
A JOB-SHOP SCHEDULING PROBLEM (JSSP) USING
GENETIC ALGORITHM (GA)

Mahanim Omar, Adam Baharum, Yahya Abu Hasan

School of Mathematical Sciences, Universiti Sains Malaysia

11800 Penang, Malaysia
Tel: (+) 04-653-3964

mahanim_omar@yahoo.com, adam@cs.usm.my, ahyahya@cs.usm.my

Abstract: The job-shop scheduling (JSS) is a schedule planning for low volume systems with
many variations in requirements. In job-shop scheduling problem (JSSP) environment, there are
j jobs to be processed on m machines with a certain objective function to be minimized. JSSP

with j jobs to be processed on more than two machines have been classified as a combinatorial
problem. They cannot be formulated as a linear programming and no simple rules or algorithms
yield to optimal solutions in a short time. In this paper we used genetic algorithm (GA) with some
modifications to deal with problem of job shop scheduling. GA once proposed by John Holland is
a stochastic search technique based on Darwin’s principle of the survival of the strongest. In this
paper, we generated an initial population randomly including the result obtain by some well
known priority rules such as shortest processing time and longest processing time. From there,
the population will go through the process of reproduction, crossover and mutation to create a
new population for the next generation until some stopping criteria defined were reached. In this
paper, we used the number of generations as a stopping criteria. In crossover and mutation, we
used the critical block neighbourhood and the distance measured to help us evaluate the
schedules. Result has shown that the implementation of critical block neighbourhood and the
distance measure can lead us to the same result obtain by other methods.

KEY WORDS: Job-shop scheduling problem (JSSP), genetic algorithm (GA),
 CB Neighbourhood, DG distance.

Introduction
Job-shop is a system that process n number of tasks on m number of machines. In this type of
environment, products are made to order and in a low volume. Usually, these orders are differ in
term of processing requirements, materials needed, processing time, processing sequence and
setup times. Job-shop problems are widely known as a NP-hard problem. Nowadays, search
algorithms based on branch and bound methods and several approximation algorithms have been
developed. However, result from the branch and bound method sometimes is really unpredictable
and requires a lot of time. It depends on the size of the problem. Thus, schedulers are usually
satisfied with an acceptance result which is not far from optima. One of the widely used
technique in industries is the local search. One of the search techniques that have been used is
genetic algorithm (GA).

Genetic algorithms solve a problem using the principal of evolution. In the search process
it will generate a new solution using genetic operator such as selection, crossover and mutation.
In hill-climbing, the search procedure will stop once it detects no improvement in next iteration.
This criterion make the hill-climbing technique tend to stop at local optima. In the other hand,
genetic algorithms start its search space in a population and will maintain the number of
population in iteration. It will generate a new schedule by selecting two individuals in population
to apply crossover and mutation. There are many procedures that could be applied in the

mailto:mahanim_omar@yahoo.com
mailto:adam@cs.usm.my
mailto:ahyahya@cs.usm.my
user
New Stamp

selection, crossover and mutation process. Some of the procedures are not suitable for job-shop
problem and some of them will make the search stop at local optima.

Our intention in this research is to find out if the idea of combining the CB
neighbourhood and DG distance in crossover and mutation is suitable when dealing with job-shop
scheduling problems so that the makespan value can be minimized. Result has shown that if the
solution converges too quickly, it will stop at local optima. The modification has been made so
that it will get a solution at least not far from optima.

Job Shop Scheduling Problem (JSSP)
Recently, researchers have been focusing on investigating machine scheduling problems in
manufacturing and service environments where jobs represent activities and machines represent
resources, and each machine can process one job at a time. In this paper, we will focus on the low
volume system also known as job-shop. In this type of environment, products are made to order.
The job-shop scheduling problem (JSSP) can be described as a set of n jobs denoted by jJ where

nj ,...,2,1= which have to be processed on a set of m machines denoted by kM
where mk ,...,2,1= . Operation of j th job on the k th machine will be denoted by jkO with the
processing time jkp . Each job should be processed through the machines in a particular order or
also known as technological constraint. Once a machine starts to process a job, no interruption is
allowed. The time required for all operations to complete their processes is called makespan. In
this paper, our intention is to minimize this makespan value. When we minimizing the makespan,
at least one of the optimal solutions is a semi-active (no operation can started earlier without
violating the technological constraints (French, 1982). For this reason, every time when
makespan is optimised, a schedule can be described by the processing orders of operations on the
machines (Jensen and Hansen, 1999).

Genetic Algorithms
In scheduling, genetic algorithms represent schedules as individuals or a population’s members.
Each individual has its own fitness value which is measured by the objective function. The
procedure works iteratively, and this iteration is a generation. Each generation consists of
individuals who survive from the previous generations. Usually, the population size remains
constant from one generation to the next generation.

Critical Block and DG distance
In job-shop scheduling problem, we also could find the critical path. Critical path is defined as the
longest paths taken from the first operation processed until the last operation leaves the
workplace. All operations in this path are called critical operations. Plus, the critical operations on
the same machine are called critical block.

We measure the distance between two schedules 1S and 2S by the number of differences
in the processing orders of operation on each machine (Mattfeld, 1996). By doing so, it is just like
summing the disjunctive arcs whose directions are different between schedules 1S and 2S . This
distance also known as disjunctive graph (DG) distance.

Neighbourhood Search
In combinatorial problems, the most widely used technique is neighbourhood search. A solution
S is represented as a point in the search space. The feasible solutions in the neighbourhood that
can be reached from S with exactly one transition are defined by ()SN . Neighbourhood search is
categorized according to the given criteria for selecting a new point from the neighbourhood
(Yamada and Nakano, 1995). We defined our neighbourhood if the DG distance between

S and ()SNy∈ is equal to one. Another type of transition that is also well known is called
adjacent swapping (AS). This transition operator exchanges a pair of consecutive operations only
on critical path to form neighbourhood. According to Yamada and Nakano (1997), another
transition operator that is more powerful than AS is called Critical Block neighbourhood (CB
neighbourhood). CB neighbourhood permutes the order of operations in critical block by moving
the operation to the beginning or end of the critical block

Data Structures and Representation
Genetic algorithms process populations of strings. We construct a population as an array of
individuals where each individual contains the phenotype, genotype (artificial chromosome) and
the fitness (objective function). In job-shop scheduling problem we noted the job order on each
machine as phenotype, the machine schedule as genotype and makespan value as fitness.

The representation used in this paper is called the permutation representation (Yamada
and Nakano, 1997). JSSP can be viewed as an ordering problem just like the Travelling Salesman
Problem (TSP). A schedule can be represented by the set of permutations of jobs on each
machine which are called job sequence matrix. Figure 1 shows the job sequence matrix for

33× problem. Rows will represent the machines and columns represent the order of jobs.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

312
213
321

Figure1: A job sequence matrix for 33× problem.

Initial population
Most of the research papers in this area prefer to generate the initial population randomly. This
technique will allow the search process in a wide space. However, this kind of technique will take
a lot of time to get the optimal value. In this paper, we chose to start the initial population with a
randomly generated schedules, including some of the schedules obtain by the well known priority
rules such as the shortest processing time and the longest processing time.

Parents Selection
In parent selection we choose two individuals to reproduce. There are many ways of choosing
parents to evaluate. In order to avoiding the premature convergence, we randomly choose two
individuals from the population and called them parent1 and parent2. This means that all
individuals in the population have the same chances to reproduce.

Fitness Value
In this research, we focus on the static and deterministic environment. In other words, the number
of jobs and their processing time are known, fixed and we assumed that there are no machines
breakdown occurred. We used makespan of the operation as fitness value. Makespan is denoted
as maxC is the time when the last operation leaves the workplace.

()nCCCC,,max 21max =
where,

()()∑ ++= =
n
k kjmjkjj pWrC 1

jC is the completion time of job j , jr is the release time of job j , jkW is the waiting time of job

j at sequence k and ()kjmp is the processing time needed by job j on machine m at sequence k .

 Crossover
Yamada and Nakano (1997) in most of their papers have introduced plenty of techniques that
could be use in solving the job-shop problem. One of them is by making use of CB
neighbourhood and DG distance. The idea of this technique is to evaluate a point x by the
distance ()2, pxd . Lets denote parent1 and parent2 as 1p and 2p . First, set 1px = . Then, we
generated the CB neighbourhood for x , ()xN . For each member, iy , in ()xN we calculated the
distance between the members and 2p to produce ()2, pyD i . Then, we sort ()2, pyD i in
ascending order. Starting from the first index in ()2, pyD isort , we accepted iy with probability
one if the fitness value is less than the current fitness value () ()xVyV i ≤ . Otherwise, we accepted
it with probability 0.5. Starting from 1p , we modified x step by step approaching 2p . After some
iteration, we will find that x will gradually loses 1p ’s characteristics and started to inherit 2p ’s
characteristics although in a different ratios. We choose the child depending on the less DG
distance between the child and both its parents. The algorithm for this procedure is shown in
Algorithm 1.

Algorithm 1: Crossover

1. Let 1p and 2p be the parent solution.
2. Set qpx == 1 .
3. Find CB Neighbourhood for x , ()xN .
4. Do a. For each member ()xNyi ∈ , calculate the distance between iy and 2p , ()2, pyD i .

b. Sort the distance value in ascending order, ()2, pyD isort .
c. Starting from 1=i , do

i. Calculate the fitness value for iy , ()iyV .
ii. If () ()xVyV i ≤ accept iy with probability one, and with probability 0.5

otherwise.
iii. If iy is not accepted, increase i by one.

 Repeat i-iii until iy is accepted.
d. Set iyx =
e. If () ()qVxV ≤ then set xq = .

 Repeat 3-4 until number of iterations.
5. q is the child.

Mutation
Instead of using some random probability, we apply mutation if the DG distance between parent1
and parent2 are less than some predefined value. It is also defined based on the same idea as
crossover. However, we choose the child which has the largest distance from the neighbourhood.
The algorithm for mutation is shown in Algorithm 2.

Algorithm 2: Mutation
1 Set 1px = .
2 Find Neighbourhood for x , ()xN
3 Do a. For each member ()xNyi ∈ , calculate the distance between iy and 1p , ()1, pyD i .

 b. Sort the distance value in descending order, ()1, pyD isort .
c. Starting from 1=i , do

i. Calculate the fitness value for iy , ()iyV .
ii. If () ()xVyV i ≤ accept iy with probability one, and with probability 0.5

otherwise.
iii. If iy is not accepted, increase i by one.

 Repeat i-iii until iy is accepted.
d. Set iyx = .
e. If () ()qVxV ≤ then set xq = .

 Repeat 2-3 until number of iteration.
 q is the child.

Acceptance Criterion
The final and the most important step in the GA procedure is to choose the individual to be
replaced by child. It is widely known that we always choose the fittest individual to reproduce in
the next iteration. In Yamada and Nakano (1997), they did not consider or choose the child with
the same fitness value with other population members. However, by not even considering that
child, we may lose the good individual without considering its abilities to be evaluated. So, in this
paper, after considering the worst individual in the population, we also consider if the child has
the same fitness value with the member of population. Instead of dropping that child, we replaced
the old one with the child assuming that we have given chance for the old individual to reproduce.
Noted that we could not take both of the individuals to avoid having problem later, we might have
problem falling in the local optima. The algorithm for the whole procedure is shown in Algorithm
3.

Algorithm 3: Genetic Algorithm
1. Initialize population: Randomly generated a set of 10 schedules including the schedules

obtained by some priority rules.
2. Randomly select two schedules, named them as 1p and 2p . Calculate DG distance

between 1p and 2p .
3. If DG distance is smaller from some predefined value, apply Algorithm 2 to 1p . Generate

child. Then go to step 5.
4. If DG distance is large, we apply Algorithm 1 to 1p and 2p . Generate child.
5. Apply neighbourhood search to child to find the fittest child in the neighbourhood. Noted

it as child’.
6. If the makespan for the child’ is less than the worst and not equal to any member of

population, replace the worst individual with child’. If there is a member having the same
makespan value, replace the member with the child’.

7. Repeat 2-6 until some termination condition are satisfied.

Results and Discussions
Consider a 5 jobs and 5 machines problem with the operation sequence and the processing time
for each operation have been determined in Table1 and Table2.
We run the programme for five times using the population size = 10, number of iterations for
mutation is 100 and crossover is 200. The algorithm was terminated after 200 generations. From
the result in Table3, it can be shown that the combination of critical block, DG distance and
genetic algorithm could provide a result as good as other methods. From Table 3, we could see
that the last job processed is job 5 on machine 4. So, our makespan value for this problem is 34.
The result also gives us the job sequence for each machine to process, the starting time and the
finish time for each operation. For example, on machine 1, we start to process job 3 at time 0 and
finished at 7. Then we process job 1, followed by job 4, job 5 and job 2.

Table1: Operation Sequence
 Sequence1 Sequence2 Sequence3 Sequence4 Sequence5
Job1 Machine3 Machine1 Machine2 Machine4 Machine5
Job2 Machine2 Machine3 Machine5 Machine1 Machine4
Job3 Machine1 Machine5 Machine4 Machine3 Machine2
Job4 Machine4 Machine3 Machine2 Mahine1 Machine5
Job5 Machine5 Machine3 Machine1 Machine2 Machine4

Table2: Processing Time for each Operation

 Machine1 Machine2 Machine3 Machine4 Machine5
Job1 8 4 2 6 7
Job2 3 6 5 2 4
Job3 7 3 9 4 8
Job4 4 5 5 4 3
Job5 3 6 7 4 5

Table3: Result

 Processing Time Start Finish
Machine1 25
Job3 7 0 7
Job1 8 7 15
Job4 4 15 19
Job5 3 21 24
Job2 3 24 27
Machine2 24
Job2 6 0 6
Job4 5 9 14
Job1 4 15 19
Job5 6 24 30
Job3 3 30 33
Machine3 28
Job1 2 0 2
Job4 5 4 9
Job2 5 9 14
Job5 7 14 21
Job3 9 21 30

Continued Table 3.
Machine4 20
Job4 4 0 4
Job3 4 15 19
Job1 6 19 25
Job2 2 27 29
Job5 4 30 34
Machine5 27
Job5 5 0 5
Job3 8 7 15
Job2 4 15 19
Job4 3 19 22
Job1 7 25 32

0 50 100 150 200 250
30

35

40

45

50

55

60

65

70

Generations

m
ak

es
pa

n

Data
mean

 Fig . 1.1 . Result obtained using the
combination of randomly generated schedules
and priority rule schedules as initial population.

0 50 100 150 200 250
30

40

50

60

70

80

90

Generations

m
ak

es
pa

n

Data
mean

Fig . 1.2 . Result obtained using the randomly

generated schedules as initial population.

We applied both types of initial population to the data. First we used the combination of
schedules we generated using the priority rules and the randomly generated schedules as the
initial population. From the five runs, we find the optimum before the generation exceeded 100.
As for Figure 1.2, we found the optimum value at generation 139. From the five runs, we could
conclude that if we used the randomly generated schedules as the initial population, we will only
find the optimum value at generation larger than 100. However, both results gave the same
makespan value which is 34.

Conclusion
The study on GA and job shop scheduling problem provides a rich experience for the constrained
combinatorial optimization problems. Application of genetic algorithm gives a good result most
of the time. Although GA takes plenty of time to provide a good result, it provides a flexible
framework for evolutionary computation and it can handle varieties of objective function and
constraint.
For further research, the technique in this paper would be applied to a larger size problem to see
how it performed.

References

Ab. Rahman Ahmad and Faisal. RM Job Shop Scheduling using GA. National Conference
Management Science and Operations Research 2003. (2003).

C. Bierwirth , D. C. Mattfeld and H. Kopfer. On Permutation Representations for Scheduling
Problems. Parallel Problem Solving from Nature IV, Springer-Verlag, pp . 310-318 (1996).

G. Mintsuo and C. Runwei.. GA and Engineering Design, John Willey & Sons Inc, New York
USA.(2002).

J. Adams, E. Balas and D. Zawack The Shifting Bottleneck Procedure for Job Shop Scheduling.
Management Science vol.34. (1988).

J.F. Gonçalves, , Jorge José de Magalhães Mendes and M. C. Resende. A Hybrid Genetic
Algorithm for the Job Shop Scheduling Problem..AT&T Labs Research Technical Report TD-
5EAL6J, September 2002. (2002).

M. Pinedo and X. Chao. Operation Scheduling with Applications in Manufacturing and Services.
McGraw-Hill International Editions. (1999).

M. T. Jensen and T. K. Hansen. Robust Solutions to Job Shop Problems. Proceedings of the 1999
Congress on Evolutionary Computation, pages 1138-1144. (1999).

S. French. Sequencing and Scheduling : An Introduction to the Mathematics of the Job Shop.
John Willey & Sons Inc, New York USA.(1982).

T. Yamada and R. Nakano. Genetic Algorithms for Job-shop Scheduling Problems. Proceedings
of Modern Heuristic for Decision Support. Pp. 67-81, UNICOM Seminar, 18-19 March
1997,London. (1997)

T. Yamada and R. Nakano. Scheduling by Genetic Local Search with Multi-Step Crossover. The
Fourth International Conference on Parallel Problem Solving from Nature, Berlin, Germany.
(1996).

T. Yamada and R. Nakano. A Genetic Algorithm with Multi-Step Crossover for Job- Shop
Scheduling Problems. International Conference on Genetic Algorithms in Engineering Systems:
Innovations and Application (GALESIA ’95). (1995)

