Cyanoacetanilides Intermediates in Heterocyclic Synthesis. Part 2: Preparation of Some Hitherto Unknown Ketene Dithioacetal, Benzoazole and Pyridone Derivatives

Y. A. Ammar, ${ }^{\text {a }}$ A. M. Sh. El-Sharief, ${ }^{\text {a }}$ A. G. Al-Sehemi, ${ }^{\text {b }}$
Y. A. Mohamed, ${ }^{\text {a }}$ M. A. Senussi ${ }^{\text {a }}$ and M. S. A. El-Gaby ${ }^{\text {c }}{ }^{*}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
${ }^{\mathrm{b}}$ Department of Chemistry, Teachers Colleges, Abha, Saudia
${ }^{\text {c }}$ Department of Chemistry, Faculty of Science, Al-Azhar University at Assiut, Assiut 71524, Egypt

Abstract

Ketene dithioacetal 3, aminopyrazole 5, tetrazine 7, benzoazole 9 and pyridone 11, 12, 13 and 16 derivatives were prepared from cyanoacetanilide $\mathbf{1}$ as a starting material.

Keywords: Ketene dithioacetal; Benzoazole; Aminopyrazole and pyridone derivatives.

INTRODUCTION

Cyanoacetanilides are important and versatile reagents which have been especially used for the synthesis of polyfunctionalized heterocycles. ${ }^{1-3}$ Aminopyrazole, ${ }^{4}$ benzoazole ${ }^{5}$ and 3-cyanopyridine-2-one ${ }^{6}$ derivatives have been reported to exhibit biological activities. In view of the above and in continuation of our studies on the synthesis of heterocyclic compounds exhibiting biological activity, ${ }^{7-9}$ we report here the synthesis of novel ketene dithioacetal, benzoazole and pyridone derivatives from cyanoacetanilide derivative $\mathbf{1}$ as readily available starting material.

RESULTS AND DISCUSSION

Reaction of compound $\mathbf{1}$ with carbon disulfide in dimethylformamide and in the presence of potassium hydroxide gave the non-isolable intermediate $\mathbf{2}$. The latter was converted into 2 -cyano- N-(4-ethoxyphenyl)-3,3-bis(methylsulfanyl)acrylamide $\mathbf{3}$ by treatment with dimethyl sulfate at room temperature in good yield, Scheme I. The structure of 3 was confirmed by analytical and spectroscopic data. The ${ }^{1} \mathrm{H}$

NMR spectrum of $\mathbf{3}$ in DMSO- d_{6} revealed the presence of a singlet at $\delta=2.37,2.48 \mathrm{ppm}$ characteristic for two methylthio groups in addition to the expected signals attributed to NH, ethoxy and aromtic protons. Also, the structure $\mathbf{3}$ is supported by its mass spectrum which showed a molecular ion peak at $m / z=308(12.4 \%)$ corresponding to the formula $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$. Also, the base peak was found in the spectrum at $m / z=75$.

The reactivity of compound $\mathbf{3}$ towards some nitrogen and carbon nucleophiles was studied. Thus, treatment of compound $\mathbf{3}$ with aromatic amine in refluxing ethanol gave acrylamide derivatives $\mathbf{4 a}, \mathbf{b}$, through Michael addition followed by elimination of methyl mercaptan. ${ }^{10}$ The mass spectrum of compound 4a showed a molecular ion peak at $\mathrm{m} / \mathrm{z}=$ $367(48.7 \%)$ with base peak at $m / z=137\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OC}_{2} \mathrm{H}_{5}{ }^{-}\right.$ 4). Cyclocondensation of compound $\mathbf{3}$ with phenyl hydrazine furnished the novel aminopyrazole derivative 5 . The isolated product was established by analytical and spectral data. In the mass spectrum of compound $\mathbf{5}$ a molecular ion peak was found at $m / z=368(39 \%)$ with base peak at $m / z=232$ (M$\left.\mathrm{HNC}_{6} \mathrm{H}_{4} \mathrm{OC}_{2} \mathrm{H}_{5}\right)$. The formation of $\mathbf{5}$ is assumed to proceed through Michael addition of the amino group to the ethylenic bond in $\mathbf{3}$ with elimination of methyl mercaptan followed by intramolecular cyclization at the cyano group to form $\mathbf{5}$. On

Scheme I

the other hand, reaction of compound $\mathbf{3}$ with thiocarbohydrazide in ethanol under reflux gave the tetrazine derivative 7 and discarded the other possible structure 6 on the basis of analytical and spectral data. The infrared spectrum of compound 7 was characterized by the appearance of absorption bands corresponding to $\mathrm{NH}, \mathrm{C} \equiv \mathrm{N}$ and $\mathrm{C}=\mathrm{O}$ at 3174,2191 and $1660 \mathrm{~cm}^{-1}$, respectively. Also, the mass spectrum of 7 showed a molecular ion peak at $m / z=312(\mathrm{M}-2 ; 5.1 \%)$ with base peak at $m / z=146$.

Scheme II

Our investigation was extended to include the behavior of $\mathbf{3}$ towards bifunctional nucleophilic reagents. When compound $\mathbf{3}$ was treated with 1,2-phenylenediamine $\mathbf{8 a}$ in refluxing ethanol containing triethylamine, the benzimidazole derivative 9 a was obtained. The reaction is assumed to proceed via a nucleophilic attack of the NH_{2} to the ethylenic bond in $\mathbf{3}$ with elimination of two moles of methyl mercap$\tan { }^{10}$ In a similar manner, the reactions of 2-aminophenol $\mathbf{8 b}$ and 2 -aminothiophenol $8 \mathbf{c}$ with compound $\mathbf{3}$ led to the formation of benzoazole derivatives $\mathbf{9 b}$ and $9 \mathbf{c}$, respectively. Compound $\mathbf{3}$ reacted with cyanoacetamide $\mathbf{1 0}$ as carbon nucleophile in refluxing in the presence of sodium ethoxide to yield the pyridine derivative $\mathbf{1 1}$. The formation of $\mathbf{1 1}$ was suggested to proceed via the addition of the active methylene group of 10 to the ethylenic bond with elimination of methyl mercaptan followed by loss of water ${ }^{11}$ to form 11, Scheme III.

Scheme III

The reactivity of compound $\mathbf{1}$ towards certain nucleophilic and electrophilic reagents was studied. Thus, cyclocondensation of compound $\mathbf{1}$ with acetylacetone as nucleophile in ethanol in the presence of triethylamine ${ }^{12}$ yielded pyridone derivative $\mathbf{1 2}$ in excellent yield. Condensation of compound $\mathbf{1 2}$ with excess dimethylformamide-dimethylacetal in refluxing m-xylene furnished 4,6-bis-(2-dimethyl-amino-vinyl)-1-(4-ethoxyphenyl)-2-oxo-1,2-dihydropyridine3 -carbonitrile 13. Also, compound $\mathbf{1}$ was cyclized with activated nitriles 14 to furnish pyridone derivatives 15a-d. The novel azomethine 16 was achieved by treatment of compound 15b with dimethylformamide-dimethylacetal in refluxing dioxane. On refluxing compound $\mathbf{1 6}$ with hydrazine hydrate in ethanol, N-amino derivative $\mathbf{1 8}$ was obtained. The formation of compound $\mathbf{1 8}$ is assumed to proceed via loss of a dimethylamine to form non-isolated intermediate 17 which undergoes intramolecular cyclization into 18, Scheme IV.

EXPERIMENTAL

Melting points are recorded on a Fisher-John melting points apparatus and are uncorrected. IR spectra were recorded on a Shimadzu 470 spectrophotometer using KBr pellets. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Gemini Spectrometer $200(200 \mathrm{MHz})$ using TMS as internal standard and mass spectra on a Jeol-JMS-600 mass spectrometer. Elemental analyses were performed on a Perkin-Elmer 240 C mi-cro-analyzer. The physical and spectral data are collected in Tables 1 and 2 , respectively.

Scheme IV

Formation of 2-cyano- N -(4-ethoxyphenyl)-3,3-bis(methyl-sulfanyl)-acrylamide (3)

To a stirred suspension of finely powdered potassium hydroxide (0.01 mole) in dry dimethyformamide (10 mL) cooled to $0{ }^{\circ} \mathrm{C}$ the active methylene $1(0.01 \mathrm{~mole})$ and next carbon disulfide were added gradually. The reaction mixture was stirred at room temperature for 3 h , then cooled again to 0 ${ }^{\circ} \mathrm{C}$, treated with dimethyl sulfate and stirred at room temperature for an additional 6 h . Then it was poured into ice/water; the resulting precipitate was filtered off, dried and recrystallized to give 3.

MS (3): 308 ($\left.\mathrm{M}^{+} ; 12.4 \%\right), 309(\mathrm{M}+1 ; 2.3 \%), 310(\mathrm{M}+2 ;$ $1.5 \%), 261\left(\mathrm{M}-\mathrm{SCH}_{3} ; 1.2 \%\right), 172\left(\mathrm{M}-\mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{OC}_{2} \mathrm{H}_{5} ; 54 \%\right)$, $137\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OC}_{2} \mathrm{H}_{5} ; 8.9 \%\right), 76$ (3.6\%), 75 (100%).

3-(4-Ethoxyphenylamino)-2-methylsulfanyl-2-(4-tolyl-amino-methylene)-but-3-enenitrile (4a) and 3-(4-amino-phenylamino)-2-cyano- N -(4-ethoxypheny)-3-(methylsul-fanyl)-acrylamide (4b): General procedure

A mixture of $3(0.01 \mathrm{~mole})$ and the aromatic amine (0.01 mole) in ethanol (30 mL) was heated under reflux for 1 h. The reaction mixture was concentrated and the obtained
product was recrystallized to give 4
MS (4a): 367 ($\mathrm{M}^{+} ; 48 \%$), 368 ($\mathrm{M}+1 ; 11.7 \%$), 369
(M+2; 8.5\%); 320 ($\left.\mathrm{M}-\mathrm{SCH}_{3} ; 19.3 \%\right)$, 231 (29.3\%), 137 ($\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OC}_{2} \mathrm{H}_{5} ; 100 \%$), 108 (56\%), 91 (27\%), 107 (37.7\%), 76 (5.9\%).

MS (4b): 354 [M-14(N); 9.5\%], 218 (10\%), 190 (10\%), $137\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OC}_{2} \mathrm{H}_{5} ; 100 \%\right), 108$ (38\%), 76 (1.9\%), 75 (1.6\%).

Synthesis of 5-amino-3-methylsulfanyl-1-phenyl-1H-pyrazole-4-carboxylic acid (4-ethoxyphenyl)amide (5) and 2-cyano- N -(4-ethoxyphenyl)-2-(6-thioxo-6H-[1,2,4,5]-tetrazine-3-ylidene)acetamide (7): General procedure

A mixture of $\mathbf{3}(0.01 \mathrm{~mole})$ and phenyl hydrazine or thiocarbohydrazide was heated at $100{ }^{\circ} \mathrm{C}$ for 0.5 h . The obtained product was collected and recrystallized to give $\mathbf{5}$ or $\mathbf{7}$, respectively.

MS (5): $368\left(\mathrm{M}^{+} ; 39 \%\right), 369(\mathrm{M}+1 ; 8.5 \%), 323(\mathrm{M}-$ $\left.\mathrm{HNC}_{6} \mathrm{H}_{4} \mathrm{OC}_{2} \mathrm{H}_{5} ; 100 \%\right), 137\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OC}_{2} \mathrm{H}_{5} ; 32 \%\right), 108$ (6.8\%), 119 (24\%), 91 (5.3\%), 76 (1.3\%), 75 (1.5\%).

MS (7): 312 (M-2; 5.1\%), 292 (47\%), 246 (16\%), 218 (10\%), 163 (12\%), 146 (100\%), 137 (76\%), 108 (65\%), 76

Table 1. Physical and analytical data of the synthesized compounds

Compd. No.	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Yield(\%)	Solvent	Molecular formula (Mol. Wt.)	Elemental analyses		
					C\%	H\%	N\%
3	80-2	87	EtOH	$\begin{gathered} \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \\ (308.42) \end{gathered}$	54.52	5.23	9.08
					54.60	5.10	9.00
4a	150-1	82	EtOH	$\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S} \\ (367.47) \end{gathered}$	65.37	5.76	11.43
					65.30	5.70	11.40
4b	170-2	76	EtOH	$\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S} \\ (368.46) \end{gathered}$	61.94	5.47	15.21
					61.80	5.40	15.10
5	120-3	68	EtOH	$\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S} \\ (368.46) \end{gathered}$	61.94	5.47	15.21
					61.80	5.50	15.20
7	> 300	70	EtOH	$\begin{gathered} \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S} \\ (314.33) \end{gathered}$	49.68	3.21	26.74
					49.60	3.10	26.60
9a	275-6	74	EtOH	$\begin{gathered} \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \\ (320.35) \end{gathered}$	67.49	5.03	17.49
					67.10	5.00	17.40
9b	210-2	87	EtOH	$\begin{gathered} \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \\ (321.34) \end{gathered}$	67.28	4.71	13.08
					67.20	4.70	13.00
9c	240-1	80	EtOH	$\begin{gathered} \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S} \\ (337.40) \end{gathered}$	64.08	4.48	12.45
					64.20	4.50	12.40
11	190-2	74	EtOH	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S} \\ (326.38) \end{gathered}$	58.88	4.32	17.17
					58.70	4.40	17.10
12	230-1	84	EtOH	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (268.32) \end{gathered}$	71.62	6.01	10.44
					71.60	6.00	10.40
13	115-6	88	Dioxane	$\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \\ (378.48) \end{gathered}$	69.82	6.92	14.80
					69.70	6.80	14.90
15a	268-9	72	Benzene	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \\ (294.32) \end{gathered}$	65.30	4.79	19.04
					65.30	4.70	19.10
15b	> 300	76	Benzene	$\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{2} \\ (390.83) \end{gathered}$	64.54	3.87	14.34
					64.60	3.70	14.30
15c	> 300	75	Benzene	$\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \\ (370.41) \end{gathered}$	71.34	4.90	15.13
					71.30	4.80	15.10
15d	230-2	73	Benzene	$\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{4} \\ (437.89) \end{gathered}$	63.09	4.60	9.60
					63.10	4.60	9.60
16	247-8	76	EtOH	$\begin{gathered} \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{ClN}_{5} \mathrm{O}_{2} \\ (445.91) \end{gathered}$	64.65	4.52	15.71
					64.60	4.50	15.70
18	260-1	65	EtOH	$\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{6} \mathrm{O}_{2} \\ (397.43) \end{gathered}$	66.49	4.31	21.15
					66.30	4.60	21.40

(11\%), 60 (54\%).

2-Cyano-2-(1,3-dihydro-benzimidazol-2-ylidene)- N -(4ethoxyphenyl)acetamide (9a), 2-(3H-benzoxazol-2-ylidene)-2-cyano- N-(4-ethoxyphenyl)acetamide (9b) and 2-(3H-benzothiazol-2-ylidene)-2-cyano- N -(4-ethoxyphenyl)acetamide (9c): General procedure

A mixture of compound $\mathbf{3}$ (0.01 mole) and binucleophile (0.01 mole) in ethanol (30 mL) was heated under reflux for 48 h . The reaction mixture was concentrated and the obtained product was collected and recrystallized to give $\mathbf{9 a - c}$.

6-Amino-1-(4-ethoxyphenyl)-4-methylsulfanyl-2-oxo-1,2-dihydropyridine-3,5-dicarbonitrile (11)

A mixture of compound $\mathbf{3}$ (0.01 mole), cyanoacetamide (0.01 mole) and sodium ethoxide (0.01 mole) in ethanol (30 mL) was heated under reflux for 3 h , then allowed to cool and poured into cold water $(50 \mathrm{~mL})$ and acidified with HCl to give 11.

1-(4-Ethoxyphenyl)-4,6-dimethyl-2-oxo-1,2-dihydropyri-

 dine-3-carbonitrile (12)A mixture of compound $\mathbf{1}$ (0.01 mole), acetylacetone

Table 2. Spectral data of the synthesized compounds

Compd No.	$\mathrm{IR} / \mathrm{v}_{\text {max }}\left(\mathrm{cm}^{-1}\right)$	${ }^{1} \mathrm{H}$ NMR (DMSO-d $_{6} ; 8 / \mathrm{ppm}$)
3	$\begin{aligned} & 3373 \text { (NH), } 2980 \text { (CH-aliph), } \\ & 2202(\mathrm{C} \equiv \mathrm{~N}), 1660(\mathrm{C}=\mathrm{O}) . \end{aligned}$	$\begin{aligned} & 1.34\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.37,2.48\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{SCH}_{3}\right), 4.12(\mathrm{q}, 2 \mathrm{H}, \\ & \left.\mathrm{CH}_{2}\right), 6.91-7.15(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) . \end{aligned}$
4a	$\begin{aligned} & 3224(\mathrm{NH}), 2977,2923(\mathrm{CH}- \\ & \text { aliph), } 2191(\mathrm{C} \equiv \mathrm{~N}), 1620(\mathrm{C}=\mathrm{O}) . \end{aligned}$	
4b	$\begin{aligned} & 3399,3178\left(\mathrm{NH}_{2}\right), 2174(\mathrm{C} \equiv \mathrm{~N}) \\ & 1640(\mathrm{C}=\mathrm{O}) \end{aligned}$	$1.41\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 4.12\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 6.91-7.39 (m, 8H, Ar-H), 8.29, 8.33 ($2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}$), 12.56 (hump, $2 \mathrm{H}, \mathrm{NH}_{2}$).
5	3425, 3363, 3317 ($\mathrm{NH} / \mathrm{NH}_{2}$), 3047 (CH-arom), 2923 (CH-aliph), 1643 (C=O).	$1.45\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 4.18\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 6.72 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$), 6.94-7.59 (m, 9H, Ar-H), $9.41(\mathrm{~s}, 1 \mathrm{H}$, NH).
7	$\begin{aligned} & 3174(\mathrm{NH}), 2977,2923(\mathrm{CH}- \\ & \text { aliph), } 2191(\mathrm{C} \equiv \mathrm{~N}), 1660(\mathrm{C}=\mathrm{O}) . \end{aligned}$	$\begin{aligned} & 1.18\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.01\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.81,7.49(2 \mathrm{~d}, 4 \mathrm{H}, \\ & \text { Ar- } \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \text {. } \end{aligned}$
9a	$\begin{aligned} & 3250,3420(2 \mathrm{NH}), 2169(\mathrm{C} \equiv \mathrm{~N}), \\ & 1643(\mathrm{C}=\mathrm{O}) . \end{aligned}$	$1.40\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.11\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.90-7.45(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-$ H), $8.15,8.32,12.40(3 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{NH})$.
9b	$\begin{aligned} & \text { 3301, } 3201(2 \mathrm{NH}), 2985,2923 \\ & \text { (CH-aliph), } 2214(\mathrm{C} \equiv \mathrm{~N}), 1674 \\ & (\mathrm{C}=\mathrm{O}) \text {. } \end{aligned}$	
9c	$\begin{aligned} & 3402,3201(2 \mathrm{NH}), 2183(\mathrm{C} \equiv \mathrm{~N}) \text {, } \\ & 1651(\mathrm{C}=\mathrm{O}) \text {. } \end{aligned}$	$1.41\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.12\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.01-7.85(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-$ H), 8.28, 8.39 ($2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}$).
11	$\begin{aligned} & 3306,3204\left(\mathrm{NH}_{2}\right), 2984,2928 \\ & (\mathrm{CH}-\mathrm{aliph}), 2214(\mathrm{C} \equiv \mathrm{~N}), 1670 \\ & (\mathrm{C}=\mathrm{O}) . \end{aligned}$	$1.19\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 4.07\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) \text {, }$ 6.81-7.55 (m, 4H, Ar-H), 7.89 (hump, 2H, NH_{2}).
12	3064 (CH-arom), 2984, 2910 (CH-aliph), 2218 ($\mathrm{C} \equiv \mathrm{N}$), 1600 ($\mathrm{C}=\mathrm{O}$).	$1.37\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.99,2.39\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 4.08(\mathrm{q}, 2 \mathrm{H}$, CH_{2}), $6.45(\mathrm{~s}, 1 \mathrm{H}$, pyridine-H), 7.04, 7.24 ($2 \mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$).
13	$\begin{aligned} & 2916 \text { (CH-aliph), } 2191(\mathrm{C} \equiv \mathrm{~N}) \text {, } \\ & 1630(\mathrm{C}=\mathrm{O}) \text {. } \end{aligned}$	$1.36\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.71,3.00\left(2 \mathrm{~s}, 12 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.10(\mathrm{q}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 6.54 ($\mathrm{s}, 1 \mathrm{H}$, pyridine-H), 6.99 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.43,7.71$ ($2 \mathrm{~d}, 4 \mathrm{H}$, ethylene- H).
15a	$\begin{aligned} & 3309,3193\left(\mathrm{NH}_{2}\right), 2977(\mathrm{CH}- \\ & \text { aliph), } 2214(\mathrm{C} \equiv \mathrm{~N}), 1660(\mathrm{C}=\mathrm{O}) . \end{aligned}$	$\begin{aligned} & 1.28\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), \\ & 4.02\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.87,7.42(2 \mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) . \end{aligned}$
15c	$\begin{aligned} & 3320,3186\left(\mathrm{NH}_{2}\right), 2206(\mathrm{C} \equiv \mathrm{~N}) \\ & 1640(\mathrm{C}=\mathrm{O}) \end{aligned}$	$1.37\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.12\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right),$ 7.08-7.51 (m, 8H, Ar-H), 7.67 (hump, $2 \mathrm{H}, \mathrm{NH}_{2}$).
15d	3420, $3224\left(\mathrm{NH}_{2}\right), 2229(\mathrm{C}=\mathrm{N})$, 1700 (C=O; ester), 1658 ($\mathrm{C}=\mathrm{O}$; pyridone).	$\begin{aligned} & 0.61,1.38\left(2 \mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.80,4.14\left(\mathrm{q}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 7.12- \\ & 7.58\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H} \text { and } \mathrm{NH}_{2}\right) . \end{aligned}$
16	$\begin{aligned} & \text { 2977, } 2931 \text { (CH-aliph), } 3214 \\ & (\mathrm{C} \equiv \mathrm{~N}), 1651(\mathrm{C}=\mathrm{O}) . \end{aligned}$	$1.37\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 2.71,3.06\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 4.10(\mathrm{q}, 2 \mathrm{H},$ CH_{2}), 7.01-7.73 (m, 8H, Ar-H), $8.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N})$.
18	$\begin{aligned} & 3448,3178\left(\mathrm{NH}_{2}\right), 2977(\mathrm{CH}- \\ & \text { aliph }), 2221(\mathrm{C} \equiv \mathrm{~N}), 1658(\mathrm{C}=\mathrm{O}) . \end{aligned}$	$\begin{aligned} & 1.35\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.13\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.10-7.71(\mathrm{~m}, 11 \mathrm{H}, \\ & \text { Ar- } \left.\mathrm{H}+\mathrm{NH}_{2}+\mathrm{NH}\right), 7.98(\mathrm{~s}, 1 \mathrm{H}, \text { pyrimidine- } \mathrm{H}) . \end{aligned}$

(0.01 mole) and triethylamine (0.01 mole) in ethanol (40 mL) was heated under reflux for 4 h ; the solid product which was produced on heating was collected and recrystallized to give 12.

4,6-Bis(2-dimethylamino-vinyl)-1-(4-ethoxyphenyl)-2-oxo-

1,2-dihydropyridine-3-carbonitrile (13)

A mixture of compound $\mathbf{1 2}$ (0.01 mole) and dimethyl-formamide-dimethylacetal (0.02 mole) in dry m-xylene (30
mL) was heated under reflux for 3 h ; the solid product which was produced on heating was collected and recrystallized to give 13.

6-Amino-1-(4-ethoxyphenyl)-2-oxo-4-R-1,2-dihydropyri-dine-3,5-dicarbonitriles (15a-c) and ethyl 6-amino-3-cyano-1-(4-ethoxyphenyl)-2-oxo-4-(2-chlorophenyl)-1,2-dihydropyridine-5-carboxylate (15d): General procedure

A mixture of compound $\mathbf{1}$ (0.01 mole), activated nitrile

14 (0.01 mole) and piperidine (0.01 mole) in ethanol (40 mL) was heated under reflux for 1 h ; the solid product which was produced on heating was collected and recrystallized to give 15a-c.

MS (15d): 437 (M^{+}; 100\%), 438 (24.8\%), 439 (33.1\%), 392 (9\%), 362 (10.8\%), 364 (16.6\%), 336 (11.1\%), 137 (2.9\%), 108 (25.8\%), 76 (2.1\%).

N^{\prime}-[3,5-Dicyano-1-(4-ethoxyphenyl)-6-oxo-4-(2-chloro-phenyl)-1,6-dihydro-pyridine-2-yl]-N,N-dimethylformamidine (16)

A mixture of compound $\mathbf{1 5 b}$ (0.01 mole) and dimethyl-formamide-dimethylacetal (0.01 mole) in dry dioxane (30 mL) was heated under reflux for 1 h , then allowed to cool and poured into cold water (40 mL). The solid product was collected and recrystallized to give $\mathbf{1 6}$.

MS (16): 445 ($\mathrm{M}^{+} ; 84.4 \%$), 446 (27.8\%), 447 (30.8\%), 416 (17.6\%), 410 (15\%), 273 (10\%), 199 (13\%), 137 (7.3\%), 108 (4.9\%), 99 (100%), 76 (6%).

3-Amino-8-(4-ethoxyphenyl)-4-imino-7-oxo-5-(2-chloro-phenyl)-3,4,7,8-tetra-hydropyrido[2,3-d]pyrimidine-6carbonitrile (18)

A mixture of compound $\mathbf{1 6}(0.01 \mathrm{~mole})$ and hydrazine hydrate (0.01 mole) in ethanol (30 mL) was refluxed for 3 h , and then allowed to cool. The solid product was collected and recrystallized to give $\mathbf{1 8}$.

Received October 13, 2004.

REFERENCES

1. Mohareb, R. M.; Habashi, A.; Shams, H. Z.; Fahmy, S. M. Arch. Pharm. (Weinheim) 1987, 320, 599.
2. Mohareb, R. M.; Sherif, S. M. Arch. Pharm. (Weinheim) 1991, 324, 469.
3. Abu Elmaati, T. M.; El-Taweel, F. M. A. J. Chin. Chem. Soc. 2002, 49, 1045.
4. El-Gaby, M. S. A.; Atalla, A. A.; Gaber, A. M.; Abd AlWahab, K. A. IL-Farmaco 2000, 55, 596.
5. El-Gaby, M. S. A.; Micky, J. A.; Taha, N. M.; El-Sharief, M. A. M. Sh. J. Chin. Chem. Soc. 2002, 49, 407.
6. Manna, F.; Chimenti, F.; Bolasco, A.; Filippelli, F.; Palla, A.; Filippelli, W.; Lampa, E.; Mercantini, R. Eur. J. Med. Chem. 1992, 27, 627.
7. El-Gaby, M. S. A.; El-Sharief, A. M. Sh.; Atalla, A. A.; El-Adasy, A. A. A. M. J. Chin. Chem. Soc. 2004, 51(2), 1181.
8. El-Gaby, M. S. A. J. Chin. Chem. Soc. 2004, 51(1), 125.
9. El-Sharief, A. M. Sh.; El-Gaby, M. S. A.; Atalla, A. A.; El-Adasy, A. A. A. M. Afinidad 2003, 60(507), 475.
10. Zahran, M. A.; El-Sharief, A. M. Sh.; El-Gaby, M. S. A.; Ammar, Y. A.; El-Said, U. A. IL-Farmaco 2001, 56, 277.
11. Elgemeie, G. H.; Ali, H. A.; Elghandour, A. H.; Abd Elaziz, Gh. W. Phosphorus, Sulfur and Silicon 2000, 164, 189.
12. Ammar, Y. A.; El-Sharief, A. M.; Mohamed, Y. A.; Salem, M. A.; Al-Schemi, A. G.; El-Gaby, M. S. A. J. Chin. Chem. Soc. 2004, Proof.
