About
16
Publications
9,003
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
580
Citations
Introduction
Current institution
Publications
Publications (16)
Data-driven forecasts of air quality have recently achieved more accurate short-term predictions. Despite their success, most of the current data-driven solutions lack proper quantifications of model uncertainty that communicate how much to trust the forecasts. Recently, several practical tools to estimate uncertainty have been developed in probabi...
Data-driven forecasts of air quality have recently achieved more accurate short-term predictions. However, despite their success, most of the current data-driven solutions lack proper quantifications of model uncertainty that communicate how much to trust the forecasts. Recently, several practical tools to estimate uncertainty have been developed i...
To increase autonomy in reinforcement learning, agents need to learn useful behaviours without reliance on manually designed reward functions. To that end, skill discovery methods have been used to learn the intrinsic options available to an agent using task-agnostic objectives. However, without the guidance of task-specific rewards, emergent behav...
In order to make better use of deep reinforcement learning in the creation of sensing policies for resource-constrained IoT devices, we present and study a novel reward function based on the Fisher information value. This reward function enables IoT sensor devices to learn to spend available energy on measurements at otherwise unpredictable moments...
In order to make better use of deep reinforcement learning in the creation of sensing policies for resource-constrained IoT devices, we present and study a novel reward function based on the Fisher information value. This reward function enables IoT sensor devices to learn to spend available energy on measurements at otherwise unpredictable moments...
We describe IoT Sensor Gym, a framework to train the behavior of constrained IoT devices using deep reinforcement learning. We focus on the main architectural choices to align problems from the IoT domain with cutting-edge reinforcement learning algorithms and exemplify our results with the autonomous control of a solar-powered IoT device.
Reinforcement learning (RL) is capable of managing wireless, energy-harvesting IoT nodes by solving the problem of autonomous management in non-stationary, resource-constrained settings. We show that the state-of-the-art policy-gradient approaches to RL are appropriate for the IoT domain and that they outperform previous approaches. Due to the abil...
Reinforcement learning (RL) is capable of managing wireless, energy-harvesting IoT nodes by solving the problem of autonomous management in non-stationary, resource-constrained settings. We show that the state-of-the-art policy-gradient approaches to RL are appropriate for the IoT domain and that they outperform previous approaches. Due to the abil...
A benchmarking study was performed for two local water bottling factories in Saudi Arabia. The energy consumption values were compared with internationally reported values. For the local water factories a detailed energy audit was conducted to determine the energy consumption. The power consumption and power factor of each machine in the production...
Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal...
Adopting Deep learning in Human Activity recognition has gained more interest in recent years due to the widespread use of wireless wearable devices that generates an ever-growing amount of data. This wealth of data can be utilized by using a data-driven deep learning approach to extract useful contextual information of a user’s activity. This pape...