Aboulfazl Shirazi-Adl

Aboulfazl Shirazi-Adl
Polytechnique Montréal · Department of Mechanical Engineering

Doctor of Philosophy

About

326
Publications
51,675
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,695
Citations
Citations since 2017
41 Research Items
4927 Citations
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800

Publications

Publications (326)
Article
Background Multijoint EMG-assisted optimization models are reliable tools to predict muscle forces as they account for inter- and intra-individual variations in activation. However, the conventional method of normalizing EMG signals using maximum voluntary contractions (MVCs) is problematic and introduces major limitations. The sub-maximal voluntar...
Article
About a third of knee joint disorders originate from the patellofemoral (PF) site that makes stair ascent a difficult activity for patients. A detailed finite element model of the knee joint is coupled to a lower extremity musculoskeletal model to simulate the stance phase of stair ascent. It is driven by the mean of measurements on the hip‐knee‐an...
Article
Full-text available
Adjacent segment disorders are prevalent in patients following a spinal fusion surgery. Postoperative alterations in the adjacent segment biomechanics play a role in the etiology of these conditions. While experimental approaches fail to directly quantify spinal loads, previous modeling studies have numerous shortcomings when simulating the complex...
Article
Introduction We aimed to quantify the sensitivity in biomechanical response and stability of the intact and anterior cruciate ligament deficient (ACL-D) joints at mid-to-late stance periods of gait to the alterations in activation of gastrocnemii (Gas) muscles. Methods A validated kinematics-driven musculoskeletal finite-element model of the lower...
Article
Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We ai...
Article
Anterior cruciate ligament (ACL) is a primary structure and a commonly injured ligament of the knee joint. Some patients with ACL deficiency (ACLD) experience joint instability and require a reconstructive surgery to return to daily routines, some can adapt by limiting their activities while others, called copers, can return to high-level activitie...
Article
Collagen fibers within the annulus fibrosus (AF) lamellae are unidirectionally aligned with alternating orientations between adjacent layers. AF constitutive models often combine two adjacent lamellae into a single equivalent layer containing two fiber networks with a crisscross pattern. Additionally, AF models overlook the inter‐lamellar matrix (I...
Article
Excessive loads on the human spine is recognized as a risk factor for back injuries/pain. Various lifting analysis tools such as musculoskeletal models, regression equations and NIOSH (National Institute for Occupational Safety and Health) lifting equation (NLE) have been proposed to evaluate and mitigate associated risks during manual material han...
Article
Full-text available
Low back pain (LBP), the leading cause of disability worldwide, remains one of the most common and challenging problems in occupational musculoskeletal disorders. The effective assessment of LBP injury risk, and the design of appropriate treatment modalities and rehabilitation protocols, require accurate estimation of the mechanical spinal loads du...
Article
Irrespective of the lifting technique (squat or stoop), the lumbar spine posture (more kyphotic versus more lordotic) adopted during lifting activities is an important parameter affecting the active-passive spinal load distribution. The advantages in either posture while lifting remains, however, a matter of debate. To comprehensively investigate t...
Article
Workplace safety assessment, personalized treatment design and back pain prevention programs require accurate subject-specific estimation of spinal loads. Since no noninvasive method can directly estimate spinal loads, easy-to-use regression equations that are constructed based on the results of complex musculoskeletal models appear as viable alter...
Article
As a primary load-resisting component, annulus fibrosus (AF) maintains structural integrity of the entire intervertebral disc. Experiments have demonstrated that permanent deformation and damage take place in the tissue under mechanical loads. Development of an accurate model to capture the complex behaviour of AF tissue is hence crucial in disc mo...
Article
Human lumbar motion segment is composed of various components with distinct contributions to its gross mechanical response. By employing experimental and computational approaches, many studies have investigated the relative role of each component as well as effects of various factors such as boundary-initial conditions, load magnitude-combination-d...
Article
Sensitivity analysis of the knee joint response to variations in gait kinematics-kinetics as reported in the literature is crucial for improved understanding and more effective prevention-treatment strategies. Using our validated finite element-musculoskeletal (FE-MS) model of lower extremity, we investigate the sensitivity of knee anterior cruciat...
Article
Recent advances in medical imaging techniques have allowed pure displacement-control trunk models to estimate spinal loads with no need to calculate muscle forces. Sensitivity of these models to the errors in post-imaging evaluation of displacements (reported to be ∼0.4–0.9° and 0.2–0.3 mm in vertebral displacements) has not yet been investigated....
Article
Background Osteoarthritis (OA) of the knee joint is a common disease accompanied by pain and impaired mobility. Despite some recent concerns on the lack of correlation between the medial load and the knee adduction moment (KAM), KAM is routinely considered as a surrogate measure of medial load and hence a marker where its reduction is the main focu...
Article
Traditional load‐control musculoskeletal and finite element (FE) models of the spine fail to accurately predict in vivo intervertebral joint loads due mainly to the simplifications and assumptions when estimating redundant trunk muscle forces. An alternative powerful protocol that bypasses the calculation of muscle forces is to drive the detailed F...
Article
Rupture of anterior cruciate ligament (ACL) undermines normal activity and function of the knee joint and places it at higher risk of re-injury and degeneration. ACL reconstruction surgery neither necessarily ensures return to pre-injury activities nor alleviates risk of long-term degeneration. Here in this computational investigation of a lower-ex...
Article
Biomechanical models of the spine either simplify intervertebral joints (using spherical joints or deformable beams) in musculoskeletal (MS) or overlook musculature in geometrically-detailed passive finite element (FE) models. These distinct active and passive models therefore fail to determine in vivo stresses and strains within and load-sharing a...
Article
Experimental and computational studies often presume that nuclei pulposi of non-degenerated human lumbar discs function as fluid-filled cavities with single hydrostatic pressures throughout that vary neither with time nor location and orientation. Recent simultaneous measurements of the pressure at multiple locations within disc nuclei have however...
Article
The intervertebral disc viscoelastic response is governed primarily by its fluid content and flow. In vivo measurements demonstrate that the disc volume, fluid content, height and nucleus pressure completely recover during resting even after diurnal loading with twice longer duration (16 vs. 8 h). In view of much longer periods required for the rec...
Article
Maximum voluntary exertion (MVE) tasks quantify trunk strength and maximal muscle electromyography (EMG) activities with both clinical and biomechanical implications. The aims here are to evaluate the performance of an existing trunk musculoskeletal model, estimate maximum muscle stresses and spinal forces, and explore likely differences between ma...
Article
Approximately 5,168 large animals (pigs, sheep, goats, and cattle) were used for intervertebral disc research in identified studies published between 1985 and 2016. Most of the reviewed studies revealed a low scientific impact, a lack of sound justifications for the animal models, and a number of deficiencies in the documentation of the animal expe...
Article
To reduce lifting and associated low back injuries, manual material handling operations often involve pulling-pushing of carts at different weights, orientations, and heights. The loads on spine and risk of injury however need to be investigated. The aim of this study was to evaluate muscle forces, spinal loads and trunk stability in pull-push task...
Article
As one of the most complex and vulnerable structures of body, the human knee joint should maintain dynamic equilibrium and stability in occupational and recreational activities. The evaluation of its stability and factors affecting it is vital in performance evaluation/enhancement, injury prevention and treatment managements. Knee stability often m...
Article
Musculoskeletal models represent spinal motion segments by spherical joints/beams with linear/nonlinear properties placed at various locations. We investigated the fidelity of these simplified models (i.e., spherical joints with/without rotational springs and beams considering nonlinear/linear properties) in predicting kinematics of the ligamentous...
Article
Underlying mechanisms of obesity-related back pain remain unexplored. Thus, we aim to determine the effect of obesity and its shapes on the spinal loads and the associated risks of injury. Obesity shapes were initially constructed by principal component analysis based on datasets on 5852 obese individuals. Spinal loads, cycles to vertebral failure...
Article
A number of geometrically-detailed passive finite element (FE) models of the lumbar spine have been developed and validated under in vitro loading conditions. These models are devoid of muscles and thus cannot be directly used to simulate in vivo loading conditions acting on the lumbar joint structures or spinal implants. Gravity loads and muscle f...
Article
Ligaments assist trunk muscles in balancing external moments and providing spinal stability. In absence of the personalized material properties for ligaments, finite element (FE) models use dispersed data from the literature. This study aims to investigate the relative effects of eight different ligament property datasets on FE model responses. Eig...
Article
Full-text available
Musculoskeletal models of the lower extremity make a number of important assumptions when attempting to estimate muscle forces and tibiofemoral compartmental loads in activities such as gait. The knee is commonly idealized as a planar 2D joint in the sagittal plane with no consideration of motions and equilibrium in remaining planes. With muscle fo...
Article
An essential input to the musculoskeletal (MS) trunk models that estimate muscle and spine forces is kinematics of the thorax, pelvis, and lumbar vertebrae. While thorax and pelvis kinematics are usually measured via skin motion capture devices (with inherent errors on the proper identification of the underlying bony landmarks and the relative skin...
Article
Full-text available
Development of a subject-specific computational musculoskeletal trunk model (accounting for age, sex, body weight and body height), estimation of muscle forces and internal loads as well as subsequent validation by comparison with measured intradiscal pressure in various lifting tasks are novel, important and challenging. The objective of the prese...
Article
Subject-specific parameters influence spinal loads and the risk of back disorders but their relative effects are not well understood. The objective of this study is to investigate the effects of changes in age (35-60 years), sex (male, female), body height (BH: 150-190cm) and body weight (BW: 50-120kg) on spinal loads in a full-factorial simulation...
Article
By maintaining a balance between external mechanical loads and internal osmotic pressure, fluid content of intervertebral discs constantly alters causing fluctuations in disc hydration, height, diameter and pressure that govern disc temporal response. This paper reviews and discusses the relevant findings of earlier studies on the disc fluid flow w...
Conference Paper
Mechanical factors play important role in causation of knee joint disorders. Musculoskeletal modeling of the lower extremity is promising to improve the understanding of the human knee functional biomechanics and hence its existing prevention and treatment programs. Due to the complexity, numerous assumptions are often made when estimating muscle f...
Article
Disc hydration is controlled by fluid imbibition and exudation and hence by applied load magnitude and history, internal osmotic pressure and disc conditions. It affects both the internal load distribution and external load-bearing of a disc while variations therein give rise to the disc time-dependent characteristics. This study aimed to evaluate...
Article
Spinal loads are recognized to play a causative role in back disorders and pain. Knowledge of lumbar spinal loads is required in proper management of various spinal disorders, effective risk prevention and assessment in the workplace, sports and rehabilitation, realistic testing of spinal implants as well as adequate loading in in vitro studies. Du...
Article
Evaluation of contact forces-centers of the tibiofemoral joint in gait has crucial biomechanical and pathological consequences. It involves however difficulties and limitations in in vitro cadaver and in vivo imaging studies. The goal is to estimate total contact forces (CF) and location of contact centers (CC) on the medial and lateral plateaus us...
Article
Nowadays in various daily, occupational and training activities, there are many occasions with forces supported in hands acting at various magnitudes, elevations, and orientations with substantial horizontal components. In this work, we aim to compute trunk muscle forces, stability, and spinal loads under pulling external forces applied at 3 elevat...
Article
In vivo during the day, intervertebral discs are loaded mainly in compression causing fluid and height losses that are subsequently fully recovered overnight due to fluid inflow under smaller compression. However, in vitro, fluid flow through the endplates, in particular fluid imbibition, is hampered possibly by blood clots formed post mortem. Desp...
Conference Paper
Full-text available
https://www.czech-in.org/cm/ESB/CM.NET.WebUI/CM.NET.WEBUI.scpr/SCPRfunctiondetail.aspx?confID=05000000-0000-0000-0000-000000000056&sesID=05000000-0000-0000-0000-000000003679&absID=07000000-0000-0000-0000-000000022469
Article
Various hybrid EMG-assisted optimization (EMGAO) approaches are commonly used to estimate muscle forces and joint loads of human musculoskeletal systems. Use of EMG data and optimization enables the EMGAO models to account for inter- and intra-individual variations in muscle recruitments while satisfying equilibrium requirements. Due to implication...
Article
The 1991 NIOSH Lifting Equation (NLE) is widely used to assess the risk of injury to spine by providing estimates of the recommended weight limit (RWL) in hands. The present study uses the predictive equations developed based on a detailed trunk musculoskeletal biomechanical model to verify whether the RWL generates L5-S1 loads within the limits (e...
Article
Full-text available
Iatrogenic injuries to paraspinal muscles during the posterior lumbar surgery (PLS) cause a reduction in their cross-sectional areas (CSAs) and contractile densities over time post-surgery. This study aims to quantify such alterations. Pre- and postoperative CSAs (~6 months interval) of all paraspinal muscles were measured in six patients undergoin...
Article
Different lifting analysis tools are commonly used to assess spinal loads and risk of injury. Distinct musculoskeletal models with various degrees of accuracy are employed in these tools affecting thus their relative accuracy in practical applications. The present study aims to compare predictions of six tools (HCBCF, LSBM, 3DSSPP, AnyBody, simple...
Article
The anterior cruciate ligament (ACL) rupture is a common knee joint injury with higher prevalence in female athletes. In search of contributing mechanisms, clinical imaging studies of ACL-injured individuals versus controls have found greater medial-lateral posterior tibial slope (PTS) in injured population irrespective of the sex and in females co...
Article
Full-text available
Gastrocnemius is a premier muscle crossing the knee but its role in knee biomechanics and on the anterior cruciate ligament (ACL) remains unclear. The effect of changes in gastrocnemius force at late stance when it peaks on the knee joint response and ACL force was initially investigated using a lower extremity musculoskeletal model driven by gait...
Article
Epidemiological studies are divided over the causative role of body weight (BW) in low back pain. Biomechanical modeling is a valuable approach to examine the effect of changes in BW on spinal loads and risk of back pain. Changes in BW have not been properly simulated by previous models as associated alterations in model inputs on the musculature a...
Article
Understanding the central nervous system (CNS) response strategy to trunk perturbations could help in prevention of back injuries and development of rehabilitation and treatment programs. This study aimed to investigate biomechanical response of the trunk musculoskeletal system under sudden forward loads, accounting for pre-perturbation conditions...
Article
Full-text available
Due to the complexity of the human spinal motion segments, the intervertebral joints are often simulated in the musculoskeletal trunk models as pivots thus allowing no translational degrees of freedom (DOFs). This work aims to investigate, for the first time, the effect of such widely used assumption on trunk muscle forces, spinal loads, kinematics...
Article
An anatomically detailed eighteen-rotational-degrees-of-freedom model of the human spine using optimization constrained to equilibrium and stability requirements is developed and used to simulate several symmetric tasks in upright and flexed standing postures. Predictions of this stability and kinematics-driven (S+KD) model for trunk muscle forces...
Article
Forces at different heights and orientations are often carried by hands while performing occupational tasks. Trunk muscle activity and spinal loads are likely dependent on not only moments but also the orientation and height of these forces. Here, we measured trunk kinematics and select superficial muscle activity of 12 asymptomatic subjects while...
Article
Unexpected loading of the spine is a risk factor for low back pain and spinal disorders. The trunk neuromuscular and kinematics responses are likely influenced by the perturbation itself as well as initial trunk conditions. The effect of four parameters (preload, sudden load, initial trunk flexed posture, initial abdominal antagonistic activity) on...
Article
Finite element (FE) model studies have made important contributions to our understanding of functional biomechanics of the lumbar spine. However, if a model is used to answer clinical and biomechanical questions over a certain population, their inherently large inter-subject variability has to be considered. Current FE model studies, however, gener...
Article
Osteoarthritis (OA) is the leading cause of pain and disability in the elderly with the knee being the most affected weight bearing joint. We used a musculoskeletal biomechanical model of the lower extremity including a detailed validated knee joint finite element model to compute lower extremity muscle forces and knee joint stresses-strains during...
Article
Background: The ratio of total lumbar rotation over pelvic rotation (lumbopelvic rhythm) during trunk sagittal movement is essential to evaluate spinal loads and discriminate between low back pain and asymptomatic population. Methods: Angular rotations of the pelvis and lumbar spine as well as their sagittal rhythm during forward flexion and bac...
Article
Tests on animals of different species with large differences in intervertebral disc size are commonly used to investigate the therapeutic efficacy of intravenously injected solutes in the disc. We hypothesize that disc size markedly affects outcome. Here, using a small non-metabolized molecule, glucosamine (GL) as a model solute, we calculate the i...
Article
Anterior shear has been implicated as a risk factor in spinal injuries. A 3D nonlinear poroelastic finite element model study of a lumbar motion segment L4-L5 was performed to predict the temporal shear response under various single and combined shear loads. Effects of nucleotomy and facetectomy as well as changes in the posture and facet gap dista...
Article
Determination of the trunk maximum voluntary exertion moment capacity and associated internal spinal forces could serve in proper selection of workers for specific occupational task requirements, injury prevention and treatment outcome evaluations. Maximum isometric trunk exertion moments in flexion and extension along with surface EMG of select tr...