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Abstract: Hepatocellular carcinoma (HCC) is the primary liver cancer that has shown a high inci-
dence and mortality rate worldwide among several types of cancers. A large variety of chemothera-
peutic agents employed for the treatment have a limited success rate owing to their limited site-spe-
cific drug targeting ability. Thus, there is a demand to develop novel approaches for the treatment
of HCC. With advancements in nanotechnology-based drug delivery approaches, the challenges of
conventional chemotherapy have been continuously decreasing. Nanomedicines constituted of li-
pidic and polymeric composites provide a better platform for delivering and opening new pathways
for HCC treatment. A score of nanocarriers such as surface-engineered liposomes, nanoparticles,
nanotubes, micelles, quantum dots, etc., has been investigated in the treatment of HCC. These nano-
carriers are considered to be highly effective clinically for delivering chemotherapeutic drugs with
high site-specificity ability and therapeutic efficiency. The present review highlights the current fo-
cus on the application of nanocarrier systems using various ligand-based receptor-specific targeting
strategies for the treatment and management of HCC. Moreover, the article has also included infor-
mation on the current clinically approved drug therapy for hepatocellular carcinoma treatment and
updates of regulatory requirements for approval of such nanomedicines.
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1. INTRODUCTION

Liver  diseases  are  one  of  the  leading  causes  of  illness
and death worldwide. Each year, 2 million deaths occur due
to liver diseases [1], including liver fibrosis, hepatitis (A, B,
and C), fatty liver, autoimmune hepatitis, and hepatocellular
carcinoma (HCC) [2-4]. Liver tumors are frequent in occur-
rence and third in the most leading cause of cancer-related
death  worldwide  [5].  Amongst  various  types  of  liver  can-
cers, hepatic carcinoma is the most common, which is origi-
nated from the hepatocytes [6]. In other cases, secondary liv-
er cancers are not originated from the liver but are formed
due to metastasis from other parts of the body. Moreover, in-
trahepatic cholangiocarcinoma [7] and hepatoblastoma are
other less common types of hepatic cancers reported in the
literature [8, 9].

HCC is a very common form of malignant liver cancer.
It is the sixth most common cancer in the world, accounting
for more than 8,40,000 case deaths annually [10-12]. About
90% of HCC developed in patients with major risk factors
are primarily infected with chronic hepatitis (type B and C
viruses), liver cirrhosis, heavy alcohol consumption, smok-
ing, non-alcoholic fatty liver, obesity, tobacco consumption,
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and diabetes [13-15]. There are several conventional thera-
pies available for HCC [16], surgical resection [17], ablation
[18], transarterial chemoembolization [19], liver transplanta-
tion [20], radiation therapy [16], chemotherapy and combina-
torial approaches [21].

Surgical interventions facilitating tumor recurrence by lo-
cal metastasis [22], heat sink effect of ablation [23], compli-
cations of transarterial chemoembolization [24], immunosup-
pressive therapy side effect due to transplantation [25], hep-
atic  toxicity  of  radiotherapy  [26],  and  chemoresistance  in
HCC toward chemotherapy [27] are just a few examples of
the current conventional strategies used for the treatment of
HCC. Besides, these conventional therapies are also associat-
ed  with  many  drawbacks  like  high  treatment  cost,  lack  of
safety, poor patient compliance, and chances of tumor recur-
rence.

Conventional chemotherapy treatment, in particular, has
several disadvantages, such as the inability to provide a suffi-
cient  concentration of  therapeutic  agents  for  liver  disease,
low targeting efficiency, poor tumor penetration, and/or the
contribution  to  undesirable  effects  with  systemic  toxicity
[28].  In  order  to  avoid the  serious  and intolerable  side-ef-
fects of the chemotherapy on normal tissues, the idea of ex-
ploration of novel tumor-targeting systems has typically tak-
en momentum and greatly  encourages  the  development  of
nanocarriers with targeting ability to achieve better efficacy
with negligible undesirable effects [9].  The administration
of a liver-specific drug delivery system helps in reducing the
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side effects by reducing the distribution of the drugs to the
non-target organs and increases the therapeutic efficacy by
simultaneously increasing the drug levels in the target cells
[29, 30].

Recently, with the rapid progress in nanotechnology de-
velopment, it has been confirmed that drug delivery systems
based on nanocarriers such as liposomes, polymeric micelle,
quantum dote, dendrimers, carbon nanotube, nanoshells, and
nanoparticles  (Fig.  1).  These  systems  have  demonstrated
great potential in the treatment of cancer by increasing the ef-
fectiveness of the drugs, reducing systemic toxicity, improv-
ing dissolution of the drugs, increasing stability and release
behavior in order to achieve the best therapeutic efficiency
[31-33].

Fig. (1). Examples of nanocarriers drug delivery system for cancer
targeting [34]. (A higher resolution / colour version of this figure is
available in the electronic copy of the article).

The present review highlights various pathways used for
targeting drug-loaded nanocarriers to liver carcinoma with
some of the receptors specifically overexpressed on the sur-
face of hepatocytes. Besides, the review focuses on the re-
cent developments in the domain of nanocarriers with vari-
ous functional modifications for drug targeting to HCC.

2. Various approaches used for liver targeting

The effective delivery of therapeutics to the liver can be
obtained by passive targeting and active targeting approach-
es that increase the accumulation of the drugs at the targeted
site, consequently, it may limit the adverse effects and im-
proves the therapeutic efficacy of drug therapy [35] (Fig. 2).
Passive targeting only increases the local  concentration of
the drugs within the tumor tissues by the enhanced permea-
bility and retention effect (EPR) [36, 37]. Active targeting
can be achieved by surface modification of the nanocarriers
with specific targeting ligands such as proteins, antibodies,

peptides, and carbohydrates, which has the affinity to bind a
specific-site on the liver cells and facilitates endocytotic up-
take into the liver cells [4].

2.1. Passive Drug Targeting

Accumulation  of  nanocarriers  at  specific  body  sites  is
possible due to certain key features of the tumor microenvi-
ronment.  Hence,  such  targeting  is  also  known  as  passive
drug  targeting.  The  tumor  microenvironment  differs  from
normal tissue by features like the presence of highly vascu-
lar structure, oxygenation, pH, perfusion, and metabolic ac-
tivity,  which  facilitate  the  accumulation  of  the  drugs  and
nanocarriers in it [39]. These characteristic features facilitate
the  passive  accumulation  of  nanocarrier  therapeutics.  The
presence of fenestration in the endothelial wall of sinusoids
capillaries of the liver and the absence of basal lamina fa-
vors the passive accumulation of nanocarriers therapeutics
[40]. Nanocarriers with a size less than 200 nm can release
through the sinusoidal fenestrations and facilitate passive liv-
er  targeting.  Tumor-specific  accumulation,  also  called  the
EPR effect, plays a significant role in the passive accumula-
tion of the drugs and nanocarriers due to their extravasation
through the leaky vasculature of the tumor (Fig. 3) [41]. The
permeability and extravasation of macromolecules through
the leaky tumor vasculature are enhanced by the EPR effect
[42], and drainage of tumor tissues through an impaired lym-
phatic system is favored by retention of the nanostructured
therapeutic carriers [43].

2.2. Active Drug Targeting

Drug  delivery  to  the  liver  by  an  active  targeting  ap-
proach is a promising strategy for localizing the drugs to the
tumor site. Active drug targeting is achieved by surface engi-
neering  of  the  nanocarriers  with  receptor-specific  ligands
such as peptides [45], carbohydrates [46], proteins [47], and
antibodies [48], which specifically bind to the overexpressed
receptors on the tumor cells [49]. Various surface receptors
expressed on hepatocytes include asialoglycoprotein, glycyr-
rhizic  acid,  transferrin,  folate,  and  integrin  receptors  [40,
50]. The targeting ligands facilitate the endocytotic uptake
of drugs by receptors into the liver tumor cells, therefore, in-
crease selective targeting of the chemotherapeutics to the tu-
mor by avoiding undesirable side-effects [51].

3.  LIGAND-RECEPTOR  BASED  ACTIVE  TARGET-
ING OF HCC TREATMENT

Ligand-receptor active targeting plays a critical role in
the internalization of the drugs to the hepatocyte cells and
subsequent endocytosis of anticancer drugs. It is one of the
most  common  strategies  used  for  targeting  HCC,  which
helps improve the targeting ability. Some receptors that are
overexpressed on HCC cells include asialoglycoprotein re-
ceptor,  folate  receptor,  transferrin  receptor,  glycyrrhetinic
acid receptor and, integrin receptor, thus various ligands that
can be attached to such receptors on the surface of hepatoma
cells were used to design nanocarrier systems for effective
targeting [52]. In this part of the review, a summary of the
latest investigations carried out by the researchers for utili-
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Fig. (2). Illustrative diagram for passive and active targeting to tumor tissues [38]. (A higher resolution / colour version of this figure is avail-
able in the electronic copy of the article).

Fig. (3). Enhanced permeability and retention effect on tumor cells (EPR effect) [44]. (A higher resolution / colour version of this figure is
available in the electronic copy of the article).

zing ligand-receptor mediated active targeting of chemother-
apies for targeting of HCC is given in Table 1.

3.1. Asialoglycoprotein Receptors (ASGPR)

Since asialoglycoprotein receptors are present on hepato-
cytes and other non-hepatic cells, it is strongly expressed by
the hepatocytes [4]. Various ligands such as asialofeutin, gly-
coproteins,  carbohydrates,  pullulan,  and  galactoside  have
been  used  to  achieve  the  specific  liver  ASGPR  targeting

[53].  Yousef  et  al.  [54]  reported  the  ability  of  galac-
tosamine-anchored polyamidoamine dendrimers (PAMAM-
s)  loaded  with  a  potent  anticancer  agent,  curcumin,  to
achieve highly selective cellular  uptake through the ASG-
PR-mediated endocytosis process, which improved the deliv-
ery of curcumin into the HCC cells. In another report, Xu et
al. [55] prepared the solid lipid nanoparticles (SLN) of doce-
taxel-loaded with galactosylated dioleoylphosphatidylethano-
lamine,  which  showed  higher  cytotoxicity  of  SLN  on  the
BEL7402 cell line over plain docetaxel (Taxotere®) and
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Table 1. Summary of receptor-ligand based active targeting delivery systems for HCC to enhance the targeting effect.

Receptor Ligands Delivery Drug References

Asialoglyco-protien recep-
tor

Galactosamine Dendrimer Curcumin [54]

Galactosylateddi-oleoylphosphatidyl- ethanolamine Solid lipid nanoparticles Docetaxel [55]

Galactosamine Nanoparticles Paclitaxel [56]

Folate receptor

Folate PEGylated-PLGA nanoparticles Sorafenib [59]

Folate Micelles Doxorubicin [60]

Folate
Superparamagnetic iron oxide nano-

particles
Sorafenib [61]

Transferrin receptor
Transferrin Polymeric nanoparticles Cisplatin/ Doxorubicin [65]

Transferrin Conjugate Doxorubicin [66]

Glycyrrhetinic acid receptor

Glycyrrhetinic acid-dextran moiety Dextran-based nanoscale Curcumin [70]

Glycyrrhetinic acid Supramolecular gel Curcumin [71]

Glycyrrhetinic acid Alginate nanoparticles Doxorubicin [72]

Glycyrrhetinic acid Micelles. Doxorubicin [73]

Integrin receptor RGD peptide (Arg-Gly-Asp) Liposome Paclitaxel [78]

enhanced  cellular  uptake  and  accumulation  of  the  drug  in
the  hepatoma cells.  Similarly,  Liang et  al.  [56]  developed
the paclitaxel-loaded self-assembled nanoparticles conjugat-
ed  with  galactosamine  (Gal-P/NPs).  In  vitro  cell  culture
studies of Gal-P/NP on the HepG2 cells revealed compara-
tive  inhibition (p<0.05)  in  cell  growth as  compared to  the
plain paclitaxel (Phyxols).

3.2. Folate Receptors

These receptors are highly overexpressed on the surface
of liver carcinoma cells, and their natural ligand is folic acid
that has been used to target these receptors. Folate-conjugat-
ed drugs bind specifically to folate receptors and promote in-
ternalization of the drugs that bind with the folate receptors
and  uptake  by  receptor-mediated  endocytosis  mechanism
[57]. The attached drug molecules can be released into the
target tumor cells, where they can induce their cytotoxic ac-
tivity [58]. Li et al. [59] developed the folate-PEGylated PL-
GA  nanoparticles  co-encapsulated  with  sorafenib  (SRF/-
FA-PEG-PLGA NP) for targeting HCC. The nanoparticles
showed  sustained  release  and  improved  cellular  uptake  of
the drug during the in vitro study on Bel-7420 cancer cells.
Besides, these nanoparticles effectively suppressed the prolif-
eration of  tumor cells  and improved anticancer  activity  as
compared to the free drug. Another study by Niu et al. [60]
developed the doxorubicin-loaded polymeric micelles func-
tionalized with folate ligand. In vitro cellular uptake study
showed a controlled release profile  of  doxorubicin release
and enhanced cytotoxicity of micelles on the Bel-7402 cells.
Similarly, Zhang et al. [61] developed folic acid functional-
ized polymeric micelles-loaded with superparamagnetic iron
oxide nanoparticles  and sorafenib for  enhanced anticancer
activity against HCC. The developed nanoparticles exhibited
superior  inhibitory  activity  and  in  vitro  apoptosis  rate  on
HepG2 cells than nontargeted micelles.

3.3. Transferrin Receptor (TfR)

These  receptors  are  the  cell  surface  receptors  overex-
pressed  on  many  types  of  cancers,  including  HCC  [62].

Therefore,  this  carrier  protein can be utilized as  a  compo-
nent of several carrier systems for chemotherapeutic agents
[63]. TfR receptor expression on HCC is 100-times higher
than  the  normal  cells  [64].  Hepatoma  cells  overexpressed
with transferrin receptors have become promising targets for
effective chemotherapy against HCC. In a study, Zhang et
al. [65] prepared transferrin (Tf) modified polymeric nano-
particles for co-administration of cisplatin (DDP) and dox-
orubicin (DOX) for the treatment of hepatic carcinoma. The
nanoparticles cytotoxicity assessed on the HepG2 cell line
showed  a  better  antitumor  effect.  Tf-DDP/DOX-NPs
showed exceptional antitumor activity due to the combined
action of two drugs and the ability to actively target the tu-
mor cells through the Tf ligand. Similarly, Szwed et al. [66]
demonstrated that doxorubicin-transferrin conjugated nano-
particles showed higher cytotoxicity on HepG2 cells as com-
pared to the free doxorubicin and induced greater oxidative
stress.

3.4. Glycyrrhetinic Acid Receptor (GaR)

These receptors are overexpressed on the surface of hepa-
tocytes and their ligand glycyrrhetinic acid has been widely
used  to  target  drugs  by  different  nanocarrier  delivery  sys-
tems, including micelles, nanoparticles, and liposomes [47,
67, 68] Tian et al. [69] reviewed the role of GA and nanocar-
riers modified with GA as an efficient tool for hepatocyte tar-
geted delivery for the treatment of HCC. Anirudhan and Bi-
nusreejayan [70] developed a dextran-based nanoscale drug
carrier (GHDx) for curcumin delivery. Liver-directed curcu-
min is loaded in GHDx. In vitro cytotoxicity study on Hep-
G2 and L929 cells demonstrated that GHDx-loaded with cur-
cumin  exhibited  high  toxicity  with  sustained  drug  release
profile to liver cells. Chen et al. [71] formulated a glycyrrhe-
tinic acid-modified curcumin supramolecular gel, which ex-
hibited good water solubility and sustained release delivery
of curcumin in buffer solution under in vitro studies. In vivo
studies showed enhanced cellular uptake and better inhibi-
tion ability on HepG2 cells. Zhang et al. [72] prepared dox-
orubicin-loaded glycyrrhetinic acid-modified alginate nano-
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particles, which revealed significantly higher concentration
in  the  liver  tumor  induced  in  mice  than  nonglycyrrhetinic
acid-modified doxorubicin nanoparticles and plain doxoru-
bicin. Similarly, in another study, Tain et al. [73] prepared
doxorubicin-loaded  glycyrrhetinic  acid-modified  sulfated
chitosan micelles, which demonstrated excellent in vivo in-
hibitory  effect  against  HepG2  cells.  The  antitumor  effect
was  extremely  high  with  doxorubicin-loaded  with  the  mi-
celles than surface unmodified micelles.

3.5. Integrin Receptor (IgR)

These receptors are found in most types of human can-
cer, including HCC. Various types of integrins, in particular,
α1β1, α5β1, and α9β1, are expressed on the surface of nor-
mal hepatocyte to maintain a normal cell-matrix connection
[74, 75]. In hepatocyte tumor cells, integrins α3β1 and α6β4
are  overexpressed  [76].  The  RGD  peptide  (Arg-Gly-Asp)
acts as a targeting ligand on the surface of nanocarrier sys-
tems to deliver an antitumor drug to hepatocytes [77]. Chen
et al. [78] developed integrin receptor-targeted RGD-modi-
fied liposomal paclitaxel formulation by conjugating a spe-
cific Arg-Gly-Asp (RGD) ligand with 1,2-distearoyl-phos-
phatidylethanol-aminepolyethyleneglycol-2000.  The  study
demonstrated the high efficacy of RGD-LP-PTX being easi-
ly  uptaken  by  HepG2  cells  than  plain  liposomes  without
RGD. In vitro evaluation of the formulation indicated inhibi-
tion of tumor growth in HepG2-bearing mice by RGD-LP-P-
TX formulation than LP-PTX or free PTX.

4.  DIFFERENT NANOTECHNOLOGY-BASED CAR-
RIERS FOR HCC TARGETING

Recently, innovation in the field of nanotechnology has
exploited different novel nanotechnology approaches for the
diagnosis and management of the HCC [79]. Novel nanocar-
riers are highly helpful to overcome the unwanted side-ef-
fects of chemotherapeutic agents by improving the pharma-
cokinetic profile of the drug by specific accumulation in the
tumor  site  for  enhancing  the  treatment  effectiveness  [80,
81]. In this part of the review, we provide a brief overview
of the most recent examples of novel targeted delivery sys-
tems using various types of nanocarriers for delivering che-
motherapeutic agents for HCC treatment [82]. Some of the
extensively investigated nanocarriers for cancer treatment in-
clude nanoparticles, polymeric micelles, liposomes, carbon
nanotubes, dendrimers, quantum dots, nanofibers, and lipid
nanoparticulate  carriers.  Such  nanosystems  have  shown
great potential  in liver cancer chemotherapy by enhancing
the  performance  of  the  existing  drugs,  reducing  their  sys-
temic  side-effects,  and  increasing  therapeutic  efficacy
[83-85].  Selective  instances  of  the  nanocarriers  used  for
drug targeting to the HCC in literature is reported in this sec-
tion of the manuscript (Table 2).

4.1. Nanoparticle-based Nanocarriers

Nanoparticles  are  small  colloidal  particles  with  a  size
range of 1 to 100 nm [86]. A wide range of NPs have been
developed to target  drugs,  especially polymeric nanoparti-

cles, ceramic nanoparticles, metal nanoparticles, lipid nano-
particles,  and carbon-based nanoparticles [87, 88].  Antitu-
mor agents are either captured in or and adsorbed on the sur-
face of NPs in order to efficiently transport the anticancer
agent to hepatocytoma cells [89]. Modifying the surface of
NPs can provide specific targeting ligands that allow NPs to
control drug delivery to HCC with better therapeutic effica-
cy. Nanoparticles based delivery of anticancer drugs can im-
prove solubility, reduce the dose and frequency of therapy
and,  above  all,  reduce  the  undesirable  toxicities  accom-
panied by antitumor drugs [90]. In addition, the delivery of
nanoparticles, a combination of different anticancer drugs,
can be loaded, making it a promising tool for the treatment
of HCC.

Toma et al. [91] prepared superparamagnetic iron oxide
nanoparticles  (SPIONs)  coated  with  polyvinyl  alcohol
(PVP)  for  delivery  of  sorafenib,  which  exhibited  a  higher
loading  capacity  for  sorafenib  and  long-term  drug  effect.
The cytotoxicity of sorafenib with PVA/SPIONs has shown
greater  efficacy  against  cancer  than  that  of  free  sorafenib
alone.  Karimia  et  al.  [92]  developed  κ-carrageenan-cross-
linked  magnetic  chitosan  nanoparticles  of  sunitinib  with
high drug loading efficiency and a controlled release profile
for effective management of HCC. Gao et al. [93] evaluated
hollow alumina nanoparticles functionalized with hyaluronic
acid loaded with paclitaxel (PAC) (HMHA-NP). In vitro cel-
lular uptake of PAC-HMHA-NP was significantly high and
in  vivo  studies  have  shown  better  antitumor  activity  by
PAC-HMHA-NP  than  nonfunctionalized  PAC-MHA-NP
and  pure  PAC.

Zhao R et al. [94] prepared a pH-sensitive mesoporous
silica nanoparticle for co-administration of sorafenib and ur-
solic acid. The prepared nanoparticles were decorated with
chitosan and lactobionic acid (MSN-CS-LA nanocarriers) to
target ASGPR in hepatocellular carcinoma cells. The study
showed better bioavailability of the drug and effective target-
ing and synergistic cytotoxicity. In vivo, compared with UA
or SO alone, the nanocomplex significantly reduced the tu-
mor burden in hepatocellular carcinoma (HCC). Mathilde et
al.  [95]  developed nanoparticles  of  human serum albumin
loaded with doxorubicin with high loading capacity (88%)
to  inhibit  the  in  vivo  growth  of  human  hepatocarcinoma
cells; the study showed significant growth inhibition. W. Ni
et al. [96] prepared nanoparticle of biotin-/lactobionic acid
modified  poly  (ethylene  glycol)-poly  (lactic-co-glycolic
acid)-poly (ethylene glycol) (BLPP) copolymer for co-deliv-
ery of curcumin and 5- fluorouracil to enhance the treatment
of hepatocellular carcinoma. The cytotoxicity study on ani-
mals and the hepatoma Hep G2 cell line showed higher cellu-
lar uptake and a synergistic anticancer effect. W. Gao et al.
[97] prepared human serum albumin (HAS) nanoparticle sur-
face modified with grafted folic acid for loading sorafenib
(FA-HAS-SRF-NPs).  In  vitro  study  in  the  hepatocellular
BEL-7402 showed enhanced cytotoxicity and increased safe-
ty in the normal liver LO2 cells. In vivo, the prepared nano-
particles  showed  effective  antitumor  activity  toward  nude
mice bearing xenograft tumors without systemic toxicity.
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Table 2. Nanocarrier system-based drug delivery for targeting HCC.

Nanocarrier System Drug Finding References

Superparamagnetic iron oxide nano-
particles

Sorafenib Higher encapsulation efficiency, sustained release and better anticancer efficiency. [91]

Magnetic chitosan nanoparticles Sunitinib Sustained and controlled release. [92]

Mesoporous hollow alumina nanopar-
ticles

Paclitaxel High cellular uptake and better antitumor effect. [93]

Mesoporous silica nanoparticles
Sorafenib and ursolic

acid,
Enhanced bioavailability of the drugs and efficient targeting and synergistic cyto-

toxicity.
[94]

Human serum albumin nanoparticles Doxorubicin
Significant in vivo growth inhibition in multicellular tumor spheroid models

(MCTS) of human hepatocarcinoma cells.
[95]

Nanoparticles
Curcumin and 5- fluo-

rouracil
Higher cellular uptake and synergistic anticancer effects on the hepatoma cell line

Hep G2.
[96]

Human serum albumin nanoparticle Sorafenib
Enhanced cytotoxicity against hepatocellular BEL-7402 cells and increased the

safety for normal liver LO2 cells.
[97]

Liposomes Doxorubicin Better cytotoxicity and pharmacokinetics profile were obtained. [105]

Liposomes
Doxorubicin and lo-

vastatin,
Higher growth inhibition and reduced toxicity in H22 mice hepatoma cell. [106]

Single walled carbon nanotubes Doxorubicin Enhanced cytotoxicity in the HCC cell line SMMC-7721. [110]

Carbon nanotubes Doxorubicin More efficient tumor targeting and higher cellular uptake in HepG2 cells. [111]

PEGylated solid lipid nanoparticles Sorafenib
Superior cytotoxicity, intracellular uptake and apoptotic activities on HepG2 cells.
In vivo studies in BALB/c mice show superior pharmacokinetic profile and better

targeting of the liver.
[117]

Nanostructured lipid carriers Paclitaxel Better cytotoxicity and pharmacokinetics profile were obtained. [118]

Nanostructured lipid carriers Sorafenib Enhanced in vitro growth inhibition. [119]

Polymeric micelles Doxorubicin
Higher cellular uptake and cytotoxicity in HepG2 cell lines. In vivo studies in or-
thotopic H22 tumor-bearing mice show stronger tumor inhibition of GA-GEL-2

micelles.
[123]

Micelles Sorafenib
Improved water solubility, sufficient uptake of sorafenib by Hep G2-Luc tu-

mor-bearing mice and higher tumor growth inhibition.
[124]

Poliamidoamine dendrimer Sorafenib
Higher uptake ability of dendrimer in ASGPR expressing the hepatoma cell line

HepG2. Superior and long-lasting antitumor activity.
[128]

Dendrimers Curcumin
Selective high cellular uptake via ASGPR mediated endocytosis and significantly

enhanced the delivery of curcumin into the HCC cell lines.
[129]

4.2. Liposome Based Nanocarriers

Liposomes are a colloidal nanovesicle with phospholipid
bilayer membrane, which have the ability to encapsulate vari-
ous hydrophilic anticancer agents in their aqueous core and
hydrophobic  cytotoxic  agents  in  their  hydrophobic  outer
membrane [98]. Liposomes are effective nanocarriers for de-
livering  many  therapeutic  drugs.  They  are  biocompatible,
biodegradable, and, because of their non-immunogenic prop-
erties, have a safe and effective therapeutic potential for clin-
ical applications [99]. Many liposomal formulations of anti-
neoplastic chemotherapy drugs have been approved for clini-
cal use and are commercially available on the market, such
as,  Doxil®  doxorubicin  encapsulated  in  PEG-liposome,
which is the first nano-drug product approved by FDA for
clinical  use  [100].  PEGylated  liposome  has  been  widely
used as a  nanocarrier  to improve the effectiveness of  che-
motherapy and is clinically effective with reduced toxicity
[89]. Recently, research works focus on surface engineering
by modifying the surface with ligands with different functio-
nal groups to achieve ligand binding. Targeted ligands en-
able specific targeting of tumor sites by targeting the lipo-

some towards specific receptors that are overexpressed in he-
patoma  cells,  like  folate  receptor  [101],  CD-44  receptor
[102],  and  transferrin  receptor  [103,  104].

Shah et al. [105] prepared doxorubicin-loaded palmitoy-
lated arabinogalactan (PAG) liposomes. In vitro cytotoxicity
study in HepG2 cell lines showed higher antitumor activity
by PAG liposomes as compared to the non-PAG liposomes.
A better pharmacokinetic profile was observed by PAG lipo-
somes as compared to the non-PAG liposomes. T. Wang et
al. [106] prepared liposome for co-delivery of doxorubicin
and lovastatin. The in vivo study on H22 mice model mice
hepatoma demonstrated that the co-loaded Doxorubicin-Lo-
vastatin liposomes effectively inhibit the growth of the tu-
mor with reducing toxicity.

4.3. Carbon Nanotube-based Nanocarriers

Carbon  nanotubes  are  cylindrical  hydrophobic  tubes
made of carbon atoms with a diameter of approximately 1-4
nm  and  length  1-100  nm.  Depending  on  the  number  of
graphene layers, nanotube can be single-walled nanotube or
multiwalled carbon nanotubes [107]. Carbon nanotubes are
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Table 3. FDA approved drug for liver cancer.

Drug Developed by Line Therapy Target References

Sorafenib (Nexavar) Bayer 1 Multiple tyrosine kinase inhibitor, PDGF- α, β, VEGFR-1, 2, and 3. [135]

Cabozantinib
(Cabometyx)

Exelixis Ini. 2
Multiple tyrosine kinase inhibitor,
c-Met,VEGFR2,AXL and RET.

[136]

Regorafenib
(Stivarga)

Bayer 2 Multikinase inhibitor VEGFR2-TIE2. [137, 138]

Lenvatinib
(Lenvima)

Eisai 1 Multiple kinase inhibitors against the VEGFR1, 2, and 3. [139]

Ramucirumab (Cyramza) Eli Lilly 2 VEGFR2 inhibitor. [140]

Nivolumab
(Opdivo)

Bristol-Myers Squibb 2 PD-1 immune checkpoint inhibitor. [141, 142]

Pembrolizumab
(Keytruda)

Merck 2 PD-1 immune checkpoint inhibitor. [143]

Table 4. Drugs ongoing development in phase 3 trials for HCC.

Drugs Developed by Phase Trials Target References

Durvalumab (Imfinzi) AstraZeneca 3 Block the interaction of (PD-L1) with PD-1 (CD279). [144]

Tremelimumab Pfizer 3 CTLA-4, immune checkpoint inhibitor. [145]

Atezolizumab
(Tecentriq)

Genentech 3 PD-L1 [146]

Bevacizumab
(Avastin)

Genentech 3 VEGF-A inhibitor [147]

Nintedanib
(Ofev)

Boehringer 3 VEGFR 1-3, FGFR and PDGFR [148]

Tivantinib (ARQ197) Arqule, Inc 3 Met inhibitor [149]

widely applied for cancer diagnosis and therapy due to their
unique features [108]. Moreover, carbon nanotubes have a
unique physicochemical architecture that can be functional-
ized chemically on their surface by modifications or bound-
ing with different targeting ligands to make them a promis-
ing platform for active targeting of tumor cells [109].

Z.  Ji  et  al.  [110]  prepared  chitosan  modified  sin-
gle-walled carbon nanotubes loaded with doxorubicin; chi-
tosan layer was bounded with folic acid for targeting folate
receptor, highly expressed in cancer liver cells. The in vitro
and  in  vivo  studies  in  the  HCC  cell  line  SMMC-7721
showed that the DOX/FA/CHI/ SWNTs are much more ef-
fective in inhibiting cancer cells than free DOX. X. Qi et al.
[111]  developed  galactosylated  chitosan-grafted  oxidized
carbon nanotubes loaded doxorubicin. The in vitro  studies
on HepG2 cells showed that the prepared doxorubicin car-
bon nanotubes  were  more  efficient  in  tumor  targeting and
higher cellular uptake.

4.4. Lipid Nanoparticulate Carrier

Particulate carriers (solid lipid nanoparticles, and nanos-
tructured lipid carriers) have gained much attention for the
loading of antitumor drugs for the treatment of various types
of cancers [112]. Nanoparticulates are desirable as carriers
of active drugs because they have a high carrying capacity,
longer circulation time and facilitate the selective accumula-

tion  of  tumors  due  to  the  effect  of  increased  permeability
and retention (EPR) or active targeting [113]. Lipid nanopar-
ticulate can improve oral bioavailability, control the release,
and, target the anticancer with better physical stability [114].
Lipid nanoparticulate carriers are a promising candidate for
anticancer targeting of the liver by lymphatic delivery [115].
NLCs show superior stability and loading capacity profile to
overcome the possible drawbacks and limitations of SLNs
[116]. Various anticancer drugs have been encapsulated ei-
ther in SLN or in NLC.

L.  Tunki  et  al.  [117]  prepared  sorafenib  loaded  solid
lipid nanoparticle conjugated with polyethylene glycol (PE-
Gylated) galactose as a delivery carrier for HCC. Sorafenib
loaded ligand conjugated nanoparticles show superior cyto-
toxicity, intracellular uptake and, apoptotic activities on Hep-
G2 cells  when compared with  the  free  drug or  non-ligand
nanoparticle. In vivo studies on BALB/c mice show ligand
conjugated SLN resulted in superior pharmacokinetic profile
and better targeting of the liver by nanoparticles.

Harshita et al.  [118] prepared paclitaxel-loaded nanos-
tructured lipid carrier (PTX-NLC). PTX-NLCs showed high-
er antitumor activity than commercial formulation (Intaxel®)
on  the  HepG2  cell  line.  The  bioavailability  of  paclitaxel
from PTX-NLCs was better than from PTX suspension. In
another study, M.L. Bondì et al. [119] prepared nanostruc-
tured  lipid  carriers  for  delivery  of  sorafenib.  The  in  vitro
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studies  showed  that  sorafenib  loaded  into  NLC  had  more
growth inhibition than that of free drug.

4.5. Polymeric Micelles Based Nanocarriers

Polymeric micelles are colloidal structures that contain
amphiphilic copolymers. They have a hydrophobic core re-
sponsible for the uptake of water-insoluble drugs and a hy-
drophilic shell that ensures good stability drugs from the phy-
siological environment [120]. The diameter of the polymeric
micelles is less than 100 nm. Due to their range of nanome-
ter sizes, their ability to self-assemble, stability, their ability
to dissolve and transport hydrophobic drugs, polymeric mi-
celles  offer  an  attractive  option  for  delivery  of  cytotoxic
drugs to HCC [121].  High stability,  low toxicity,  and sus-
tained release of the incorporated drug are the major advan-
tages of polymeric micelles over surfactant-based micelles
[122].

Fan et al. [123] prepared polymeric micelles-based ge-
latin functionalized with glycyrrhetinic acid for delivery of
doxorubicin  (DOX-GA-GEL)  polymeric  micelles.  The  in
vivo studies on HepG2 cell lines have shown higher cellular
uptake and cytotoxicity than DOX-HCl. In vivo studies on
mice with orthotopic H22 tumor have demonstrated the tar-
geted ability and stronger tumor inhibition of GA-GEL-2 mi-
celles to liver tissue compared with the free DOX. Su et al.
[124]  formulated  micelles  loaded  with  sorafenib  for  im-
proved water solubility and enhanced anticancer activity, as
observed through inhibition of tumor growth in the HepG2
tumor cells in vivo.

4.6. Dendrimer Based Nanocarriers

Dendrimers are highly branched three-dimensional syn-
thetic macromolecules of various sizes (10-100 nm) [125].
The typical architectural structure of dendrimers includes a
core, monomer branches, and functional surface groups, in
which branching units are arranged around the central core,
so dendrimers are candidates for different ligands and allow
transport of a wide variety of drugs [126]. The modification
of  the  chemical  synthesis  of  the  dendrimers  improves  the
pharmacokinetics and the biocompatibility of the carrier and
gives it promising properties for its use as a new carrier in
the  treatment  of  cancer  [89,  127].  Maria  et  al.  [128]  pre-
pared poliamidoamine dendrimer (PAMAM) loaded with so-
rafenib to target asialoglycoprotein receptor (ASGP-R). The
prepared dendrimer functionalized with lactobionic acid as a
ligand. In vitro studies conducted on HepG2 and HLE cell
lines have shown a higher uptake ability of dendrimer in AS-
GPR expressing the hepatoma cell line HepG2 than in non--
expressing  HEL  cells.  In  vivo  cytotoxicity  studies  have
shown that sorafenib loaded with dendrimer exhibits superi-
or and long-lasting antitumor activity due to the kinetic re-
lease with delayed-release. Kuruvilla et al. [129] fabricated
PAMAM dendrimers coupled with N-acetylgalactosamine li-
gands for targeting doxorubicin into hepatic cancer tissue.
The result demonstrated that the targeted dendrimers show
controlled drug release with improved therapeutic efficacy
against tumors in mice as compared to free doxorubicin.

5. RECENT UPDATES ON THE DRUGS APPROVED
FOR HCC TREATMENT

US Food and Drug Administration (FDA) has approved
several drugs for use in patients with liver cancer [130]. In
this clinical-stage, the systemic treatment for HCC with the
multikinase  inhibitor  sorafenib  is  the  most  common  treat-
ment option [131]. Also, several immune checkpoint drugs
are  under  development  in  phase  1,  phase  2,  and  phase  3
trials, such as durvalumab, tremelimumab, atezolizumab, be-
vacizumab and tivantinib have shown significant positive re-
sults in clinical phase 1 and 2. However, clinical studies in
phase 3 trials are required to confirm their efficacy for use in
HCC [132-134] (Tables 3 and 4).

6. CHALLENGES WITH HCC TREATMENT AND FU-
TURE OPPORTUNITIES

Morbidity and mortality rates of HCC are significantly
higher due to complexity that demands the development of
an effective targeting therapeutic approach for treatment and
prevention of HCC [150]. Despite this, the design of an ef-
fective  nanocarrier  system  for  HCC  targeting  faces  chal-
lenges and only a few nanotherapeutic formulations have en-
tered clinical trials [151, 152]. Despite advances in nanotech-
nologies for targeting of nanocarrier containing chemothera-
peutic  agents,  yet  many  challenges  and  limitations  are  re-
maining. Toxicity is a major safety concern for applications
of nanocarriers in clinical trials [153, 154]. In addition, the
accumulation of nanocarriers in the liver and their poor clear-
ance rate causes high toxicity. The discovery of new ligands
or targeting molecules needed to deliver nanocarriers to hep-
atoma cells is a major challenge [155, 156]. For active target-
ing, the selection of the most suitable targeting agents, “li-
gands”, which are capable of binding the specific receptors
expressed on the tumor cell surface, is the prerequisite for
the successful transport of nanocarriers to tumorous liver tis-
sues for avoiding systemic toxicity [153, 157, 158].

7. AUTHORS’ INSIGHT ON THE TOPIC

Currently, the growing interest in the field of hepatocellu-
lar carcinoma diagnosis and nanocarrier based chemothera-
py demonstrates a potential future scope for human applica-
tion.  Nanocarriers  such  as  surface-engineered  liposomes,
nanoparticles,  nanotubes,  micelles,  quantum dots,  etc.,  are
some of the nanocarriers that are considered potentially use-
ful as drug delivery agents in the treatment of HCC. The inci-
dence of HCC is related to many sophisticated factors and
molecular mechanisms, so we should comprehensively con-
sider  when  to  fabricate  and  investigate  novel  nanocarriers
loaded  therapy  for  HCC targeting.  The  design  of  an  ideal
drug carrier still needs more research and continuous efforts
to  understand  the  exact  molecular  mechanism  of  various
nanocarrier  materials,  their  possible  long-term hazards,  to
provide a safe and reliable treatment for HCC. The perfect
HCC  targeted  nanocarrier  based  drug  delivery  system
should be able to maintain the drug in the liver tissue, specif-
ically  identifying  the  hepatocarcinoma  cells.  Thus,  li-
gand-based hepatic receptor targeted drug delivery systems
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are expected to play a significant role in HCC diagnosis and
treatment. In the present, nanocarrier-based cancer-targeting
therapy  will  face  many  challenges,  such  as  surface  engi-
neered modification, multireceptor targeting, and drug load-
ing efficacy, toxicology, immunotoxicology, biocompatibili-
ty testing,  and,  stability  testing.  The emerging nanocarrier
chemotherapy targeting techniques will be theranostic with a
multifunctional  capability  of  simultaneous  diagnosis  and
therapy.

CONCLUSION

Most traditional strategies for treating hepatocellular car-
cinoma experience poor targeting ability. Thus, it has gained
increasing attention by the researchers for the exploration of
new targeting receptors, ligands, and nanostructured systems
to ensure efficient delivery of chemotherapeutic agents for
the HCC treatment. Several studies in the literature reported
mainly on animal or cell line models have shown the HCC-s-
elective targeting ability of the nanocarriers based on their
binding affinity to the target ligands-receptors, which further
require exploration of their safety and efficacy through clini-
cal studies in patients with HCC.

LIST OF ABBREVIATIONS

C-Met = Tyrosine-protein  kinase  Met  or  hepatocyte
growth  factor  receptor  (HGFR)

CD274 = Cluster of differentiation 274

CTLA-4 = Cytotoxic T-lymphocyte-associated protein 4

FGFR = Fibroblast growth factor receptors

PD-1 = Programmed cell death protein 1

PD-L1 = Programmed death-ligand 1

PDGF-R = Platelet-derived growth factor receptors

VEGF-A = Vascular endothelial growth factor A

VEGFR = Vascular endothelial growth factor receptor
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