GISS-E2-R Goddard Institute for Space 

Studies Model 

Schmidt et al., (2014) 



3 

 

HadGEM2-ES UK Met Office Unified Model Martin et al., (2011) 

IPSL-CM5A-LR Pierre Simon Laplace Institute Persechino et al., (2013) 

MIROC-ESM-CHEM Model for Japan Agency for 

Marine-Earth Science and 

Technology 

Watanabe et al., (2011) 

MRI-CGCM3 Meteorological Research 

Institute Model 

Yukimoto et al., (2012) 

NorESM1-M Norwegian Earth System Model Bentsen et al., (2013). 

 44 

Modeling the species-level niche 45 

Species-level data 46 

We retained all records that matched “Andropogon gerardii” (Vitman) and “Andropogon 47 

gerardii spp. gerardii” (hereafter just “Andropogon gerardii”) that were collected since 1950. 48 

When year of collection was ambiguous, we crosschecked the collector with their known dates 49 

of activity in the Index of Botanists (Harvard University Herbaria and Libraries, 50 

http://kiki.huh.harvard.edu/databases/botanist_index.html). 51 

Records were classified by their coordinate certainty. Many databases have no field for 52 

coordinate quality, and those that do often use different systems. Hence, we applied our 53 

classification scheme as conservatively as possible, putting records in the lower quality class 54 

when in doubt. “High accuracy” records 1) had coordinates that fell within the given county and 55 

state, and either were located by GPS or had a coordinate uncertainty less than the resolution of 56 

the environmental data (<16 km). “County” records listed a county (or sub-county political 57 

district) that fell within the given state or had coordinates that fell within the listed county but 58 

there was no state listed and there was but one county in our study region with this name. In 59 

some cases we found that county lines had been redrawn or counties had been eliminated since 60 

the time of collection, so we assigned location accordingly when possible. We scrutinized 61 

records with coordinates pairs reported with no or just one significant digit (e.g., (-101, 37) or (- 62 
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 63 

Figure S1. Point- and county-level distribution of records of Andropogon gerardii used for 64 

species niche modeling. Triangles represent high-quality coordinates and red circles location of 65 

phenotyped populations. Counties with colors have ≥1 record within their confines recorded 66 

between 1950 and 2014. Darker counties have at least one high-quality record (i.e., a triangle) 67 

while lighter counties have at least one county-level record (but no high-quality records). 68 

 69 

97.2, 42.1)) since such “truncated” coordinates often indicate imprecise geolocation. All other 70 

records were removed. We decided to exclude the disjunct records in the southern Sierra Madre 71 

Occidental and the Eje Volcánico Transversal ranges of Mexico because they have unknown 72 

affiliations with A. gerardii var. hondurensis and are geographically closer to that variety than to 73 
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A. gerardii var. gerardii. In the end we had 1432 geographically unique high-quality records and 74 

3822 county records, out of an initial 13,332. All told, 1755 counties had records, of which 510 75 

(29%) had at least one high-quality record (and possibly county records), and another 1221 76 

(71%) at least one county record (and no high-quality records; Fig. S1). 77 

We used the “envelope” technique described in Bombi & D’Amen (2012) to convert 78 

county-level records into “pseudopresences” usable by the SDMs. Specifically, we randomly 79 

placed presences in each county with at least one record after masking areas covered by regularly 80 

flooded forest and artificial surfaces (though A. gerardii is primarily a grassland species, many of 81 

our high-quality sites were located in closed forests, so we did not include this land cover type in 82 

the mask) and removing areas higher than the 95
th

 percentile of elevations observed at high-83 

quality sites. Land cover was obtained from GlobCover Ver. 2009 (Bontemps et al., 2011) and 84 

elevation from the 30-arcsec WORLDCLIM data set (Hijmans et al., 2005). To control for 85 

county size we placed pseudopresences proportional to collection density in each county. High-86 

quality records were included by representing them multiple times also in proportion to their 87 

density within a county. We then drew 10,000 sites from this set to train each SDM. In the US 88 

counties tend to be smaller in the East and larger in the West. This gradient in county area could 89 

cause a SDM to mistakenly assign greater suitability to a region with small counties because the 90 

density of records could be higher than an area just as suitable but with smaller counties. To 91 

correct for this presences and pseudopresences were thinned so that no point was within 80 km 92 

of another (Radosavljevic & Anderson 2014). We chose this distance because it is half the 93 

distance between populations with different ecotypically-based genotypes of the species 94 

(Johnson et al., 2015), so represents the minimum distance across which the species is locally 95 

adapted to the abiotic environment and therefore displays different functional responses. It is also 96 
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greater than the average distance between nearest-neighbor centroids of counties (~22 km) in our 97 

study region. 98 

Species model algorithms 99 

To model the species’ current and future niche we used boosted regression trees (BRTs; Elith et 100 

al. 2008) and Maxent version 3.3.3k (Phillips et al., 2006; Phillips & Dudík 2008). BRTs fit a 101 

sequential set of classification and regression trees (CARTs), each trained on a randomly chosen 102 

subset of the training points.  An optimal number of trees is chosen based on the number that 103 

minimizes out-of-bag deviance from the portion of the data not in the subset used to train the 104 

model.  The response functions of a BRT model tend to be visually “jagged” in appearance 105 

because they are composed of multiple CARTs which divide up the predictor space.  Maxent 106 

first estimates the probability of observing a set of environmental conditions given the species is 107 

present then uses Bayes’ rule to invert the probability to generate in index of environmental 108 

suitability. We trained BRTs with a learning rate of 0.001, tree depth of 4, bag fraction of 0.7, 109 

and a maximum number of trees of 4000, all of which fall within the range suggested by Elith et 110 

al. (2008).  We trained Maxent with linear, quadratic, and interaction functions to ensure smooth 111 

response functions (Elith et al., 2010). Maxent’s master regularization parameter was tuned 112 

using AICc (Warren & Siefert 2011) using custom code in R (available at 113 

http://www.earthskysea.org/r-code). For each algorithm we trained 30 SDMs using 30 different 114 

versions of background and presence/pseudopresence sites. For each algorithm across these 115 

models we calculated the median prediction to use for interpretation. 116 

We tested several methods for locating background sites including drawing sites from 117 

ecoregions containing or near known presences of A. gerardii, using geographically thinned or  118 

http://www.earthskysea.org/r-code/
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 119 

Figure S2. An example of geographically split k-folds or “g-folds” used to train and test a SDM.  120 

The model is trained on all but one of the folds and tested on the withheld fold.  Each fold is 121 

associated with a set of background sites that fall within its confines or closest to it (not shown).  122 

These background sites are used along with the fold(s) to train/test the model.  Points on the map 123 

represent geographically-thinned presences or pseudopresences. 124 

 125 

unthinned collections of members of Poaceae obtained from the Global Biodiversity Information 126 

Facility (GBIF: http://www.gbif.org/) as target background sites (Phillips et al., 2009), and 127 

random selection of sites (drawn proportionally to cell area) from across North America. In the 128 

end we decided to use background sites drawn from across the continent because they produced 129 

the most plausible current predictions. 130 
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SDMs were tested using geographically-stratified test sets of presences and associated 131 

background sites, or “g-folds” (Fig. S2).  Geographic separation between training and test sites 132 

increases their independence, thereby enhancing confidence in performance metrics (Bahn & 133 

McGill 2013). 134 
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 135 

Table S2.  Relative performance of the three SDM algorithms.  BRTs and Maxent out-performed GAMs but otherwise had similar 

performance.  Values represent averages (±sd) across 30 iterations of presences/pseudopresences and background sites split into 5 

geographically distinct groups used for testing (Fig. S2). For each metric the model with the highest score is in bold. 

SDM BRT Maxent GAM Definition and Interpretation 

AUCbg 0.731±0.079 0.726±0.071 0.726±0.077 Area under the receiver-operator curve calculated 

with background sites in place of absences. Ranges 

from 0 to 1 with values >0.5 indicating performance 

better than random. Value represents probability a 

presence has a higher predicted value than a 

background site. (Phillips et al. 2006; Elith et al. 

2006) 

CBI 0.87±0.10 0.92±0.10 0.63±0.33 Continuous Boyce Index. Ranges from -1 to 1 with 

values >0 indicating performance better than random. 

Represents correlation of model predictions with 

actual probability of presence. (Boyce et al. 2002; 

Hirzel et al. 2006) 

mean Fpb 0.85±0.10 0.65±0.10 0.13±0.07 Average value of the harmonic mean of precision 

(proportion of presence predictions that are correct) 

and recall (proportion of presences correctly 

predicted) for thresholds along the sequence 0, 0.01, 

0.02, 0.03, …, 1. Range is from 0 to ∞, with higher 

values connoting better performance. (Li and Guo 

2013) 

COR 0.46±0.13 0.42±0.11 0.40±0.12 Point-biserial correlation, Values range from -1 to 1 

with values >0 indicating performance better than 

random.  Represents correlation of model predictions 

with actual probability of pseudo-presence (i.e., 

presences vs background sites). (Elith et al. 2006) 
 136 
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 137 

Figure S3.  Predicted current (a) and future climatic suitability for the dominant prairie grass 138 

Andropogon gerardii in 2070 for RCP4.5 (b) and 8.5 (c) using the Maxent algorithm. Crosses 139 

represent locations of phenotyped populations. Contour lines represent the core of the species’ 140 

range (predictions falling in the top 2.5th percentile of current predicted values). Compared to 141 

the BRT algorithm (Fig. 1), Maxent predicts a gradual northward shift in the core and an overall 142 

increase in suitability. 143 

 144 

Figure S4.  Predicted current (a) and future climatic suitability for the dominant prairie grass 145 

Andropogon gerardii in 2070 for RCP4.5 (b) and 8.5 (c) using generalized additive models.  146 

Despite being more similar to the prediction from BRTs (Fig. 1), GAMs had consistently worse 147 

performance than BRTs and Maxent (Table S2). 148 
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Modeling phenotypic distributions 149 

Table S3. Location and mean values of the phenotypes of populations used in the phenotype niche models. The first two letters of 

each population’s name refer to the state in which they are located. Two collections were made ~5 km apart at two localities in 

Nebraska (NE-4 and NE-5, and NE-3 and NE-7), so these were combined and used as one population to avoid overly weighting these 

sites in the models. 

 Traits Sample Size Coordinates 

Population Biomass (g) Height (cm) 

Mean Leaf 

Width (mm) SPAD Biomass Height 

Leaf 

Width SPAD Latitude Longitude 

CO-2 0.2 18.15 7.25 44.55 17 18 18 18 39.99897 -105.284 

CO-3 0.521 17.8 7 44.15 15 15 15 15 39.96077 -105.204 

IA-2 0.8995 38.15 8.25 37.05 22 22 22 22 43.1431 -93.9454 

IA-3 2.526 50.7 9.5 41.4 23 23 23 23 42.01463 -93.8603 

IA-4 1.678 47.8 8.5 41.05 21 21 21 21 41.00065 -93.4373 

IL-1 1.8585 44.4 11 42.2 22 22 22 22 38.78128 -88.8357 

IL-10 2.654 48 9 44.15 23 23 23 23 40.27836 -88.0013 

IL-11 1.56 33.4 8 37.2 23 23 23 23 38.59 -88.09 

IL-2 2.8175 46 11.5 42.05 22 22 22 22 37.51 -89.14 

IL-3 2.545 51.1 8.5 39 23 23 23 23 41.8414 -88.2783 

IL-7 2.314 49.8 9.5 40.2 23 23 23 23 40.44512 -88.0979 

IL-9 1.55 41.2 7.5 42.6 23 23 23 23 41.88442 -89.3432 

KS-10 1.5535 36.35 7.75 43.375 22 22 22 22 39.05 -96.36 

KS-13 1.565 38 8 45.65 23 23 23 23 39.2 -96.38 

KS-3 0.42 14.7 7.5 40.7 23 23 23 23 38.96607 -98.5111 

KS-4 1.387 29.7 8 42.25 23 23 23 23 38.77668 -100.816 

KS-8 1.475 29.9 7.5 44.8 23 23 23 23 39.04597 -99.2391 

KS-9 0.296 16.1 6.5 42.175 23 23 23 22 39.40198 -99.5425 

MI-1 1.892 47.5 10 37.3 23 23 23 23 42.03407 -84.7491 

MN-3 1.228 44.65 8 41.3 23 22 23 23 45.51293 -94.0562 

MO-3 2.765 51.1 9.5 42.65 23 23 23 23 36.59193 -91.977 
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MO-4 2.778 46.5 10 41.05 23 23 23 23 38.43859 -92.3094 

MO-5 3.036 42.9 9.5 41.35 23 23 23 23 39.0291 -90.961 

MO-6 2.431 48 10 39.95 23 23 23 23 39.03783 -90.9091 

MO-7 1.715 23.2 6.5 39.25 20 20 20 20 40.35888 -94.6906 

ND-1 0.135 16.95 5.5 42.35 21 22 22 22 46.85908 -96.4662 

NE-3/NE-7 1.0725 28.9 6 46 46 46 46 46 42.23308 -99.6549 

NE-4/NE-5 1.1815 33.7 7.5 42.175 46 46 46 46 40.86996 -96.8058 

NE-6 1.083 30.2 8.5 42.9 23 23 23 23 40.73365 -98.5774 

NE-8 0.872 35.4 6.5 47.3 23 23 23 23 42.59689 -100.573 

OK-1 0.746 21.1 6.5 39.1 23 23 23 23 36.84002 -96.4286 

OK-2 0.542 19.7 6 39.95 17 17 17 16 36.86225 -96.4157 

SD-1 0.469 20.75 7 41.65 23 22 23 23 45.10292 -103.079 

WI-2 2.466 35.4 7.5 38.95 23 23 23 23 42.52812 -87.8242 

WI-6 1.673 29 8.5 41.1 17 17 17 17 42.83405 -88.633 

MEAN±SE 1.54±0.14 35.03±2.01 8.11±0.24 41.68±0.41       
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 150 

Fig. S5.  Relationship between plant height of individuals growing in field conditions and mean 151 

annual precipitation.  The strong relationship suggests that phenotypic differences observed in 152 

the greenhouse are indicative of the climate of source populations. 153 

  154 
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 158 
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Figure S6. Predicted current phenotype (left column) and change in phenotype (middle and right 159 

columns) predicted by the GAM PDM model.  Geographically the trends predicted by the GAM 160 

are qualitatively similar to those predicted by the BRT model (Fig. 2), but the absolute amount of 161 

change is much greater due to the manner in which GAMs and BRTs extrapolate beyond the 162 

training data. The polygons indicate the current (left column) and future (middle and right 163 

columns) core of the species-level distribution predicted by the BRT SDM (Fig. 1). 164 

 165 

Model diagnostics 166 

Figure S7 through S10.. Response curves from the phenotype distribution model for each 167 

phenotypic variable using the BRT algorithm. In each panel points represent observed values of 168 

the given phenotypic variable.  Thin gray lines represent predictions from each of 30 169 

bootstrapped PDMs and the black line the prediction from the model using all data as-is (the 170 

model used to predict future phenotype). Arrows at the top of each panel represent the current 171 

range of the given environmental variable across the species (thick red arrow) and the future 172 

range across any future climate scenario (thin red arrow). The thick blue arrow represents the 173 

current environmental range occupied by the phenotyped populations and the thin blue line the 174 

range occupied across any future climate scenario. WC02 is mean diurnal temperature range, 175 

WC05 is mean maximum temperature of the warmest month, WC07 is temperature annual range, 176 

WC12 is mean annual precipitation, WC15 is precipitation seasonality, and solarRad is potential 177 

incoming solar radiation.  In each case the phenotyped populations fully sample the distribution 178 

of each climate variable currently experienced by the species or (in the case of WC12) sample 179 

the part relevant to future predictions (i.e., the central grasslands are not expected to become 180 

wetter under future climate scenarios).  Compared to GAMBOOST fit curves were less erratic 181 

(see Figs. S11 through S14). 182 
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 183 

Figure S7. Biomass modeled with BRTs. 184 

 185 

Figure S8. Height modeled with BRTs. 186 
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 187 

Figure S9. Leaf width modeled with BRTs. 188 

 189 

Figure S10. Photosynthetic capacity (SPAD) modeled with BRTs. 190 
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Figure S11 through S14.. Response curves from the phenotype distribution model for each 191 

phenotypic variable using the GAM algorithm. See caption for Figs. S7 through S10 for further 192 

explanation. 193 

 194 

Figure S11. Biomass modeled with GAMs. 195 

 196 

Figure S12. Height modeled with GAMs. 197 
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 198 

Figure S13. Leaf width modeled with GAMs. 199 

 200 

Figure S14. Photosynthetic capacity (SPAD) modeled with GAMs. 201 
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 202 

Extrapolation in multivariate climate space 203 

Although analysis of extrapolation variable-by-variable suggested that the PDMs were not 204 

affected by the limited geographic range of the phenotyped populations, we were concerned that 205 

the PDMs might extrapolate into multivariate space that 1-dimensional (Figs. S7 through S10) or 206 

2-dimensional (Fig. 3) analysis might not reveal. Thus we used SDMs in “reverse” to map the 207 

current location of the climate most similar to that expected for the phenotyped populations by 208 

the 2070s under RCP8.5. Importantly, SDMs operate in climatic space, not geographic space, 209 

and as such condense multivariate climate space to a one-dimensional metric of similarity 210 

between training presences (or sites used in place of presences) and any set of climate layers into 211 

which the model is projected.  Thus SDMs actually yield a measure of climatic similarity that 212 

can be used to examine the location of climatically similar areas between time periods. We used  213 

this technique to map the location of the climate that occurs in the present but is most similar to 214 

multivariate climate space the phenotyped populations are expected to experience in the future. 215 

We surmised that if the current location of the most climatically similar area was within the 216 

geographic range of the populations then the PDM would be affected minimally by extrapolation 217 

in multivariate space. 218 

We created a 160-km buffer around the phenotyped populations (the distance across which 219 

phenotypic and genotypic differences have been demonstrated to exist in this species; Gray et al., 220 

2014; Johnson et al., 2015) and from this area extracted climate data from RCP4.5 and 8.5 for 221 

the 2070s at 1000 randomly-located points.  We then trained a Maxent model on this data and 222 

climate data from 10,000 randomly located background points located across North America.  223 
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The models were then projected to the present using climate layers representing 1950-2000 and 224 

mapped. 225 

For both emission scenarios the present location of climate space that is most similar to the 226 

climate expected to predominate in the future in the area of the phenotyped populations falls 227 

almost entirely within the region covered by the phenotyped populations (Fig. S15).  Thus the 228 

PDMs are likely nominally affected by extrapolation in multivariate climate space. 229 

  230 

Figure S15. Multivariate climatic similarity between the present (1950-2000) and conditions 231 

expected under RCP4.5 (left) and RCP8.5 (right) in the 2070s.  Hotter values indicate greater 232 

similarity between present-day climate experienced by phenotyped populations and the climate 233 

thee populations are expected to experience under the each scenario.  For both emission 234 

scenarios the most similar current climate to future climate lies within the bounds of the 235 

phenotyped populations. 236 
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