Reliable Resource Discovery Approaches for Grid Environments

Mahdi MollaMotalebi, Raheleh Maghami, Abdul Samad Ismail, and Aboamama Atahar Ahmed

Abstract—Resource discovery is one of the most important services affecting grid performance. Because of inherent characteristics of grid environments such as heterogeneity, dynamicity and scalability, usually grid resource discovery approaches deal with some challenges to be efficient. One of the most important challenges is reliability and stability of resource discovery in grid environment. The main approaches of resource discovery in grid environments include centralized, hierarchical, structured/unstructured peer-to-peer, and super-peer/cluster. This paper investigates the challenges of above grid resource discovery approaches related to reliability and stability of the system. Also, the main techniques used to tackle with these challenges in different approaches are presented.

Index Terms—Grid, Resource Discovery, Reliability, Stability

1 INTRODUCTION

GRIDS aggregate different resources to handle complex applications efficiently. It is formed by collaborating several heterogeneous resources to achieve higher computational capacity [1], [2]. Many of scientific applications require a huge amount of processing and storage capacity much more than available facilities. The earlier systems such as parallel systems and clusters are different from grids by some special features of the grid such as heterogeneity, dynamicity and scalability of the participants and resources. A grid interconnects storage systems, scientific instruments, operating system services, and any computing infrastructure to share resources such as CPU, memory, and software applications to handle data intensive applications [3]. It is distinguished from traditional distributed systems by scope, computation size and heterogeneity. Also, it is different from cluster computing in a few aspects. In a cluster, one centralized resource manager allocates the resources and all machines cooperate as a single unified machine, while in grids, machines have their own resource managers. Another difference is that resources of the grid are heterogeneous but cluster’s resources usually are homogeneous. Moreover, the number of cluster’s resources is usually static and they are placed near to each other, but in grid environment, almost often they are dynamic and distributed geographically. After all it is noteworthy that a cluster can be itself a resource of the grid environment.

From the management point of view, grids can be in the form of departmental, enterprise and global. Departmental grids are in a single location and with single administration authorities with the aim of sharing idle resources of a department to do large computing applications. Also, their participants are typically similar. Enterprise grids include several departmental grids within an enterprise. They contain more varied participants with more users and different geographical locations. Users are aware of common goals and data sharing is usually well controlled. In global grids, there are several organizations located across the globe and provide resources to be used by each others. Organizations have their own goals and authorities to make decisions for resource managements [4], [5], [6]. In this paper, we address the global grids.

There exist some approaches to index and search the resources in grids including centralized, hierarchical, structured/unstructured peer-to-peer, and super-
peer/cluster approaches. Obviously with regard to characteristics of global grids such as heterogeneity, dynamicity and scalability, the resource discovery in these systems face with many challenges such as latency, reliability, quality of results, efficiency, maintenance cost and so on. This paper focuses on reliability in different resource discovery approaches in global grid environments.

2 RELATED WORK

Resource discovery is the process of locating resources required by a grid application efficiently. The required resources must be available for grid applications on demand, otherwise the application may fail. So, many recent grid studies focus on resource discovery and its related issues. Grid resource discovery methods attempt to find resources on demand and concurrently keeping the system reliable and stable. Resource discovery in grid can be classified into four main categories as centralized, hierarchical, structured/unstructured peer-to-peer, and super-peer/cluster approaches.

In centralized methods such as Globus MDS [17], resource information are gathered and indexed on one or more central servers [8]. Then all queries are handled by these central servers such that the central servers are highly important and busy. In this approach, occurring failure or low efficiency on central servers can affect the whole grid system significantly especially in a large scale environment [8], [9], [10]. Because of the unadaptable nature of centralized approaches in large scales, they are not appropriate to be used in today’s grids environments.

In hierarchical methods [8], the load is distributed on more nodes typically as a tree structure. Though this approach tries to index the grid resource information in more nodes as hierarchical [10], but still it has the weakness of unbalanced load in different levels of the hierarchy so that nodes located in higher levels are highly probable to deal with huge amounts of processing, storage and network loads and subsequently they can be as bottleneck points in the grid [43].

Many of resource discovery methods follow the peer-to-peer (or decentralized) approach which distributes the resource information on different nodes on the network. Peer-to-peer architecture may be unstructured or structured. Unstructured peer-to-peer methods typically use flooding approaches which limits the grid scalability due to large number of messages; on the other hand they are load-balanced and adapted to dynamic environments [11]. Structured peer-to-peers are organized by specific criteria and topologies [12] by using some rigid structures such as distributed hash tables to index resource information. They are able to find requested resources quickly but with high maintenance costs especially in dynamic conditions [3], [7].

Super-peer and cluster based methods attempt to get together the advantages of centralized (e.g. quickness) and peer-to-peer (e.g. load-balance) approaches concurrently. Here, a set of nodes are handled by cluster heads (super-peers) as centralized, however the cluster heads themselves connect to each other and behave as peer-to-peer. These methods still suffer from bottleneck and single point of failure in cluster heads especially in high dynamic conditions [13], [14], [15], [7].

3 RELIABILITY CHALLENGES IN DIFFERENT RESOURCE DISCOVERY APPROACHES

Grids may be in a small or large scale, but most often they tend to be in large-scale in terms of the number of resources and geographical distribution [7]. Also their participants and resources may be static or dynamic, but the grids nature of multi organizational resource sharing necessitates them to be dynamic. On the other hand, grid applications must access to their required resources on demand, otherwise the jobs may not be executed [16]. Regarding to the main aim of grid systems which is handling complex applications by sharing resources, availability of resources is a vital issue. So any resource discovery approach must be adapted with the heterogeneity, scalability and dynamicity of grid environments to keep the whole system reliable and stable.

From point of view of scalability and bottleneck, grid resource discovery methods in centralized approach typically suffer from potential bottleneck in central servers especially when the network is in a large scale. For example, Globus MDS [17] utilizes LDAP servers to maintain resource information and locating them which can be a point of bottleneck. As illustrated in Error! Reference source not found., hierarchical methods [43], [18], [19], [10], [21] need enough amount of storage to store grid resources information which it limits the scalability of these methods.

Decentralized (peer-to-peer) resource discovery methods inherently are not dealing with bottleneck in large-scale conditions, but some other obstacles limit their scalability. For example, unstructured peer-to-peer resource discovery methods such as Gnutella [22] send a large number of messages during resource dissemination and search. It will be worse when the network size grows [16] because numerous messages can saturate the whole grid and decrease the grid efficiency dramatically. Many of
unstructured peer-to-peer methods exploit some limiting factors to control the number of messages, but it causes another problems such as false positive error [7, 8] which is disability of traversing enough nodes in the grid network due to use of limiting factors such as Time-to-Live (TTL) for query message forwarding. So when a resource exists in the network, the resource discovery process may report lack of matched results due to disability to traverse all the resource owners in the whole grid network. Also in super-peer based methods, occurring bottleneck in index nodes is probable especially in large-scale grids. So, as illustrated in Fig. 2, redundant super-peer nodes are exploited to tackle this problem, however using redundant super-peers can increase the processing/data loads due to resource information replications.
4 CONCLUSION

Different approaches of resource discovery deal with some challenges of reliability. This paper investigated the behavior of current main approaches from reliability’s point of view. Centralized methods have fundamental problems to achieve reliability since high data and processing loads in central servers makes them a point of bottleneck and also central servers are potentially single point of failure. Hierarchical methods tried to distribute the loads on multiple points, but still higher level index servers suffer from high data and processing loads. Also, failure to the higher level index servers causes all their descendants to be inaccessible.

Because of distributed nature of unstructured peer-to-peer methods, the loads are balanced and there is no bottleneck or single point of failure, but they are reliable only in small-scale grids since their typical flooding approach for resource dissemination and discovery limits their scalability. Super-peer/cluster methods combined the centralized and peer-to-peer approaches in their designation, so they do not suffer from single point of failure and bottleneck critically and also the load is almost balanced. Moreover, they are scalable since they divide a large-scale network to multiple small-scale networks by using super peers. Because of distributed nature of structured peer-to-peer methods, the resource information gathering and indexing are handled distributedly, for example by using distributed hash tables (DHT). Also, the load is almost balanced and they are not dealt with single point of failure or bottleneck problems seriously. Therefore with regard to the behavior of investigated approaches, it can be concluded that structured peer-to-peer and super-peer approaches are more reliable for resource discovery in global grids.

<table>
<thead>
<tr>
<th>Scalable</th>
<th>Bottleneck</th>
<th>Fault tolerant</th>
<th>Load balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized</td>
<td>Limited</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hierarchical</td>
<td>No</td>
<td>Yes</td>
<td>Limited</td>
</tr>
<tr>
<td>Structured peer-to-peer</td>
<td>Yes</td>
<td>No</td>
<td>Limited</td>
</tr>
<tr>
<td>Unstructured peer-to-peer</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Super-peer/cluster</td>
<td>Yes</td>
<td>Limited</td>
<td>Limited</td>
</tr>
</tbody>
</table>

REFERENCES


