Abijeet Mehta

Abijeet Mehta
University of Dayton | UD · Department of Biology

About

17
Publications
2,312
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
131
Citations
Citations since 2016
12 Research Items
120 Citations
2016201720182019202020212022051015202530
2016201720182019202020212022051015202530
2016201720182019202020212022051015202530
2016201720182019202020212022051015202530

Publications

Publications (17)
Chapter
RNA is an important connecting link between DNA and proteins. Levels of RNA within a cell or a tissue serve as the unique genetic signatures, which can help in correlating gene expression to the resultant phenotype(s) during development and disease. Transcriptomics is the study of all RNAs expressed/available in cells or tissues that allow study of...
Article
Full-text available
Many cell types migrate in response to naturally generated electric fields. Furthermore, it has been suggested that the external application of an electric field may be used to intervene in and optimize natural processes such as wound healing. Precise cell guidance suitable for such optimization may rely on predictive models of cell migration, whic...
Article
Full-text available
Cell death maintains tissue homeostasis by eliminating dispensable cells. Misregulation of cell death is seen in diseases like cancer, neurodegeneration, etc. Therefore, cell death assays like TUNEL have become reliable tools, where fragmented DNA of dying cells gets fluorescently labeled and can be detected under microscope. We used TUNEL assay in...
Preprint
Full-text available
Many cell types migrate in response to naturally-generated electric fields. Furthermore, it has been suggested that the external application of an electric field may be used to intervene in and optimize natural processes such as wound healing. Precise cell guidance suitable for such optimization may rely on predictive models of cell migration, whic...
Article
Full-text available
Newts utilize their unique genes to restore missing parts by strategic regulation of conserved signaling pathways. Lack of genetic tools pose challenges to determine the function of such genes. Therefore, we used the Drosophila eye model to demonstrate the potential of 5 unique newt (Notophthalmus viridescens) gene(s), viropana1-viropana5 (vna1-vna...
Preprint
Full-text available
A fundamental process of regeneration, which varies among animals, recruits conserved signaling pathways to restore missing parts. Only a few animals like newts can repeatedly regenerate lost body parts throughout their lifespan that can be attributed to strategic regulation of conserved signaling pathways by newt's regeneration tool-kit genes. Her...
Article
During neurulation, cranial neural crest cells (CNCCs) migrate long distances from the neural tube to their terminal site of differentiation. The pathway traveled by the CNCCs defines the blueprint for craniofacial construction, abnormalities of which contribute to three-quarters of human birth defects. Biophysical cues like naturally occurring ele...
Article
Full-text available
This review provides a comprehensive overview on the biomedical applications of electrical stimulation (EStim). EStim has a wide range of direct effects on both biomolecules and cells. These effects have been exploited to facilitate proliferation and functional development of engineered tissue constructs for regenerative medicine applications. They...
Article
Full-text available
Notophthalmus viridescens (Red-spotted Newt) possess amazing capabilities to regenerate their organs and other tissues. Previously, using a de novo assembly of the newt transcriptome combined with proteomic validation, our group identified a novel family of five protein members expressed in adult tissues during regeneration in Notophthalmus virides...
Preprint
Due to absence of transgenic approaches in Notopthalmus Viridescens (newt), and conservation of genetic machinery across species, we generated transgenic Drosophila melanogaster to misexpress unique genes from newt. Novel newt genes cloned, and inserted at attP site in Drosophila were misexpressed ubiquitously using tubulin Gal-4. Sample (total RNA...
Article
For ages, regeneration has intrigued countless biologists, clinicians, and biomedical engineers. In recent years, significant progress made in identification and characterization of a regeneration tool kit has helped the scientific community to understand the mechanism(s) involved in regeneration across animal kingdom. These mechanistic insights re...
Article
Full-text available
Serogroup A of Neisseria meningitidis is the organism responsible for causing epidemic diseases in developing countries by a pilus-mediated adhesion to human brain endothelial cells. Type IV pilus assembly protein (PilF) associated with bacterial adhesion, aggregation, invasion, host cell signaling, surface motility, and natural transformation can...
Article
Full-text available
In the present study gentamicin was encapsulated within calcium alginate beads and incorporated into porous chitosan, gelatin, double-hybrid silk fibroin, chitosan/gelatin and double-hybrid silk fibroin/chitosan scaffolds. Physiochemical, morphological and biological properties of fabricated amenable model systems were evaluated, revealing hemocomp...

Questions

Question (1)
Question
Hi all,
I have misexpressed newly identified candidate genes from newt in drosophila (using Gal4/UAS system). Interestingly these proteins from newt are showing effect in drosophila. Initially we did not wanted to tag protein (as it could effect the function of protein), but now as it is showing wonderful phenotype we need to see if protein is actually being formed or phenotype is just an artifact. Therefore, we have decided to tag our protein. I was wondering which tag will be useful. Proteins are 500 aa long.

Network

Cited By

Projects

Projects (4)