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Abstract: The job-shop scheduling (JSS) is a schedule planning for low volume systems with 
many variations in requirements. In job-shop scheduling problem (JSSP) environment, there are 
j jobs to be processed on m machines with a certain objective function to be minimized. JSSP 

with j jobs to be processed on more than two machines have been classified as a combinatorial 
problem. They cannot be formulated as a linear programming and no simple rules or algorithms 
yield to optimal solutions in a short time. In this paper we used genetic algorithm (GA) with some 
modifications to deal with problem of job shop scheduling. GA once proposed by John Holland is 
a stochastic search technique based on Darwin’s principle of the survival of the strongest. In this 
paper, we generated an initial population randomly including the result obtain by some well 
known priority rules such as shortest processing time and longest processing time.  From there, 
the population will go through the process of reproduction, crossover and mutation to create a 
new population for the next generation until some stopping criteria defined were reached. In this 
paper, we used the number of generations as a stopping criteria. In crossover and mutation, we 
used the critical block neighbourhood and the distance measured to help us evaluate the 
schedules. Result has shown that the implementation of critical block neighbourhood and the 
distance measure can lead us to the same result obtain by other methods.  
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Introduction  
Job-shop is a system that process n number of tasks on m  number of machines. In this type of 
environment, products are made to order and in a low volume. Usually, these orders are differ in 
term of processing requirements, materials needed, processing time, processing sequence and 
setup times. Job-shop problems are widely known as a NP-hard problem. Nowadays, search 
algorithms based on branch and bound methods and several approximation algorithms have been 
developed. However, result from the branch and bound method sometimes is really unpredictable 
and requires a lot of time. It depends on the size of the problem. Thus, schedulers are usually 
satisfied with an acceptance result which is not far from optima. One of the widely used 
technique in industries is the local search. One of the search techniques that have been used is 
genetic algorithm (GA).  

Genetic algorithms solve a problem using the principal of evolution. In the search process 
it will generate a new solution using genetic operator such as selection, crossover and mutation. 
In hill-climbing, the search procedure will stop once it detects no improvement in next iteration. 
This criterion make the hill-climbing technique tend to stop at local optima. In the other hand, 
genetic algorithms start its search space in a population and will maintain the number of 
population in iteration. It will generate a new schedule by selecting two individuals in population 
to apply crossover and mutation.  There are many procedures that could be applied in the 
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selection, crossover and mutation process. Some of the procedures are not suitable for job-shop 
problem and some of them will make the search stop at local optima. 

Our intention in this research is to find out if the idea of combining the CB 
neighbourhood and DG distance in crossover and mutation is suitable when dealing with job-shop 
scheduling problems so that the makespan value can be minimized.  Result has shown that if the 
solution converges too quickly, it will stop at local optima. The modification has been made so 
that it will get a solution at least not far from optima.  
 
Job Shop Scheduling Problem (JSSP) 
Recently, researchers have been focusing on investigating machine scheduling problems in 
manufacturing and service environments where jobs represent activities and machines represent 
resources, and each machine can process one job at a time. In this paper, we will focus on the low 
volume system also known as job-shop. In this type of environment, products are made to order. 
The job-shop scheduling problem (JSSP) can be described as a set of n jobs denoted by jJ  where 

nj ,...,2,1= which have to be processed on a set of m machines denoted by kM  
where mk ,...,2,1= . Operation of j th job on the k th machine will be denoted by jkO  with the 
processing time jkp . Each job should be processed through the machines in a particular order or 
also known as technological constraint. Once a machine starts to process a job, no interruption is 
allowed. The time required for all operations to complete their processes is called makespan. In 
this paper, our intention is to minimize this makespan value. When we minimizing the makespan, 
at least one of the optimal solutions is a semi-active (no operation can started earlier without 
violating the technological constraints (French, 1982). For this reason, every time when 
makespan is optimised, a schedule can be described by the processing orders of operations on the 
machines (Jensen and Hansen, 1999).  
 
Genetic Algorithms 
In scheduling, genetic algorithms represent schedules as individuals or a population’s members. 
Each individual has its own fitness value which is measured by the objective function. The 
procedure works iteratively, and this iteration is a generation. Each generation consists of 
individuals who survive from the previous generations. Usually, the population size remains 
constant from one generation to the next generation.  
       
Critical Block and DG distance  
In job-shop scheduling problem, we also could find the critical path. Critical path is defined as the 
longest paths taken from the first operation processed until the last operation leaves the 
workplace. All operations in this path are called critical operations. Plus, the critical operations on 
the same machine are called critical block.  

We measure the distance between two schedules 1S and 2S by the number of differences 
in the processing orders of operation on each machine (Mattfeld, 1996). By doing so, it is just like  
summing the disjunctive arcs whose directions are different between schedules 1S and 2S . This 
distance also known as disjunctive graph (DG) distance.  
 
Neighbourhood Search 
In combinatorial problems, the most widely used technique is neighbourhood search. A solution 
S is represented as a point in the search space. The feasible solutions in the neighbourhood that 
can be reached from S  with exactly one transition are defined by ( )SN . Neighbourhood search is 
categorized according to the given criteria for selecting a new point from the neighbourhood 
(Yamada and Nakano, 1995). We defined our neighbourhood if the DG distance between 



S and ( )SNy∈ is equal to one. Another type of transition that is also well known is called 
adjacent swapping (AS). This transition operator exchanges a pair of consecutive operations only 
on critical path to form neighbourhood. According to Yamada and Nakano (1997), another 
transition operator that is more powerful than AS is called Critical Block neighbourhood (CB 
neighbourhood). CB neighbourhood permutes the order of operations in critical block by moving 
the operation to the beginning or end of the critical block 
  
Data Structures and Representation 
Genetic algorithms process populations of strings. We construct a population as an array of 
individuals where each individual contains the phenotype, genotype (artificial chromosome) and 
the fitness (objective function). In job-shop scheduling problem we noted the job order on each 
machine as phenotype, the machine schedule as genotype and makespan value as fitness.  

The representation used in this paper is called the permutation representation (Yamada 
and Nakano, 1997). JSSP can be viewed as an ordering problem just like the Travelling Salesman 
Problem (TSP). A schedule can be represented by the set of permutations of jobs on each 
machine which are called job sequence matrix. Figure 1 shows the job sequence matrix for 

33× problem. Rows will represent the machines and columns represent the order of jobs. 
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Figure1: A job sequence matrix for 33× problem. 
 
Initial population 
Most of the research papers in this area prefer to generate the initial population randomly. This 
technique will allow the search process in a wide space. However, this kind of technique will take 
a lot of time to get the optimal value. In this paper, we chose to start the initial population with a 
randomly generated schedules, including some of the schedules obtain by the well known priority 
rules such as the shortest processing time and the longest processing time.  
 
Parents Selection 
In parent selection we choose two individuals to reproduce. There are many ways of choosing 
parents to evaluate. In order to avoiding the premature convergence, we randomly choose two 
individuals from the population and called them parent1 and parent2. This means that all 
individuals in the population have the same chances to reproduce. 
 
Fitness Value 
In this research, we focus on the static and deterministic environment. In other words, the number 
of jobs and their processing time are known, fixed and we assumed that there are no machines 
breakdown occurred. We used makespan of the operation as fitness value. Makespan is denoted 
as maxC is the time when the last operation leaves the workplace. 

( )nCCCC .....,,max 21max =  
where, 

( )( )∑ ++= =
n
k kjmjkjj pWrC 1  

 
jC is the completion time of job j , jr is the release time of job j , jkW is the waiting time of job 

j at sequence k and ( )kjmp is the processing time needed by job j on machine m at sequence k . 



 Crossover 
Yamada and Nakano (1997) in most of their papers have introduced plenty of techniques that 
could be use in solving the job-shop problem. One of them is by making use of CB 
neighbourhood and DG distance. The idea of this technique is to evaluate a point x  by the 
distance ( )2, pxd . Lets denote parent1 and parent2 as 1p and 2p . First, set 1px = . Then, we 
generated the CB neighbourhood for x , ( )xN . For each member, iy , in ( )xN  we calculated the 
distance between the members and 2p to produce ( )2, pyD i . Then, we sort ( )2, pyD i  in 
ascending order. Starting from the first index in ( )2, pyD isort , we accepted iy  with probability 
one if the fitness value is less than the current fitness value ( ) ( )xVyV i ≤ . Otherwise, we accepted 
it with probability 0.5. Starting from 1p , we modified x  step by step approaching 2p . After some 
iteration, we will find that x  will gradually loses 1p ’s characteristics and started to inherit 2p ’s 
characteristics although in a different ratios. We choose the child depending on the less DG 
distance between the child and both its parents. The algorithm for this procedure is shown in 
Algorithm 1. 
 
Algorithm 1: Crossover 

1. Let  1p  and 2p  be the parent solution.  
2. Set qpx == 1 . 
3. Find CB Neighbourhood for x , ( )xN . 
4. Do   a.    For each member ( )xNyi ∈ , calculate the distance between iy  and 2p , ( )2, pyD i . 

b. Sort the distance value in ascending order, ( )2, pyD isort . 
c. Starting from  1=i , do 

i. Calculate the fitness value for iy , ( )iyV . 
ii. If ( ) ( )xVyV i ≤ accept iy with probability one, and with probability 0.5 

otherwise. 
iii. If iy is not accepted, increase i  by one.  

                Repeat i-iii until iy  is accepted. 
d. Set iyx =  
e. If ( ) ( )qVxV ≤  then set xq = . 

       Repeat 3-4 until number of iterations.  
5. q is the child. 

 
Mutation 
Instead of using some random probability, we apply mutation if the DG distance between parent1 
and parent2 are less than some predefined value. It is also defined based on the same idea as 
crossover. However, we choose the child which has the largest distance from the neighbourhood.  
The algorithm for mutation is shown in Algorithm 2. 
 
 
 
 
 
 
 
 
 



Algorithm 2: Mutation  
1 Set 1px = .  
2 Find Neighbourhood for x , ( )xN  
3 Do   a.    For each member ( )xNyi ∈ , calculate the distance between iy  and 1p , ( )1, pyD i . 

  b.    Sort the distance value in descending order, ( )1, pyD isort . 
c. Starting from 1=i , do 

i. Calculate the fitness value for iy , ( )iyV . 
ii. If ( ) ( )xVyV i ≤ accept iy with probability one, and with probability 0.5 

otherwise. 
iii. If iy is not accepted, increase i  by one.  

                Repeat i-iii until iy  is accepted. 
d. Set iyx = . 
e. If ( ) ( )qVxV ≤  then set xq = . 

            Repeat 2-3 until number of iteration. 
  q  is the child. 
 
 
Acceptance Criterion  
The final and the most important step in the GA procedure is to choose the individual to be 
replaced by child. It is widely known that we always choose the fittest individual to reproduce in 
the next iteration. In Yamada and Nakano (1997), they did not consider or choose the child with 
the same fitness value with other population members. However, by not even considering that 
child, we may lose the good individual without considering its abilities to be evaluated. So, in this 
paper, after considering the worst individual in the population, we also consider if the child has 
the same fitness value with the member of population. Instead of dropping that child, we replaced 
the old one with the child assuming that we have given chance for the old individual to reproduce. 
Noted that we could not take both of the individuals to avoid having problem later, we might have 
problem falling in the local optima. The algorithm for the whole procedure is shown in Algorithm 
3.      
 
Algorithm 3: Genetic Algorithm   
1. Initialize population: Randomly generated a set of 10 schedules including the schedules 

obtained by some priority rules. 
2. Randomly select two schedules, named them as 1p and 2p . Calculate DG distance 

between 1p and 2p . 
3. If DG distance is smaller from some predefined value, apply Algorithm 2 to 1p . Generate 

child. Then go to step 5. 
4. If DG distance is large, we apply Algorithm 1 to 1p and 2p . Generate child. 
5. Apply neighbourhood search to child to find the fittest child in the neighbourhood. Noted 

it as child’. 
6. If the makespan for the child’ is less than the worst and not equal to any member of 

population, replace the worst individual with child’. If there is a member having the same 
makespan value, replace the member with the child’. 

7. Repeat 2-6 until some termination condition are satisfied.  
 
 



Results and Discussions 
Consider a 5 jobs and 5 machines problem with the operation sequence and the processing time 
for each operation have been determined in Table1 and Table2.  
We run the programme for five times using the population size = 10, number of iterations for 
mutation is 100 and crossover is 200. The algorithm was terminated after 200 generations. From 
the result in Table3, it can be shown that the combination of critical block, DG distance and 
genetic algorithm could provide a result as good as other methods. From Table 3, we could see 
that the last job processed is job 5 on machine 4. So, our makespan value for this problem is 34. 
The result also gives us the job sequence for each machine to process, the starting time and the 
finish time for each operation. For example, on machine 1, we start to process job 3 at time 0 and 
finished at 7. Then we process job 1, followed by job 4, job 5 and job 2.      
 

Table1: Operation Sequence 
 Sequence1 Sequence2  Sequence3 Sequence4 Sequence5 
Job1 Machine3 Machine1 Machine2 Machine4 Machine5 
Job2 Machine2 Machine3 Machine5 Machine1 Machine4 
Job3 Machine1 Machine5 Machine4 Machine3 Machine2 
Job4 Machine4 Machine3 Machine2 Mahine1 Machine5 
Job5 Machine5 Machine3 Machine1 Machine2 Machine4 

 
Table2: Processing Time for each Operation 

 Machine1 Machine2 Machine3 Machine4 Machine5 
Job1 8  4 2 6 7 
Job2 3 6 5 2 4 
Job3 7 3 9 4 8 
Job4 4 5 5 4 3 
Job5 3 6 7 4 5 

 
Table3: Result 

 Processing Time Start Finish  
Machine1   25 
Job3 7 0 7 
Job1 8 7 15 
Job4 4 15 19 
Job5 3 21 24 
Job2 3 24 27 
Machine2   24 
Job2 6 0 6 
Job4 5 9 14 
Job1 4 15 19 
Job5 6 24 30 
Job3 3 30 33 
Machine3   28 
Job1 2 0 2 
Job4 5 4 9 
Job2 5 9 14 
Job5 7 14 21 
Job3 9 21 30 
 



Continued Table 3. 
Machine4   20 
Job4 4 0 4 
Job3 4 15 19 
Job1 6 19 25 
Job2 2 27 29 
Job5 4 30 34 
Machine5   27 
Job5 5 0 5 
Job3 8 7 15 
Job2 4 15 19 
Job4 3 19 22 
Job1 7 25 32 
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  Fig . 1.1 . Result obtained using the 
combination of randomly generated schedules 
and priority rule schedules as initial population. 
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Fig . 1.2 . Result obtained using the randomly 

generated schedules as initial population. 

We applied both types of initial population to the data. First we used the combination of 
schedules we generated using the priority rules and the randomly generated schedules as the 
initial population. From the five runs, we find the optimum before the generation exceeded 100.  
As for Figure 1.2, we found the optimum value at generation 139. From the five runs, we could 
conclude that if we used the randomly generated schedules as the initial population, we will only 
find the optimum value at generation larger than 100.  However, both results gave the same 
makespan value which is 34.    
 
 
Conclusion 
The study on GA and job shop scheduling problem provides a rich experience for the constrained 
combinatorial optimization problems. Application of genetic algorithm gives a good result most 
of the time. Although GA takes plenty of time to provide a good result, it provides a flexible 
framework for evolutionary computation and it can handle varieties of objective function and 
constraint.  
For further research, the technique in this paper would be applied to a larger size problem to see 
how it performed.          
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