Abidur Rahman

Abidur Rahman
Verified
Abidur verified their affiliation via an institutional email.
Verified
Abidur verified their affiliation via an institutional email.
  • Ph.D
  • Professor at Iwate University

About

72
Publications
20,487
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,721
Citations
Introduction
Abidur Rahman currently works at the Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University. His group 's research work is focused on hormonal regulation of plant development at both optimal and stressed conditions, understanding the role of actin in plant development, and the mechanism of selective herbicidal action of auxinic herbicide.
Current institution
Iwate University
Current position
  • Professor
Additional affiliations
March 2023 - present
Iwate University
Position
  • Professor
Iwate University
Position
  • Professor
January 2003 - September 2006

Publications

Publications (72)
Article
Full-text available
Lateral root (LR) organogenesis is regulated by cellular flux of auxin within pericycle cells, which depends on the membrane distribution and polar localization of auxin carrier proteins. The correct distribution of auxin carrier proteins relies on the intracellular trafficking of these proteins aided by filamentous actin as a track. However, the p...
Preprint
Full-text available
Lateral root (LR) organogenesis is regulated by cellular flux of auxin within pericycle cells, which depends on the membrane distribution and polar localization of auxin carrier proteins. The correct distribution of auxin carrier proteins relies on the intracellular trafficking of these proteins aided by filamentous actin as a track. However, the p...
Article
Full-text available
To better understand the salt tolerance of the wild rice, Oryza coarctata , root tissue‐specific untargeted comparative metabolomic profiling was performed against the salt‐sensitive Oryza sativa . Under control, O. coarctata exhibited abundant levels of most metabolites, while salt caused their downregulation in contrast to metabolites in O. sativ...
Article
Full-text available
Cell fate determination and primordium initiation on the placental surface are two key events for ovule formation in seed plants, which directly affect ovule density and seed yield. Despite ovules form in the marginal meristematic tissues of the carpels, angiosperm carpels evolved after the ovules. It is not clear how the development of the ovules...
Article
Full-text available
Floral meristem termination is a key step leading to carpel initiation and fruit development. The frequent occurrence of heat stress due to global warming often disrupts floral determinacy, resulting in defective fruit formation. However, the detailed mechanism behind this phenomenon is largely unknown. Here, we identify CRABS CLAW a (SlCRCa) as a...
Article
Full-text available
Fruit malformation is a major constrain in fruit production worldwide resulting in substantial economic losses. The farmers for decades noticed that the chilling temperature before blooming often caused malformed fruits. However, the molecular mechanism underlying this phenomenon is unclear. Here we examined the fruit development in response to col...
Article
Meristem is the most functionally dynamic part in a plant body. The shaping of the meristem requires constant cell division and cell elongation, which are influenced by hormones and cell cytoskeletal component, actin. Although the roles of hormones in modulating meristem development have been extensively studied, the role of actin in this process i...
Article
Full-text available
Unlike animals, plants are unable to escape unfavorable conditions, such as extremities of temperature. Among abiotic variables, the temperature is notableas it affects plants from the molecular to the organismal level. Because of global warming, understanding temperature effects on plants is salient today and should be focused not only on rising t...
Article
Full-text available
High temperature stress is one of the most threatening abiotic stresses for plants limiting the crop productivity world-wide. Altered developmental responses of plants to moderate-high temperature has been shown to be linked to the intracellular auxin homeostasis regulated by both auxin biosynthesis and transport. Trafficking of the auxin carrier p...
Preprint
Full-text available
Meristem, which sustains a reservoir of niche cells at its apex, is the most functionally dynamic part in a plant body. The shaping of the meristem requires constant cell division and cell elongation, that are regulated by hormones and cell cytoskeletal components, actin. Although the roles of hormones in regulating meristem development have been e...
Article
Full-text available
Radiocesium, accumulated in the soil by nuclear accidents is a major environmental concern. The transport process of cesium (Cs⁺) is tightly linked to the indispensable plant nutrient potassium (K⁺) as they both belong to the group I alkali metal with similar chemical properties. Most of the transporters that had been characterized to date as Cs⁺ t...
Article
Full-text available
Cuticular waxes are a mixture of hydrophobic very-long-chain fatty acids and their derivatives accumulated in the plant cuticle. Most studies define the role of cuticular wax largely based on reducing nonstomatal water loss. The present study investigated the role of cuticular wax in reducing both low-temperature and dehydration stress in plants us...
Preprint
Full-text available
Cuticular waxes are a mixture of hydrophobic very-long-chain fatty acids and their derivatives accumulated in the plant cuticle. Most studies define the role of cuticular wax largely based on reducing non-stomatal water loss. The present study investigated the role of cuticular wax in reducing both low-temperature and dehydration stress in plants u...
Article
Full-text available
The phytohormone auxin and microRNA-mediated regulation of gene expressions are key regulators of plant growth and development at both optimal and under low-temperature stress conditions. However, the mechanistic link between microRNA and auxin in regulating plant cold stress response remains elusive. To better understand the role of microRNA (miR)...
Preprint
Full-text available
The phytohormone auxin and microRNA-mediated regulation of gene expressions are key regulators for plant growth and development at both optimal and under low-temperature stress conditions. However, the mechanistic link between microRNA and auxin in regulating plant cold stress response remains elusive. To better understand the role of microRNA in t...
Preprint
Full-text available
Background: The phytohormone auxin and microRNA-mediated regulation of gene expressions are key regulators for plant growth and development at both optimal and under low-temperature stress conditions. However, the mechanistic link between microRNA and auxin in regulating plant cold stress response remains elusive. Results: To better understand the...
Article
Full-text available
Aquaporins play a major role in plant water uptake at both optimal and environmentally stressed conditions. However, the functional specificity of aquaporins under cold remains obscure. To get a better insight to the role of aquaporins in cold acclimation and freezing tolerance, we took an integrated approach of physiology, transcript profiling and...
Preprint
Full-text available
Radiocesium, accumulated in the soil by nuclear accidents is a major environmental concern. The transport process of cesium (Cs+) is tightly linked to the indispensable plant nutrient potassium (K+) as they both belong to the group I alkali metal with similar chemical properties. Most of the transporters that had been characterized to date as Cs+ t...
Article
Full-text available
Arsenic contamination is a major environmental issue as it may lead to serious health hazard. Reduced trivalent form of inorganic arsenic, arsenite, is in general more toxic to plants compared with the fully oxidized pentavalent arsenate. The uptake of arsenite in plants has been shown to be mediated through a large subfamily of plant aquaglyceropo...
Preprint
Full-text available
Arsenic contamination is a major environmental issue as it may lead to serious health hazard. Reduced trivalent form of inorganic arsenic, arsenite, is in general more toxic to plants compared with the fully oxidized pentavalent arsenate. The uptake of arsenite in plants has been shown to be mediated through a large subfamily of plant aquaglyceropo...
Chapter
Phytohormones play an important role in every aspect of plant growth and development. Studies of hormonal biosynthesis, signaling, and transportation pathway facilitate our understanding for the basic developmental mechanisms. As a sessile organism, inability of plants to escape the adverse conditions is manifested through the alteration of growth...
Article
Full-text available
Endosomal trafficking plays an important role in regulating plant growth and development both at optimal and stressed conditions. Cold stress response in Arabidopsis root is directly linked to inhibition of the endosomal trafficking of auxin efflux carriers. However, the cellular components that link cold stress and the endosomal trafficking remain...
Article
The Casparian strip in the root endodermis forms an apoplastic barrier between vascular tissues and outer ground tissues to enforce selective absorption of water and nutrients. Because of its cell-type specificity, the presence of a Casparian strip is used as a marker for a functional endodermis. Here, we examine the minimal regulators required for...
Article
Full-text available
Casparian strip (CS) is an impregnation of endodermal cell wall, forming an apoplastic diffusion barrier which forces the symplastic and selective transport of nutrients across endodermis. This extracellular structure can be found in the roots of all higher plants and is thought to provide the protection of vascular tissues. In Arabidopsis, a genet...
Data
Amino acid sequence alignment of the peptides between Arabidopsis thaliana and tomato (A). The homology sequences are shaded in watermelon red. Conservation of promoter regions of CASP1 homologs (B), SGN3 homologs (C) and MYB36 homologs (D). Cis-acting regulatory sites present in a promoter sequence were searched using PlantCARE.
Data
Numbers of homologous genes in different plant species. Species abbreviations are as follows: Potri, Populus trichocarpa; Medtr, Medicago truncatula; Glyma, Glycine max; Cp, Carica papaya; AT, Arabidopsis thaliana; Vv, Vitis vinifera; St, Solanum tuberosum; Solyc, Solanum lycopersicum; Migut, Mimulus guttatus; Bradi, Brachypodium distachyon; LOC_Os...
Data
Primers used for molecular cloning.
Data
Phylogenetic trees of Casparian strip regulatory genes SGN1 (A), SGN2 (B), SGN3 (C), SGN4 (D), CASP1 (E), ESB1 (F) and SCR (G). See Supplementary Table S1 for the species abbreviations.
Data
Normalized expression of genes in different tissues of tomato.
Data
Cell type-specific expression in tomato conferred by the Solanum lycopersicum and Arabidopsis promoters.
Data
The MYB36a transcript levels in WT and 35S::SlMYB36a roots using qRT-PCR. Asterisks indicate significant differences from WT, ∗∗ P < 0.01, Student’s t test. Values represent the means and error bars indicate SD of the mean from three replicates.
Data
Cell layers in WT, 35S::SlSHRa, and slshra.
Data
Alignment of sequences with Cas9-induced mutations obtained from roots transformed with CRISPR/Cas system for SlSGN3a (A), SlMYB36a (B) and SlSHRa (C). Designed target sequences are labeled in the red boxes. The sequences of mutant lines (line 1, line 2) are shown underneath the wild type (WT). The single guide RNA (sgRNA) is marked with red line a...
Conference Paper
Full-text available
In last few decades, discovery and extensive use of three molecular tools; restriction enzymes, plasmid, and ligase had a significant impact on genetic engineering. It allowed us to cut the genetic material from one source and introduce it to another organism to get the desired traits or results. However, genome editing in precise position was stil...
Article
Full-text available
D), a functional analogue of auxin, is used as an exogenous source of auxin as it evokes physiological responses like the endogenous auxin, Indole-3-acetic acid (IAA). Previous molecular analyses of the auxin response pathway revealed that IAA and 2,4-D share a common mode of action to elicit downstream physiological responses. However, recent find...
Article
Full-text available
High-temperature-mediated adaptation in plant architecture is linked to the increased synthesis of the phytohormone auxin, which alters cellular auxin homeostasis. The auxin gradient, modulated by cellular auxin homeostasis, plays an important role in regulating the developmental fate of plant organs. Although the signaling mechanism that integrate...
Chapter
Temperature stress is one of the major abiotic stresses that limit plant growth and development and crop productivity worldwide. Plant growth and development is also influenced by endogenous factors such as hormones, and under environmentally stressed conditions. Plants adapt themselves through multiple processes, including a change in hormonal res...
Article
Full-text available
Previously, a dysfunction of the SMALL ACIDIC PROTEIN1 (SMAP1) gene was identified as the cause of the anti-auxin resistant1 (aar1) mutant of Arabidopsis (Arabidopsis thaliana). SMAP1 is involved in the response pathway of synthetic auxin, 2,4-dichlorophenoxyacetic acid, and functions upstream of the auxin/indole-3-acetic acid protein degradation s...
Article
Full-text available
The growth hormone auxin regulates essentially all aspects of plant developmental processes under optimum condition. However, as a sessile organism, plants encounter both optimal and non-optimal conditions during their life cycle. Various biotic and abiotic stresses affect the growth and development of plants. Although several phytohormones, such a...
Article
Full-text available
The individual roles of auxin and ethylene in controlling the growth and development of young seedlings have been well studied. In recent years, these two hormones have been shown to act synergistically to control specific growth and developmental processes, such as root elongation and root hair formation, as well as antagonistically in other proce...
Article
Guidelines for submitting commentsPolicy: Comments that contribute to the discussion of the article will be posted within approximately three business days. We do not accept anonymous comments. Please include your email address; the address will not be displayed in the posted comment. Cell Press Editors will screen the comments to ensure that they...
Article
Full-text available
In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis...
Article
Full-text available
To understand the mechanistic basis of cold temperature stress and the role of the auxin response, we characterized root growth and gravity response of Arabidopsis thaliana after cold stress, finding that 8 to 12 h at 4 degrees C inhibited root growth and gravity response by approximately 50%. The auxin-signaling mutants axr1 and tir1, which show a...
Article
Full-text available
Reversible protein phosphorylation is a key regulatory mechanism governing polar auxin transport. We characterized the auxin transport and gravitropic phenotypes of the pinoid-9 (pid-9) mutant of Arabidopsis (Arabidopsis thaliana) and tested the hypothesis that phosphorylation mediated by PID kinase and dephosphorylation regulated by the ROOTS CURL...
Article
Full-text available
The plant cell wall is a dynamic structure that changes in response to developmental and environmental cues through poorly understood signaling pathways. We identified two Leu-rich repeat receptor-like kinases in Arabidopsis thaliana that play a role in regulating cell wall function. Mutations in these FEI1 and FEI2 genes (named for the Chinese wor...
Article
Full-text available
We investigated the role of ethylene and auxin in regulating the growth and morphology of roots during mechanical impedance by developing a new growing system and using the model plant Arabidopsis (Arabidopsis thaliana). The Arabidopsis seedlings grown horizontally on a dialysis membrane-covered agar plate encountered adequate mechanical impedance...
Chapter
Full-text available
This chapter contains section titled:
Article
Full-text available
To isolate novel auxin-responsive mutants in Arabidopsis (Arabidopsis thaliana), we screened mutants for root growth resistance to a putative antiauxin, p-chlorophenoxyisobutyric acid (PCIB), which inhibits auxin action by interfering the upstream auxin-signaling events. Eleven PCIB-resistant mutants were obtained. Genetic mapping indicates that th...
Article
Full-text available
To understand how auxin regulates root growth, we quantified cell division and elemental elongation, and examined actin organization in the primary root of Arabidopsis thaliana. In treatments for 48 h that inhibited root elongation rate by 50%, we find that auxins and auxin-transport inhibitors can be divided into two classes based on their effects...
Article
Full-text available
P23k is a monocot-unique protein that is highly expressed in the scutellum of germinating barley seed. Previous expression analyses suggested that P23k is involved in sugar translocation and/or sugar metabolism. However, the role of P23k in barley physiology remains unclear. Here, to elucidate its physiological function, BSMV-based virus-induced ge...
Article
Full-text available
2,4-dichlorophenoxyacetic acid (2,4-D), a chemical analogue of indole-3-acetic acid (IAA), is widely used as a growth regulator and exogenous source of auxin. Because 2,4-D evokes physiological and molecular responses similar to those evoked by IAA, it is believed that they share a common response pathway. Here, we show that a mutant, antiauxin res...
Article
Full-text available
We have investigated the subcellular localization, the domain topology, and the amino acid residues that are critical for the function of the presumptive Arabidopsis thaliana auxin influx carrier AUX1. Biochemical fractionation experiments and confocal studies using an N-terminal yellow fluorescent protein (YFP) fusion observed that AUX1 colocalize...
Article
Full-text available
p-Chlorophenoxyisobutyric acid (PCIB) is known as a putative antiauxin and is widely used to inhibit auxin action, although the mechanism of PCIB-mediated inhibition of auxin action is not characterized very well at the molecular level. In the present work, we showed that PCIB inhibited BA::beta-glucuronidase (GUS) expression induced by indole-3-ac...
Article
Chromosaponin I (CSI), a gamma-pyronyl-triterpenoid saponin isolated from pea and other leguminous plants, modulates several developmental processes of plant roots and activates the sugar taste receptor cells in blowflies. CSI is a unique saponin for its reducing power and biological activities in both plants and insects. In the present paper, we d...
Article
Full-text available
The plant hormones auxin and ethylene have been shown to play important roles during root hair development. However, cross talk between auxin and ethylene makes it difficult to understand the independent role of either hormone. To dissect their respective roles, we examined the effects of two compounds, chromosaponin I (CSI) and 1-naphthoxyacetic a...
Article
Full-text available
Chromosaponin I (CSI) is a g-pyronyl-triterpenoid saponin (Fig. 1), isolated from pea (Tsurumi et al. 1991, 1992) and other leguminous plants (Kudou et al. 1992, 1993; Massiot et al. 1992). Although CSI is present at a relatively high concentration (2 -3 mM) in the meristematic tissue of pea seedlings (Tsurumi et al. 1992), no distinct physiologica...
Article
Full-text available
The requirement of auxin for the ethylene-mediated growth response in the root of Arabidopsis thaliana seedlings was investigated using two ethylene-resistant mutants, aux1-7 and eir1-1, whose roots have been shown to have a defect in the auxin influx and efflux carriers, respectively. A 50% inhibition of growth (I(50)) was achieved with 0.84 micro...
Article
Full-text available
We have found that chromosaponin I (CSI), a gamma-pyronyl-triterpenoid saponin isolated from pea (Pisum sativum L. cv Alaska), specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. Application of 60 microM CSI disrupts the vertically oriented elongation of wild-type roots grown on agar plates but orie...
Article
Full-text available
We have found that chromosaponin I (CSI), a-pyronyl-triterpenoid saponin isolated from pea (Pisum sativum L. cv Alaska), specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. Application of 60 m CSI disrupts the vertically oriented elongation of wild-type roots grown on agar plates but orients the elo...
Article
Full-text available
Chromosaponin I (CSI), a triterpenoid saponin isolated from pea, stimulates the growth of roots in Arabidopsis thaliana seedlings on wetted filter paper in the light for 14 d. The growth rates of roots in Columbia (Col) and Landsberg erecta (Ler) wild-types were 0.92 and 0.26 mm d−1 respectively, and they were accelerated to 3.46 (Col) and 2.20 (Le...
Article
The stimulatory effects of chromosaponin I (CSI) on the growth of roots in etiolated Arabidopsis thaliana (ecotype Columbia) seedlings were compared with those of brassinolide (BR) bearing a structural similarity to CSI. The optimum concentrations of CSI and BR were 100 μmol/L and 1 nmol/L, respectively. The roots grew curved on wetted filter paper...

Questions

Question (1)
Question
I am interested in both pay per sample basis facility and any lab interested in collaborative work.

Network

Cited By