
Abhishek SrivastavaNorthwestern University | NU · Department of Radiology
Abhishek Srivastava
Bachelor of Technology
About
19
Publications
1,219
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
86
Citations
Citations since 2017
Introduction
I predominantly use deep learning and machine learning techniques for various tasks like medical image segmentation, medical image classification, face hallucination, writer identification, uncertainty estimation
Additional affiliations
May 2020 - May 2022
Education
July 2017 - June 2021
Publications
Publications (19)
Head and Neck (H &N) organ-at-risk (OAR) and tumor segmentations are an essential component of radiation therapy planning. The varying anatomic locations and dimensions of H &N nodal Gross Tumor Volumes (GTVn) and H &N primary gross tumor volume (GTVp) are difficult to obtain due to lack of accurate and reliable delineation methods. The downstream...
Head and Neck (H\&N) organ-at-risk (OAR) and tumor segmentations are essential components of radiation therapy planning. The varying anatomic locations and dimensions of H\&N nodal Gross Tumor Volumes (GTVn) and H\&N primary gross tumor volume (GTVp) are difficult to obtain due to lack of accurate and reliable delineation methods. The downstream ef...
Colonoscopy is a gold standard procedure but is highly operator-dependent. Efforts have been made to automate the detection and segmentation of polyps, a precancerous precursor, to effectively minimize missed rate. Widely used computer-aided polyp segmentation systems actuated by encoder-decoder have achieved high performance in terms of accuracy....
Accurate segmentation of organs-at-risks (OARs) is a precursor for optimizing radiation therapy planning. Existing deep learning-based multi-scale fusion architectures have demonstrated a tremendous capacity for 2D medical image segmentation. The key to their success is aggregating global context and maintaining high resolution representations. How...
The performance of facial super-resolution methods relies on their ability to recover facial structures and salient features effectively. Even though the convolutional neural network and generative adversarial network-based methods deliver impressive performances on face hallucination tasks, the ability to use attributes associated with the low-res...
The detection and removal of precancerous polyps through colonoscopy is the primary technique for the prevention of colorectal cancer worldwide. However, the miss rate of colorectal polyp varies significantly among the endoscopists. It is well known that a computer-aided diagnosis (CAD) system can assist endoscopists in detecting colon polyps and m...
Video capsule endoscopy is a hot topic in computer vision and medicine. Deep learning can have a positive impact on the future of video capsule endoscopy technology. It can improve the anomaly detection rate, reduce physicians' time for screening, and aid in real-world clinical analysis. Computer-Aided diagnosis (CADx) classification system for vid...
Video capsule endoscopy is a hot topic in computer vision and medicine. Deep learning can have a positive impact on the future of video capsule endoscopy technology. It can improve the anomaly detection rate, reduce physicians' time for screening, and aid in real-world clinical analysis. CADx classification system for video capsule endoscopy has sh...
The detection and removal of precancerous polyps through colonoscopy is the primary technique for the prevention of colorectal cancer worldwide. However, the miss rate of colorectal polyp varies significantly among the endoscopists. It is well known that a computer-aided diagnosis (CAD) system can assist endoscopists in detecting colon polyps and m...
Text independent writer identification is a challenging problem that differentiates between different handwriting styles to decide the author of the handwritten text. Earlier writer identification relied on handcrafted features to reveal pieces of differences between writers. Recent work with the advent of convolutional neural network, deep learnin...
Methods based on convolutional neural networks have improved the performance of biomedical image segmentation. However, most of these methods cannot efficiently segment objects of variable sizes and train on small and biased datasets, which are common for biomedical use cases. While methods exist that incorporate multi-scale fusion approaches to ad...
Colorectal cancer is one of the major cause of cancer-related death around the world. High-quality colonoscopy is considered mandatory for resecting and preventing colorectal cancers. In the recent past, various technological advances have been made towards improving the quality of colonoscopy. Despite the technical advancement , some polyps are fr...
Medical image segmentation can provide detailed information for clinical analysis which can be useful for scenarios where the detailed location of a finding is important. Knowing the location of a disease can play a vital role in treatment and decision-making. Convolutional neural network (CNN) based encoder-decoder techniques have advanced the per...
Medical image segmentation can provide detailed information for clinical analysis which can be useful for scenarios where the detailed location of a finding is important. Knowing the location of disease can play a vital role in treatment and decision-making. Convolutional neural network (CNN) based encoder-decoder techniques have advanced the perfo...
Colonoscopy is a gold standard procedure but is highly operator-dependent. Efforts have been made to automate the detection and segmentation of polyps, a precancerous precursor, to effectively minimize missed rate. Widely used computer-aided polyp segmentation systems actuated by encoder-decoder have achieved high performance in terms of accuracy....
Text independent writer identification is a challenging problem that differentiates between different handwriting styles to decide the author of the handwritten text. Earlier writer identification relied on handcrafted features to reveal pieces of differences between writers. Recent work with the advent of convolutional neural network, deep learnin...
The performance of facial super-resolution methods relies on their ability to recover facial structures and salient features effectively. Even though the convolutional neural network and generative adversarial network-based methods deliver impressive performances on face hallucination tasks, the ability to use attributes associated with the low-res...
Methods based on convolutional neural networks have improved the performance of biomedical image segmentation. However, most of these methods cannot efficiently segment objects of variable sizes and train on small and biased datasets, which are common in biomedical use cases. While methods exist that incorporate multi-scale fusion approaches to add...
The novel coronavirus disease 2019 (Covid-19) has been declared as a pandemic by the World Health Organization which in the current global scenario has brought everything from economy to education to a halt. Due to its rapid spread around the globe, even the most developed countries are facing difficulties in diagnosing Covid-19. For efficient trea...