GLOBAL STABILIZATION OF THE NAVIER-STOKES EQUATIONS AROUND AN UNSTABLE EQUILIBRIUM STATE WITH A BOUNDARY FEEDBACK CONTROLLER

EVRAD M. D. NGOM
UFR de Sciences Appliquées et Technologie, Université Gaston Berger
B.P. 234 Saint-Louis, Sénégal
and
Université Lyon 1, Institut Camille Jordan
43, blvd du 11 novembre 1918, 69622 Villeurbanne Cedex, France

ABDOU SÈNE
CEA-MITIC, Université Gaston Berger
B.P. 234 Saint-Louis, Sénégal

DANIEL Y. LE ROUX
Université Lyon 1, CNRS, Institut Camille Jordan
43, blvd du 11 novembre 1918, 69622 Villeurbanne Cedex, France

(Communicated by Andrei Fursikov)

Abstract. This paper presents a global stabilization for the two and three-dimensional Navier-Stokes equations in a bounded domain $\Omega$ around a given unstable equilibrium state, by means of a boundary normal feedback control. The control is expressed in terms of the velocity field by using a non-linear feedback law. In order to determine the feedback control law, we consider an extended system coupling the equations governing the perturbation with an equation satisfied by the control on the domain boundary. By using the Faedo-Galerkin method and a priori estimation techniques, a stabilizing boundary control is built. This control law ensures a decrease of the energy of the controlled discrete system. A compactness result then allows us to pass to the limit in the system satisfied by the approximated solutions.

1. Introduction. Let $\Omega$ be a bounded Lipschitz domain in $\mathbb{R}^d$ ($d = 2, 3$) with a boundary $\Gamma$ and let $\Gamma_i \subset \Gamma$, $i = 0, 1, 2, \cdots, N$, be open boundary and nonzero surface measure such that $\Gamma_i \cap \Gamma_j = \emptyset$ for $i \neq j$ and $\Gamma = \bigcup_{i=0}^{N} \Gamma_i$. Further, we denoted by $\Gamma_l = \Gamma_0$ and $\Gamma_b = \bigcup_{i=1}^{N} \Gamma_i$. In particular, the boundary $\Gamma_b$ is the part of $\Gamma$, where a Dirichlet boundary control in feedback form has to be determined. The usual function spaces $L^2(\Omega)$, $H^1(\Omega)$, $H^1_0(\Omega)$, are used and we let $L^2(\Omega) = (L^2(\Omega))^d$, $H^1(\Omega) = (H^1(\Omega))^d$ and $H^1_0(\Omega) = (H^1_0(\Omega))^d$. Negative ordered Sobolev space $H^{-1}(\Omega)$ is defined as the dual space, i.e., $H^{-1}(\Omega) = \{H^1_0(\Omega)\}'$. We denote by $\langle \cdot | \cdot \rangle$ and $\| \cdot \| = \| \cdot \|_{L^2(\Omega)}$, the scalar product and the norm in $L^2(\Omega)$, respectively.

2010 Mathematics Subject Classification. Primary: 37L65, 49J99, 76D55; Secondary: 76D05.

Key words and phrases. Navier-Stokes system, feedback control, boundary stabilization, Galerkin method.

This work is supported in part by: Ambassade de France, SCAC, Dakar, Sénégal; UMI 209 UMMISCO and labex MILYON, Université Claude Bernard Lyon 1, France.
Further, if $u \in L^2(\Omega)$ is such that $\nabla \cdot u \in L^2(\Omega)$, we denote the normal trace of $u$ in $H^{-\frac{1}{2}}(\Gamma)$ by $u \cdot n$, where $n$ denotes the unit outer normal vector to $\Gamma$.

We consider a stationary motion of an incompressible fluid described by the velocity and pressure couple $(v_s, q_s)$, which is the solution to the stationary Navier-Stokes equations

$$
\begin{aligned}
-\nu \Delta v_s + (v_s \cdot \nabla)v_s + \nabla q_s &= f_s & &\text{in } \Omega, \\
\nabla \cdot v_s &= 0 & &\text{in } \Omega, \\
v_s &= \psi & &\text{on } \Gamma.
\end{aligned}
$$

(1)

In this setting, $\nu > 0$ is the viscosity, $f_s$ is a function in $L^2(\Omega)$, $\psi$ belongs to $V^{1/2}(\Gamma)$ defined as $V^{1/2}(\Gamma) = \{ u \in H^{1/2}(\Gamma) : \int_{\Gamma} u \cdot n d\zeta = 0 \}$. In [16], it is shown that a solution $(v_s, q_s)$ to (1) exists in $H^1(\Omega) \times L^2(\Omega)$ where

$$
L^2_0(\Omega) = \left\{ p \in L^2(\Omega), \int_{\Omega} p(x) dx = 0 \right\}.
$$

For $T > 0$ fixed, let $Q = [0, T] \times \Omega, \Sigma_l = [0, T] \times \Gamma_l$ and $\Sigma_b = [0, T] \times \Gamma_b$ and consider a trajectory $(u, q)$ solution of the non stationary Navier-Stokes equations

$$
\begin{aligned}
\frac{\partial u}{\partial t} - \nu \Delta u + (u \cdot \nabla)u + \nabla q &= f_s & &\text{in } Q, \\
\nabla \cdot u &= 0 & &\text{in } Q, \\
u = \psi|_{\Gamma_b} + u_b & &\text{on } \Sigma_b, \\
u = \psi|_{\Gamma_l} & &\text{on } \Sigma_l, \\
u_0(x) &= v_s(x) + v_0(x) & &\text{in } \Omega.
\end{aligned}
$$

(2)

with $x = (x, y, z)$ if $d = 3$. Consequently, the couple $(v = u - v_s, p = q - q_s)$ satisfies the following non stationary system

$$
\begin{aligned}
a. \frac{\partial v}{\partial t} - \nu \Delta v + (v \cdot \nabla)v_s + (v_s \cdot \nabla)v + (v \cdot \nabla)v + \nabla p &= 0 & &\text{in } Q, \\
b. \nabla \cdot v &= 0 & &\text{in } Q, \\
c. v &= u_b & &\text{on } \Sigma_b, \\
d. v &= 0 & &\text{on } \Sigma_l, \\
e. v(t = 0, x) &= v_0(x) & &\text{in } \Omega.
\end{aligned}
$$

(3)

The control $u_b(t)$ is called a feedback if there exists a mapping $M : X(\Omega) \to U(\Gamma_b)$ such that

$$
u_b(t) = M(v(t)), \quad t \in (0, \infty),
$$

(4)

where the spaces $X(\Omega)$ and $U(\Gamma_b)$ will be defined in the sequel. Our goal is the following: for a prescribed rate of decrease $\sigma > 0$, we need to find a feedback control $u_b$ on $\Sigma_b$ such that the velocity $v$ in (3) satisfies the exponential decay

$$
\|v(t)\|_{X(\Omega)} \leq C e^{-\sigma t}, \quad t \in (0, \infty).
$$

(5)

The theoretical setting of the stabilization procedure, for the non stationary incompressible Navier-Stokes equations using a feedback control, has been studied by a number of authors, e.g. A.V. Fursikov et al. [13, 14], V. Barbu et al. [3, 7,
J.-P. Raymond et al. [25, 26, 27] and M. Badra et al. [1, 2]. In these papers, the linear feedback law $M$ is first determined by solving a linear control problem for the linearized system of equations (for example the Oseen system) and then this linear feedback is used in order to stabilize the original non linear system (for example the Navier-Stokes system).

By employing the extension operator, A.V. Fursikov [13, 14] addressed the stabilization of the $2D$ and $3D$ Navier-Stokes equations. In [2, 6, 7, 8, 26, 27], the feedback control laws are determined by solving a Riccati equation in a space of infinite dimension. In such a case, an optimal control problem has to be solved, involving the minimization of an objective functional. In practice, the control is calculated through approximation via the solution of an algebraic Riccati equation, which may be computationally expensive. The use of finite-dimensional controllers may be more appropriate to stabilize the Navier-Stokes equations. Such an approach is performed in [9], in the case of an internal control, and in [1, 6, 7, 8, 25], in the case of a boundary control. In [1, 9, 25], the authors search for a boundary control $u_b$ of finite dimension of the form

$$u_b = \sum_{j=1}^{N} u_j(t)\psi_j(x), \quad t \geq 0, \ x \in \Gamma,$$

where $(\psi_j)_{j=1,2,3,...,N}$ is a finite-dimensional basis obtained from the eigenfunctions of some operator and $\bf{u} = (u_1, u_2, u_3, \ldots, u_N)$ is a control function expressed with a feedback formulation. In [25] and [1], where $d = 2$, and $d = 3$, respectively, the feedback control is obtained from the solution of a finite-dimensional Riccati equation while a stochastic-based stabilization technique is employed in [5], in the case of an internal control, which avoids the difficult computation problems related to infinite-dimensional Riccati equations. The procedure employed in [3] for a boundary control resembles the form of stabilizing noise controllers designed in [5].

A linear feedback law is first determined by solving a linear control problem in all the papers cited above, and this linear feedback is then used in order to stabilize the original non linear system. Such a procedure leads to choose the initial velocity small enough, limiting the generality of the result. Moreover, it usually requires to search for the initial condition and the control $u_b$ in sufficiently regular spaces. The choice of the control profile is also very critical. Indeed, the case of a normal profile is very useful in many applications [15, 20, 23], but the control laws built in all the papers cited above does not guarantee $u_b \cdot n \neq 0$ on $\Gamma$, since $u_b \in \{ u \in L^2(\Gamma) : \int_{\Gamma} u \cdot n = 0 \}$.

In the above mentioned studies, for a prescribed rate of decay $\sigma > 0$, an exponential decay of the following form is obtained

$$||v||_{X(\Omega)} \leq C||v_0||_{X(\Omega)}e^{-\sigma t}, \quad t > 0,$$

where $X(\Omega)$ is the adequate space and the constant $C \geq 1$. In practice, it is preferable to have $C = 1$, yielding an immediate exponential decay.

Another approach for stabilizing fluid dynamics equations is proposed in [12, 17, 18, 22, 28]. The method was first published with application on a 1D shallow water equation in [28]. It consists on establishing an equation involving the derivative of energy with respect to time, and the boundary conditions. Then, by utilizing adequate feedback boundary conditions, the authors manage to get the energy’s exponential decrease. So far, the method has been applied to stabilize irrigation
channel networks [17, 18], coupled shallow-water and erosion-sedimentation equations [12], and the Navier-Stokes system around a steady-state [22]. Note that in [22], an extended system is considered with an additional equation satisfied by the control on the domain boundary, and the boundary feedback control is constructed via a Galerkin method. Thereby, the authors stabilize the Navier-Stokes equations in a bounded domain $\Omega$ around a given steady-state which satisfies the stationary Navier-Stokes equations. However, in [22], the result of stabilization is obtained with a rate of decay $\sigma$ depending on the viscosity $\nu$ and the steady-state $\mathbf{v}_0$. Consequently, the problem of stabilization remains uncontrolled for unstable equilibrium states.

In this paper, the approach of [22], using an extended system is followed, and $\sigma$ not only depends on the viscosity $\nu$ and the steady-state $\mathbf{v}_0$, but also on the size $N$ of the control. Thus, for any fixed $\nu$, we can find $N$ which is greater or equal to the number of unstable mode, such that the problem of stabilization is controllable. This allows the stabilization rate sigma to be arbitrarily large.

The boundary control $\mathbf{u}_0$ in (3) is rewritten on the form $\mathbf{u}_0 = \alpha_i(t)\mathbf{g}_i(\mathbf{x})$ on $\Sigma_i = [0,T]\times\Gamma_i$, where the quantity $\alpha_i$ is a priori unknown and the fixed profile $\mathbf{g}_i$ is such that $\mathbf{g}_i \in H^{1/2}(\Gamma)$, $\mathbf{g}_i = 0$ on $\Gamma_j \cup \Gamma_i$ for $j \neq i$, $\mathbf{g}_i \cdot \mathbf{n} \neq 0$ on $\Gamma_i$ and $\int_{\Gamma_i} \mathbf{g}_i \cdot \mathbf{n} = 0$. In order to stabilize (3), with $\mathbf{u}_0 = \alpha_i(t)\mathbf{g}_i(\mathbf{x})$ on $\Sigma_i$, by employing energy a priori estimation technics, the quantity $\alpha_i$ is found to satisfy the relation

$$\int_{\Gamma_i} [\nu \frac{\partial \mathbf{v}}{\partial n} - p \mathbf{n}] \cdot \mathbf{g}_i \, d\zeta = f_i(\mathbf{v}), \quad i = 1, 2, 3, \cdots, N,$$

(7)

where $f_i$ is a polynomial in $\alpha_i$ of degree 2 and will be defined later in (28). The quantity $\alpha_i$ depends nonlinearly on $\mathbf{v}$ in (7), and hence $\alpha_i$ satisfies a nonlinear feedback law of the form (4). System (3) is then extended by adding (7), and the extended system, namely (3) and (7), with $\mathbf{u}_0 = \alpha_i(t)\mathbf{g}_i(\mathbf{x})$ on $\Sigma_i$, is the stabilization problem considered in this paper, i.e.

\[\begin{align*}
a. \quad & \frac{\partial \mathbf{v}}{\partial t} - \nu \Delta \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} + (\mathbf{v}_s \cdot \nabla) \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla p = 0 \quad \text{in } Q, \\
b. \quad & \nabla \cdot \mathbf{v} = 0 \quad \text{in } Q, \\
c. \quad & \mathbf{v} = \alpha_i(t)\mathbf{g}_i(\mathbf{x}), \quad i = 1, 2, 3, \cdots, N \quad \text{on } \Sigma_i, \\
d. \quad & \mathbf{v} = 0 \quad \text{on } \Sigma_i, \\
e. \quad & \mathbf{v}(0,\mathbf{x}) = \mathbf{v}_0(\mathbf{x}) \quad \text{in } \Omega, \\
f. \quad & \int_{\Gamma_i} [\nu \frac{\partial \mathbf{v}}{\partial n} - p \mathbf{n}] \cdot \mathbf{g}_i \, d\zeta = f_i(\mathbf{v}), \quad i = 1, 2, 3, \cdots, N. \end{align*}\]

(8)

In order to determine $\alpha_i$, leading to the determination of the boundary feedback control $\mathbf{u}_0 = \alpha_i(t)\mathbf{g}_i(\mathbf{x})$ on $\Sigma_i$, $i = 1, 2, 3, \cdots, N$, system (8) is solved via a Galerkin procedure which consists of building a sequence of approximated solutions using an adequate Galerkin basis.

The paper is organized as follows. In section 2, the notations and mathematical preliminaries are given. In section 3, stabilization is proved and, thanks to technics developed in [19] (which are not related specifically to a stabilization problem), the existence of at least one weak solution of the non-linear system (8) is established by applying the Galerkin method.
2. Notation and preliminaries.

2.1. Function spaces. Some spaces of free divergence functions are introduced:

\[ V(\Omega) = \{ u \in H^1(\Omega) : \nabla \cdot u = 0 \text{ in } \Omega, u = 0 \text{ on } \Gamma \} \]

(9)

\[ V_0(\Omega) = \{ u \in H^1_0(\Omega) : \nabla \cdot u = 0 \} \]

(10)

\[ H(\Omega) = \{ u \in L^2(\Omega) : \nabla \cdot u = 0, u \cdot n = 0 \text{ on } \Gamma \} \]

(11)

Since \( V(\Omega) \) is a closed subspace of \( H^1(\Omega) \), we have, by definition \( \| \cdot \|_{V(\Omega)} = \| \cdot \|_{H^1(\Omega)} \).

2.2. Linear forms. In order to define a weak form of the Navier-Stokes equations, we introduce the continuous bilinear forms

\[ a(v_1, v_2) = \int_{\Omega} \nabla v_1 : \nabla v_2 \, dx, \forall (v_1, v_2) \in H^1(\Omega) \times H^1(\Omega), \]

and the trilinear form:

\[ b(v_1, v_2, v_3) = \int_{\Omega} (v_1 \nabla) v_2 \cdot v_3 \, dx, \forall (v_1, v_2, v_3) \in H^1(\Omega) \times H^1(\Omega) \times H^1(\Omega). \]

In this respect, by integration by parts, we obtain, respectively

\[ b(u, v, v) = \frac{1}{2} \int_{\Gamma_b} |v|^2 (u \cdot n) \, d\zeta, \forall u, v \in V(\Omega). \]

(12)

Thanks to Hölder inequality, we obtain

\[ |b(v_1, v_2, v_3)| \leq \|v_1\|_{L^6(\Omega)} \|\nabla v_2\|_{L^3(\Omega)} \|v_3\|_{L^6(\Omega)}, \quad \forall v_1, v_2, v_3 \in H^1(\Omega). \]

Further, due to the generalized Sobolev’s inequality, there exists a positive constant \( C \) such that

\[ \|v_1\|_{L^6(\Omega)} \leq C \|v_1\|^{\frac{1}{2}} \|\nabla v_1\|^\frac{1}{2} \quad \text{and} \quad \|v_3\|_{L^6(\Omega)} \leq C \|\nabla v_3\|, \quad \text{for } d = 2, 3, \]

hence,

\[ |b(v_1, v_2, v_3)| \leq C \|v_1\|^{\frac{1}{2}} \|\nabla v_1\|^{\frac{1}{2}} \|\nabla v_2\| \|\nabla v_3\|. \]

(13)

We now built a hilbertian basis and a control law.

2.3. Hilbertian basis and control law. Let \( \{ z_j, \lambda_j, j = 1, 2, 3, \cdots \} \) be the eigenfunctions and eigenvalues of the following spectral problem for the Stokes operator:

\[ -\Delta z_j + \nabla p_j = \lambda_j z_j, \quad \nabla \cdot z_j = 0 \quad \text{in } \Omega; \quad |z_j| = 0. \]

(14)

As shown in [11], \( 0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_j \rightarrow \infty \text{ as } j \rightarrow \infty \), and \( \{ z_j \} \) forms an orthonormal basis in \( V_0(\Omega) \):

\[ \langle z_j, z_k \rangle = \delta_{jk}, \quad a(z_j, z_k) = \lambda_j \delta_{jk}, \quad \forall j, k. \]

(15)

Since \( \lambda_j \) in (14) goes to \( \infty \) as \( j \rightarrow \infty \), for a prescribed rate of decrease \( \sigma > 0 \), we always find \( N_\sigma \) belonging to \( N^* \), such that

\[ \sigma \leq \sigma_{N_\sigma} = \frac{\nu}{4} \lambda_{N_\sigma + 1} - \left( \frac{2}{3 \nu} \right)^3 C^4 \| \nabla v_k \|^4, \]

(16)

where \( C \) is defined in (13). Still denoting \( N_\sigma \) by \( N \) in the remaining of this paper, we define \( I = \{ 1, 2, 3, \cdots, N \} \) and we let \( V^{1/2}(\Gamma_i), i \in I \), the space of trace functions
whose extended by zero over $\Gamma$ belongs to $H^{1/2}(\Gamma)$. In order to built the control law, for all $i \in I$, the profile $g_i$ must satisfies

$$g_i \in V^{1/2}(\Gamma_i),$$  \hspace{1cm} (17)$$
$$g_i \cdot n \neq 0 \text{ on } \Gamma_i,$$  \hspace{1cm} (18)$$
$$\int_{\Gamma_i} g_i \cdot n \, d\zeta = 0.$$  \hspace{1cm} (19)$$

Further, in the eventual purpose of ensuring a normal profile for the control, the condition

$$g_i(\zeta) \cdot \tau(\zeta) = 0, \ \forall \zeta \in \Gamma_i \text{ and } \forall \tau \in T_\zeta(\Gamma_i),$$  \hspace{1cm} (20)$$

might be added to (17)-(19), where the tangent space of $\Gamma_i$ at $\zeta$, denoted by $T_\zeta(\Gamma_i)$, is defined as the set of all tangent vectors at $\zeta$. For example, assuming that the boundary $\Gamma$ is regular enough for $n$ to be in $H^{1/2}(\Gamma)$, we consider $h_j, \ j = 0, 1$, defined on $\Gamma_i, i \in I$ as

$$h_j(x) = \begin{cases} 
\exp \left( -\frac{||x-x_j||^2}{r_j^2} \right) n & \text{if } x \in B(x_j, r_j) \cap \Gamma_i, \\
0 & \text{else},
\end{cases}$$  \hspace{1cm} (21)$$

where $B(x_j, r_j)$ is the open ball centered at $x_j \in \Gamma_i$, with radius $r_j$, such that $B(x_0, r_0) \cap B(x_1, r_1) = \emptyset$. By choosing $r_0$ and $r_1$ appropriately, one can satisfy (21).

If $\beta_j, j = 0, 1$, is defined as

$$\beta_j = \int_{B(x_j, r_j) \cap \Gamma_i} h_j \cdot n \, d\zeta,$$

the control profile $g_i = \beta_0 h_1 - \beta_1 h_0$ satisfies not only (17)-(19) but also (20).

However, note that condition (20) is not necessary to construct the control law in the present study. One might also consider $g_i(\zeta) = \beta_0 h_1(\zeta) - \beta_1 h_0(\zeta) + A(\zeta) \tau(\zeta)$, where $A(\zeta)$ is a sufficiently regular function.

Let us consider the following Stokes problem

$$\begin{align*}
 a. \quad & -\Delta \psi_i + \nabla q_i = 0, \quad \text{in } \Omega, \\
b. \quad & \nabla \cdot \psi_i = 0 \quad \text{in } \Omega, \\
c. \quad & \psi_i = 0 \quad \text{on } \Gamma_i \cup \Gamma_j, \ j \neq i, \\
d. \quad & \psi_i = g_i \quad \text{on } \Gamma_i.
\end{align*}$$  \hspace{1cm} (22)$$

First, thanks to (17) and (19), the Stokes problem (22) admits a unique solution $(\psi_i, q_i)$ belonging to $H^1(\Omega) \times L_0^2(\Omega)$ (See [11, Proposition III.4.1]). Therefore, the sequence $\psi_1, \psi_2, \psi_3, \cdots, \psi_N, z_1, z_2, z_3, \cdots$, is linearly independent. Hence, we choose to search the solution $\mathbf{v}$ of (8) in

$$W(\Omega) = \text{span}(\psi_n + z_n)_{n \in I} \oplus \text{span}(z_n)_{n > N},$$  \hspace{1cm} (23)$$

We do not propose any particular norm for the space $W(\Omega)$ as it is not needed in the manuscript. Further, the solution $\mathbf{v}$ can be expressed as:

$$\mathbf{v} = \mathbf{w} + \mathbf{z}, \text{ where } \mathbf{w} = \sum_{i=1}^{N} \alpha_i \mathbf{w}_i \text{ and } \mathbf{z} = \sum_{i=N+1}^{\infty} \theta_i \mathbf{z}_i,$$  \hspace{1cm} (24)$$

with $\mathbf{w}_i = \psi_i + z_i$, for $i \in I$. 

Secondly, conditions (17) and (18) lead to Lemma 2.1 (see proof in [19]), which is used in the sequel.

Lemma 2.1. There exists a constant $C_i > 0$ such that, for all $v \in W(\Omega)$,
\[ |\alpha_i| \leq C_i \|v\|, \quad i \in I. \tag{25} \]

Further, using (25), Lemma 2.2 is obtained.

Lemma 2.2. For all $v = w + z \in W(\Omega)$, $w$ satisfies
\[ \|w\| \leq C_N \|v\|, \tag{26} \]
where $C_N = \left( \sum_{i=1}^{N} C_i^2 \|w_i\|^2 + 2 \sum_{1 \leq i < j \leq N} |C_i|C_j \|\langle w_i, w_j \rangle\| \right)^{\frac{1}{2}}$, $N \in \mathbb{N}^*$.

Proof. Developing $\|w\|^2$ from (24) and using (25) yields
\[
\|w\|^2 = \sum_{i=1}^{N} \alpha_i^2 \|w_i\|^2 + 2 \sum_{1 \leq i < j \leq N} \alpha_i \alpha_j \langle w_i, w_j \rangle \\
\leq \sum_{i=1}^{N} \alpha_i^2 \|w_i\|^2 + 2 \sum_{1 \leq i < j \leq N} |\alpha_i| |\alpha_j| \|\langle w_i, w_j \rangle\| \\
\leq \left( \sum_{i=1}^{N} C_i^2 \|w_i\|^2 + 2 \sum_{1 \leq i < j \leq N} |C_i|C_j \|\langle w_i, w_j \rangle\| \right) \|v\|^2. \tag{27} \]

Finally, for $i \in I$, the control law is defined as
\[
f_i(v) = a_i \alpha_i^2 + b_i \alpha_i - (\nu - \epsilon)\lambda_{N+1} \left( \alpha_i \|w_i\|^2 + 2 \langle w_i, z \rangle + \sum_{j=1, j \neq i}^{N} \alpha_j \langle w_i, w_j \rangle \right) \tag{28} \]
where the positive constant $\epsilon < \nu$ is defined in (39) and for $i \in I$,
\[
a_i = \frac{1}{2} \int_{\Gamma_i} |g_i|^2 (g_i \cdot n) \, d\zeta \quad \text{and} \quad b_i = \frac{1}{2} \int_{\Gamma_i} |g_i|^2 (v_s \cdot n) \, d\zeta. \]
The dependence of $f$ on $v$ is realized in the right side of (28) with help of parameters $\alpha_i$, $i \in I$, and vector $z$ (see definition (24) of $v$).

3. Stability result.

3.1. The variational formulation. We first consider the variational formulation of the extended Navier-Stokes system.

Definition 3.1. Let $T > 0$ an arbitrary real number and $v_0 \in H(\Omega)$, we shall say that $v$ is a weak solution of (8) on $[0, T)$ if
\begin{itemize}
  \item $v \in [L^\infty(0, T; H(\Omega)) \cap L^2(0, T; V(\Omega))],$
  \item $\exists \alpha_i \in L^\infty(0, T)$ such that $v = \alpha_i g_i$ on $\Gamma_i$, $i \in I$,
\end{itemize}
The main achievement of this paper is the following boundary stabilization result.

**Theorem 3.2.** Let \( \sigma > 0 \) a prescribed rate of decrease, assume that (16) is satisfied and let \( g_i, i \in I, \) such that
\[
g_i \in V^{1/2}(\Gamma_i), \quad g_i \cdot n \not\equiv 0 \quad \text{on} \quad \Gamma_i, \quad \int_{\Gamma_i} g_i \cdot n \, d\zeta = 0.
\]

For arbitrary initial data \( v_0 \in H(\Omega), \) there exists a weak solution \( v \) of (8) in the sense of definition 3.1. Moreover, \( v \) satisfies the following estimates:
\[
\|v(t)\| \leq \|v_0\| e^{-\sigma t}, \quad \forall t > 0, \quad (30)
\]
\[
\int_0^T \|\nabla v(s)\|^2 \, ds \leq C, \quad (31)
\]
where \( C \) is a constant.

**Proof.** Let us begin with the proof of the stability estimates (Section 3.2) followed by the existence result (Section 3.3).

### 3.2. A priori estimates.

#### 3.2.1. A priori estimate for (30).

We take \( \bar{v} = v = \sum_{i=1}^{N} \alpha_i w_i + \sum_{i=N+1}^{\infty} \beta_i z_i \) in (29-a), we have
\[
\frac{1}{2} \frac{d}{dt} \|v\|^2 + \nu \|\nabla v\|^2 + b(v, v, v) + b(v_s, v, v) + b(v, v_s, v, v)
\]
\[
= \sum_{i=1}^{N} \alpha_i f_i(v), \quad (32)
\]
Due to (12), we obtain respectively
\[
b(v, v, v) = \frac{1}{2} \int_{\Gamma_i} |v|^2 (v \cdot n) \, d\zeta = \sum_{i=1}^{N} a_i \alpha_i^3, \quad (33)
\]
\[
b(v_s, v, v) = \frac{1}{2} \int_{\Gamma_i} |v|^2 (v_s \cdot n) \, d\zeta = \sum_{i=1}^{N} b_i \alpha_i^2. \quad (34)
\]
Using (13) and the Young’s inequality leads to
\[
|b(v, v_s, v)| \leq C \|v\|^2 \|\nabla v\|^2 \|\nabla v_s\| \|\nabla v\|
\]
Taking $\epsilon_1 = \epsilon_2 = \epsilon$, we deduce
\[|b(v, v_s, v)| \leq \epsilon \|\nabla v\|^2 + \left(\frac{C^4}{8\epsilon^4}\|\nabla v_s\|^4\right)\|v\|^2. \quad (35)\]

Definition (28) leads to
\[
\sum_{i=1}^{N} \alpha_i f_i(v) = \sum_{i=1}^{N} a_i \alpha_i^3 + \sum_{i=1}^{N} b_i \alpha_i^2 - (\nu - \epsilon)\lambda_{N+1} (\|v\|^2 - \|z\|^2). \quad (36)
\]

Using (33)-(36) in (32) leads to
\[
\frac{1}{2} \frac{d}{dt} \|v\|^2 + (\nu - \epsilon)\|\nabla v\|^2 + C_\epsilon \|v\|^2 \leq (\nu - \epsilon)\lambda_{N+1} \|z\|^2. \quad (37)
\]

where
\[C_\epsilon = (\nu - \epsilon)\lambda_{N+1} - \frac{C^4}{8\epsilon^4}\|\nabla v_s\|^4\]

with $\lambda_{N+1}$ such that $C_\epsilon > 0$, namely
\[
h(\epsilon) = \frac{C^4}{8(\nu - \epsilon)\epsilon^3}\|\nabla v_s\|^4 < \lambda_{N+1}. \quad (38)
\]

To optimize the choice of $\lambda_{N+1}$ in (38), we search for $\epsilon \in [0, \nu]$ which minimizes $h$. Consequently, $\epsilon$ is such that $h'(\epsilon) = 0$, i.e.
\[\epsilon = \frac{3\nu}{4}, \quad (39)\]

which is unique. Due to (22), for all $i \in I$ and $j > N$, we have $\langle \nabla w_i, \nabla z_j \rangle = 0$ and hence we deduce,
\[
\|\nabla v\|^2 = \|\nabla w\|^2 + \|\nabla z\|^2. \quad (40)
\]

Using (39) and (40) in (37), it follows
\[
\frac{1}{2} \frac{d}{dt} \|v\|^2 + \frac{\nu}{4} \|\nabla w\|^2 + \frac{\nu}{4} \|\nabla z\|^2 + \sigma_N \|v\|^2 \leq \frac{\nu}{4} \lambda_{N+1} \|z\|^2 \quad (41)
\]

where $\sigma_N = \frac{\nu}{4} \lambda_{N+1} - \left(\frac{2}{3\nu}\right)^3 C^4 \|\nabla v_s\|^4$ has been used in (16). Since
\[
\lambda_{N+1} \|z\|^2 = \lambda_{N+1} \sum_{i=N+1}^{\infty} \alpha_i^2 \leq \sum_{i=N+1}^{\infty} \lambda_i \alpha_i^2 = \|\nabla z\|^2,
\]

according to (41) we obtain
\[
\frac{1}{2} \frac{d}{dt} \|v\|^2 + \frac{\nu}{4} \|\nabla w\|^2 + \sigma_N \|v\|^2 \leq 0. \quad (42)
\]

Consequently, for all $\sigma$ such that $0 < \sigma \leq \sigma_N$, we have
\[
\frac{1}{2} \frac{d}{dt} \|v\|^2 + \sigma \|v\|^2 \leq 0 \quad (43)
\]

and hence $v$ satisfies
\[
\|v\| \leq \|v(0)\|e^{-\sigma t}. \quad (44)
\]
Moreover, taking $v = v(0)$ in (29-b), leads to
\[
\int_\Omega |v(0)|^2 = \int_\Omega v_0 \cdot v(0) \leq \frac{1}{2} \int_\Omega |v_0|^2 + \frac{1}{2} \int_\Omega |v(0)|^2
\]
hence
\[
|v(0)|^2 \leq |v_0|^2,
\]
and according to (44), we obtain
\[
\|v\| \leq \|v_0\| e^{-\sigma t}.
\]

3.2.2. A priori estimate for (31). Since $\sigma N > 0$, from (37) with $\epsilon$ in (39), we obtain
\[
\frac{1}{2} \frac{d}{dt} \|v\|^2 + \nu \frac{1}{4} \|
abla v\|^2 \leq \nu \frac{1}{4} \lambda_{N+1} \|z\|^2 = \nu \frac{1}{4} \lambda_{N+1} \|v - w\|^2 \\
\leq \nu \frac{1}{2} \lambda_{N+1} \|v\|^2 + \nu \frac{1}{2} \lambda_{N+1} \|w\|^2.
\]
Using Lemma 2.2 in (47), yields
\[
\frac{d}{dt} \|v\|^2 + \nu \frac{1}{2} \|
abla v\|^2 \leq M_N \|v\|^2
\]
where $M_N = \nu \lambda_{N+1}(1 + C_N^2)$. Integrating (48) over $(0,t)$ and using the stability estimate (46), we obtain
\[
\|v\|^2 + \nu \frac{1}{2} \int_0^t \|
abla v\|^2 ds \leq \|v_0\|^2 + M_N \int_0^t \|v\|^2 ds \\
\leq \left(1 + M_N \int_0^t e^{-2 \sigma s} ds\right) \|v_0\|^2 \\
\leq \left(1 + \frac{M_N}{2\sigma}\right) \|v_0\|^2.
\]
Therefore, we obtain the a priori estimate
\[
\int_0^t \|
abla v\|^2 ds \leq \left(\frac{2}{\nu} + \frac{1 + C_N^2}{\sigma} \lambda_{N+1}\right) \|v_0\|^2.
\]

3.3. Existence. The proof of the existence follows a standard procedure. In a first step a sequence of approximate solutions using a Galerkin method is built. A compactness result from [21] allows us to pass to the limit in the system satisfied by the approximated solutions.

3.3.1. The Galerkin method. For all $m > N$, we define the space $W_m$ as:
\[
W_m = \text{span}(\{w_1, w_2, w_3, \ldots, w_m\}),
\]
where
\[
w_i = \begin{cases} 
  w_i & \text{if } 1 \leq i \leq N, \\
  z_i & \text{if } N + 1 \leq i \leq m.
\end{cases}
\]
Then for \( \mathbf{v}_m \in W_m, \ l \in I \), we write \( \mathbf{v}_m = \sum_{i=1}^{m} \phi_{im} \mathbf{w}_i \) and we define the following finite-dimensional problem

\[
\begin{aligned}
(a) \quad & \langle \partial_t \mathbf{v}_m, \mathbf{w}_j \rangle + \nu a(\mathbf{v}_m, \mathbf{w}_j) + b(\mathbf{v}_m, \mathbf{v}_s, \mathbf{w}_j) + b(\mathbf{v}_m, \mathbf{v}_m, \mathbf{w}_j) \\
& + b(\mathbf{v}_m, \mathbf{v}_m, \mathbf{w}_j) = \sum_{l=1}^{N} \delta_{ij} f_l(\mathbf{v}_m),
\end{aligned}
\]

\( (52) \)

\[
(b) \quad \langle \mathbf{v}_m(0) - \mathbf{v}_0, \mathbf{w}_j \rangle = 0, \text{ for } j = 1, 2, 3, \ldots, m,
\]

where \( \delta_{ij} \) defines the Kronecker symbol and for \( \mathbf{z}_m = \sum_{i=N+1}^{m} \phi_{im} \mathbf{w}_i \) and \( l \in I \),

\[
f_l(\mathbf{v}_m) = a_l \phi_{im}^2 + b_l \phi_{im} - \frac{\nu}{4} N_{l+1} \phi_{im} \| \mathbf{w}_l \|^2 - \frac{\nu}{2} N_{l+1} \langle \mathbf{w}_l, \mathbf{z}_m \rangle
\]

\[
- \frac{\nu}{4} N_{l+1} \sum_{i=1, i \neq l}^{N} \phi_{im} \langle \mathbf{w}_l, \mathbf{w}_i \rangle,
\]

\( (53) \)

Recall that \( \phi_{im}, \ i \in I \), is a priori unknown and thanks to \( (53) \), it satisfies a nonlinear feedback law leading to search for \( \phi_{im}(\mathbf{v}_m(t)) \). Because \( (53) \) is independent of \( \mathbf{x} \), \( \phi_{im}(\mathbf{v}_m(t)) \) is a function of \( t \) only. For the sake of simplicity, \( \phi_{im}(\mathbf{v}_m(t)) \) is written \( \phi_{im} \) in the sequel.

**Lemma 3.3.** The discrete problem \( (52) \) has a unique solution \( \mathbf{v}_m \in W^{1, \infty}(0, T; W_m) \). Moreover this solution satisfies :

\[
\| \mathbf{v}_m \|_{L^\infty(0, T; L^2(\Omega))} + \| \nabla \mathbf{v}_m \|_{L^\infty(0, T; L^2(\Omega))} \leq C,
\]

\( (54) \)

where \( C \) is a positive constant independent of \( m \).

**Proof.** We rewrite \( (52) \) in terms of the unknown \( \phi_{im}, \ i = 1, 2, 3 \ldots, m \), and we obtain

\[
\begin{aligned}
\sum_{i=1}^{m} \frac{d\phi_{im}}{dt} \langle \mathbf{w}_i, \mathbf{w}_j \rangle + \sum_{i=1}^{m} \phi_{im} (\nu a(\mathbf{w}_i, \mathbf{w}_j) + b(\mathbf{w}_s, \mathbf{w}_i, \mathbf{w}_j) + b(\mathbf{w}_s, \mathbf{v}_s, \mathbf{w}_j)) \\
+ \sum_{i,k=1}^{m} \phi_{km} \phi_{im} b(\mathbf{w}_i, \mathbf{w}_k, \mathbf{w}_j) = \sum_{l=1}^{N} \delta_{ij} f_l(\mathbf{v}_m),
\end{aligned}
\]

\( (55) \)

\[
\sum_{i=1}^{m} \phi_{im}(0) \langle \mathbf{w}_i, \mathbf{w}_j \rangle = \langle \mathbf{v}_0, \mathbf{w}_j \rangle, \text{ for } j = 1, 2, 3 \ldots, m.
\]

Since the matrix with elements \( \langle \mathbf{w}_i, \mathbf{w}_j \rangle \) (\( 1 \leq i, j \leq m \)) is nonsingular, \( (55) \) reduces to a nonlinear system with constant coefficients

\[
\begin{aligned}
\frac{d\phi_{im}}{dt} + \sum_{j=1}^{m} \phi_{jm} X_{ij} + \sum_{j,k=1}^{m} \phi_{km} \phi_{jm} Y_{ijk} &= \sum_{j=1}^{m} \delta_{ij} f_l(\mathbf{v}_m) Z_{ij},
\end{aligned}
\]

\( (56) \)

where \( X_{ij}, Y_{ijk}, Z_{ij} \in \mathbb{R} \). Then, there exists \( T_m \) (\( 0 < T_m \leq T \)) such that the nonlinear differential system \( (56) \) has a maximal solution defined on some interval \([0, T_m]\).

In order to show that \( T_m \) is independent of \( m \), it is sufficient to verify the boundedness of \( \phi_{im} \), and hence the boundedness of the \( L^2 \)-norm of \( \mathbf{v}_m \) independently of
Following the same procedure as for the derivation of the a priori estimates (46) and (50), yields
\[
\begin{align*}
\text{a. } & \|v_m(t)\| \leq \|v_0\| e^{-\sigma t}, \forall t > 0 \\
\text{b. } & \int_0^T \|\nabla v_m(s)\| \, ds \leq C.
\end{align*}
\]
Consequently, according to (57-a), we obtain \( T_m = T \).

Moreover, a consequence of the a priori estimates (57) is that \((v_m)_m\) is bounded in \(L^2(0, T; V(\Omega))\) and \(L^\infty(0, T; H(\Omega))\). Therefore, for a subsequence of \(v_m\) (still denoted by \(v_m\)), the estimates in (57) yield the following weak convergences as \(m\) tends to \(\infty\):
\[
\begin{align*}
v_m & \rightharpoonup^* v \text{ weakly* in } L^\infty(0, T; H(\Omega)), \\
v_m & \rightharpoonup v \text{ weakly in } L^2(0, T; V(\Omega)).
\end{align*}
\]
Nevertheless, the convergences in (58) are not sufficient to pass to the limit in the weak formulation (52), because of the presence of the convection term. Consequently, we need to obtain additional bounds in order to utilize the compactness theory on the sequence of approximated solution \((v_m)_m\).

### 3.3.2. Additional bounds

As in [21], let us assume that \(B_0, B\) and \(B_1\) are three Hilbert spaces such that \(B_0 \subset B \subset B_1\). If \(v : \mathbb{R} \to B_1\) is a function, we denote by \(\hat{v}\) its Fourier transform
\[
\hat{v}(\tau) = \int_{-\infty}^{+\infty} e^{-2i\pi\tau t} v(t) \, dt.
\]
Let us recall the following identity about the Fourier transform of differential operators:
\[
\hat{D}_\tau^\gamma v(\tau) = (2i\pi\tau)^\gamma \hat{v}(\tau),
\]
for a given \(\gamma > 0\), and let us define the space
\[
H^\gamma(\mathbb{R}; B_0, B_1) = \{ u \in L^2(\mathbb{R}, B_0), D_\tau^\gamma u \in L^2(\mathbb{R}, B_1) \}.
\]
The space \(H^\gamma(\mathbb{R}; B_0, B_1)\) is endowed with the norm
\[
\|v\|_{H^\gamma(\mathbb{R}; B_0, B_1)} = (\|v\|_{L^2(\mathbb{R}, B_0)}^2 + \|\tau\|^\gamma \|\hat{v}\|_{L^2(\mathbb{R}, B_1)}^2)^{\frac{1}{2}}.
\]
We also define \(H^\gamma(0, T; B_0, B_1)\), as the space of functions obtained by restriction to \([0, T]\) of functions of \(H^\gamma(\mathbb{R}; B_0, B_1)\). Further, we recall the following result [21]:

**Lemma 3.4.** Let \(B_0, B\) and \(B_1\) be three Hilbert spaces such that \(B_0 \subset B \subset B_1\) and \(B_0\) is compactly embedded in \(B\). Then for all \(\gamma > 0\), the injection \(H^\gamma(0, T; B_0, B_1) \to L^2(0, T; B)\) is compact.

For small enough \(\varepsilon\), this lemma is used later with
\[
B_0 = V(\Omega), \quad B = H(\Omega), \quad B_1 = H(\Omega), \quad \gamma = \frac{1}{4} - \varepsilon.
\]
The main result of the present section, based on utilizing Lemma 3.4, is furnished by the following lemma:

**Lemma 3.5.** The sequence \(v_m\) is bounded in \(H^\gamma(0, T; V(\Omega), H(\Omega))\) for \(0 \leq \gamma \leq \frac{1}{4} - \varepsilon\).
Proof. We denote by $\vec{v}_m$ the extension of $v_m$ by zero $0$ for $t < 0$ and $t > T$, and $\hat{v}_m$ the Fourier transform with respect to time of $\bar{v}_m$. It is classical that since $\bar{v}_m$ has two discontinuities at $0$ and $T$, in the distributional sense, the derivative of $\bar{v}_m$ is given by

$$\frac{d}{dt} \bar{v}_m = \bar{u}_m + v_m(0)\delta_0 - v_m(T)\delta_T,$$

(59)

where $\delta_0$, $\delta_T$ are Dirac distributions at $0$ and $T$, and

$$\bar{u}_m = v_m'$$

is the derivative of $v_m$ on $[0, T]$.

After a Fourier transformation, (59) gives

$$2i\pi \tau \hat{v}_m(\tau) = \hat{u}_m(\tau) + v_m(0) - v_m(T)e^{-2i\pi \tau T},$$

where $\hat{v}_m$ and $\hat{u}_m$ denote the Fourier transforms of $\bar{v}_m$ and $\bar{u}_m$ respectively. Since we already know that $v_m$ is uniformly bounded in $L^2(0, T, V(\Omega))$, it remains to prove that

$$\int_{-\infty}^{+\infty} |\tau|^{2\gamma}||\hat{v}_m(\tau)|| d\tau \leq C.$$  

(60)

For all $\vec{v} \in W_m$ with $\vec{v} = \bar{\alpha}_i \bar{g}_i$ on $\Gamma_i$, we have that $\bar{v}_m$ satisfies

$$\int_\Omega \frac{\partial \bar{v}_m}{\partial t} \cdot \bar{\bar{v}} \, d\Omega + \nu \int_\Omega \nabla \bar{v}_m \cdot \nabla \bar{\bar{v}} \, d\Omega + \int_\Omega G_m \cdot \bar{\bar{v}} \, d\Omega + \int_\Omega G_m^0 \cdot \bar{\bar{v}} \, d\Omega + \int_\Omega G_m^1 \cdot \bar{\bar{v}} \, d\Omega$$

$$= - \int_\Omega \bar{v}_m(T) \cdot \bar{\bar{v}}_T d\Omega + \int_\Omega \bar{v}_m(0) \cdot \bar{\bar{v}}_0 d\Omega + \sum_{i=1}^{N} \bar{\alpha}_i H_{im},$$

(61)

where $G_m = (\bar{v}_m \nabla)\bar{v}_m$, $G_m^0 = (\bar{v}_m \nabla)\bar{g}_s$, $G_m^1 = (\bar{v}_m \nabla)\bar{v}_m$ and $H_{im} = f_i(\bar{v}_m)$. We now apply the Fourier transform to the equation (61) and take $\hat{v}_m$ as a test function, it yields

$$2i\pi \tau \int_\Omega |\hat{\bar{v}}_m(\tau)|^2 \, d\Omega + \nu \int_\Omega \hat{\bar{v}}_m(\tau) \cdot \hat{\bar{v}}_m(\tau) \, d\Omega + \int_\Omega \hat{G}_m(\tau) \cdot \hat{\bar{v}}_m(\tau) \, d\Omega$$

$$+ \int_\Omega \hat{G}_m^0(\tau) \cdot \hat{\bar{v}}_m(\tau) \, d\Omega + \int_\Omega \hat{G}_m^1(\tau) \cdot \hat{\bar{v}}_m(\tau) \, d\Omega = \int_\Omega \hat{\bar{v}}_m(0) \cdot \hat{\bar{v}}_m(\tau) \, d\Omega$$

$$- \int_\Omega \hat{\bar{v}}_m(T) \cdot \hat{\bar{v}}_m(\tau) e^{-2i\pi \tau T} \, d\Omega + \sum_{i=1}^{N} \hat{\phi}_{im} \hat{H}_{im},$$

(62)

where $\hat{G}_m$, $\hat{G}_m^0$, $\hat{G}_m^1$ and $\hat{H}_{im}$ are respectively the Fourier transform with respect to time of $G_m$, $G_m^0$, $G_m^1$ and $H_{im}$. Note that

$$\hat{\phi}_{im} \hat{H}_{im} = -\frac{\nu}{4} \lambda_{N+1} (\hat{\phi}_{im})^2 ||w_i||^2 - \frac{\nu}{2} \lambda_{N+1} \hat{\phi}_{im} \langle w_i, \bar{z}_m \rangle$$

$$- \frac{\nu}{4} \lambda_{N+1} \sum_{j=1, j \neq i}^N \hat{\phi}_{im} \hat{\phi}_{jm} \langle w_i, w_j \rangle + a_i \hat{\phi}_{im} (\hat{\phi}_{im}^2) + b_i (\hat{\phi}_{im})^2$$

hence

$$\sum_{i=1}^{N} \hat{\phi}_{im} \hat{H}_{im} = -\frac{\nu}{4} \lambda_{N+1} [[||\bar{v}_m||^2 - ||\bar{z}_m||^2] + \sum_{i=1}^{N} a_i \hat{\phi}_{im} (\hat{\phi}_{im}^2) + \sum_{i=1}^{N} b_i (\hat{\phi}_{im})^2.$$  

(63)

Thanks to Lemma 2.1, we have

$$|\hat{\phi}_{im}(\tau)| \leq C_i ||\bar{v}_m(\tau)||.$$
using (63) in (62) and taking the imaginary part of (62) leads to

\[ |\tau|\|\tilde{\varphi}_m(\tau)\|^2 \leq C \|\tilde{\varphi}_m(\tau)\| \left( \sup_{\tau \in \mathbb{R}} \sum_{i=1}^{N} a_i C_i (\phi_{im}^2) + \|\nabla \varphi_m(T)\| + \|\nabla \varphi_m(0)\| \right) \]

\[ + C \|\tilde{\varphi}_m(\tau)\| \|\varphi(\Omega)\| \left( \|\tilde{G}_m(\tau)\|\varphi(\Omega) + \|\tilde{G}_m^0(\tau)\|\varphi(\Omega) + \|\tilde{G}_m^1(\tau)\|\varphi(\Omega) \right). \]  

(64)

Note that in the sequel, \( C \) stands for different positive constants. We now prove that each term lying in the right hand side of (64) is bounded.

First, we have

\[ \|G_m\|\varphi(\Omega) \leq c_1 \|\varphi_m\|_{H^1(\Omega)}, \quad \|G_m^s\|\varphi(\Omega) \leq c_2 \|\varphi_m\|_{H^1(\Omega)}, \quad s = 0, 1, \]

and thanks to the energy estimate (57) satisfied by \( \varphi_m, G_m \) and \( G_m^s \) remain bounded in \( L^1(\mathbb{R}; \varphi(\Omega)) \) and the functions \( \tilde{G}_m, \tilde{G}_m^s \) are bounded in \( L^\infty(\mathbb{R}; \varphi(\Omega)) \). Consequently, we have

\[ \sup_{\tau \in \mathbb{R}} (\|\tilde{G}_m(\tau)\|\varphi(\Omega) + \|\tilde{G}_m^0(\tau)\|\varphi(\Omega) + \|\tilde{G}_m^1(\tau)\|\varphi(\Omega)) \leq C. \]

Finally, we show that the three last terms in the right hand side of (64) are bounded.

Thanks to lemma 2.1, we show that \( \phi_{im}^2 \) is bounded in \( L^1(\mathbb{R}) \), and the function \( \phi_{im}^2 \) is bounded in \( L^\infty(\mathbb{R}) \) with:

\[ \sup_{\tau \in \mathbb{R}} \sum_{i=1}^{N} a_i C_i (\phi_{im}^2) \leq C. \]

Thanks to the energy estimate (57-a) satisfied by \( \varphi_m \), we have \( \|\varphi_m(T)\| \leq C \) and \( \|\varphi_m(0)\| \leq C \). Then, inequation (64) finally reduces to

\[ |\tau|\|\tilde{\varphi}_m(\tau)\|^2 \leq C (\|\tilde{\varphi}_m(\tau)\| + \|\varphi_m(\tau)\|_{H^1(\Omega)}) \leq C \|\tilde{\varphi}_m(\tau)\|_{H^1(\Omega)}, \]

where \( C \) stands for different positive constants.

For \( 0 < \gamma < \frac{1}{4} \), we now estimate the norm

\[ \int_{-\infty}^{+\infty} |\tau|^{2\gamma} \|\tilde{\varphi}_m(\tau)\|^2 d\tau. \]

Note that, (see [21])

\[ |\tau|^{2\gamma} \leq c(\gamma) \frac{1 + |\tau|}{1 + |\tau|^{1-2\gamma}}, \forall \tau \in \mathbb{R}. \]

Consequently, we deduce

\[ \int_{-\infty}^{+\infty} |\tau|^{2\gamma} \|\tilde{\varphi}_m(\tau)\|^2 d\tau \]

\[ \leq c(\gamma) \int_{-\infty}^{+\infty} \|\tilde{\varphi}_m(\tau)\|^2 \frac{1}{1 + |\tau|^{1-2\gamma}} d\tau + c(\gamma) \int_{-\infty}^{+\infty} |\tau|^{2\gamma} \|\tilde{\varphi}_m(\tau)\|^2 \frac{1}{1 + |\tau|^{1-2\gamma}} d\tau \]

\[ \leq c_3(\gamma) \int_{-\infty}^{+\infty} \|\tilde{\varphi}_m(\tau)\|^2 \frac{1}{1 + |\tau|^{1-2\gamma}} d\tau + c_4(\gamma) \int_{-\infty}^{+\infty} \|\tilde{\varphi}_m(\tau)\|^2 \frac{1}{1 + |\tau|^{1-2\gamma}} d\tau \]

\[ \leq c_3(\gamma) \int_{-\infty}^{+\infty} \|\tilde{\varphi}_m(\tau)\|^2 \frac{1}{1 + |\tau|^{1-2\gamma}} d\tau + c_4(\gamma) \int_{-\infty}^{+\infty} \|\tilde{\varphi}_m(\tau)\|^2 \frac{1}{1 + |\tau|^{1-2\gamma}} d\tau. \]

(65)
The last integral in the right hand side of (65) satisfies
\[
\int_{-\infty}^{+\infty} \frac{\|\tilde{v}_m(\tau)\|_{H^1(\Omega)}}{1 + |\tau|^{1-2\gamma}} d\tau \\
\leq \left( \int_{-\infty}^{+\infty} \frac{d\tau}{1 + |\tau|^{1-2\gamma}} \right)^{\frac{1}{2}} \left( \int_{-\infty}^{+\infty} \|\tilde{v}_m(\tau)\|^2_{H^1(\Omega)} d\tau \right)^{\frac{1}{2}} \tag{66}
\]
and the first integral in the right hand side of (66) is convergent for any \(0 < \gamma < \frac{1}{4}\). On the other hand, using the Parseval equality leads to
\[
\int_{-\infty}^{+\infty} \|\tilde{v}_m(\tau)\|^2_{H^1(\Omega)} d\tau = \int_0^T \|v_m(t)\|^2_{H^1(\Omega)} dt \leq C.
\]
Then, the sequence \(v_m\) is bounded in \(H^\gamma(0, T; V(\Omega), H(\Omega))\), for \(0 \leq \gamma \leq \frac{1}{4} - \epsilon\).

Now, applying Lemmas 3.4 and 3.5, there is a subsequence of \((v_m)_{m \in \mathbb{N}}\) which converges strongly in \(L^2(0, T; L^2(\Omega))\).

### 3.3.3. Passage to the limit.

The compactness result obtained in the previous section implies the following strong convergence (at least for a subsequence of \(v_m\) still denoted \(v_m\))
\[v_m \to v\] strongly in \(L^2(0, T; L^2(\Omega))\).

This convergence result together with (58) enable us to pass to the limit in the following weak formulation, obtained from (52) by multiplication by \(\varphi \in D([0, T])\) and integration by parts with respect to time
\[
- \int_0^T \int_\Omega v_m \cdot \tilde{v}_j \varphi(t) \, dx \, dt - \int_\Omega v_m(0) \tilde{v}_j \varphi(0) \, dx + \nu \int_0^T \int_\Omega \nabla v_m : \nabla \tilde{v}_j \varphi(t) \, dx \, dt \\
+ \int_0^T \int_\Omega (v_m \cdot \nabla v_m) \cdot \tilde{v}_j \varphi(t) \, dx \, dt + \int_0^T \int_\Omega (v_m \cdot \nabla s) \cdot \tilde{v}_j \varphi(t) \, dx \, dt \\
+ \int_0^T \int_\Omega (v_s \cdot \nabla v_m) \cdot \tilde{v}_j \varphi(t) \, dx \, dt = \int_0^T \tilde{\alpha}_j \delta_{ij} f_l(v_m) \varphi(t) \, dt \tag{67}
\]
for all \(\tilde{v}_j = \tilde{\alpha}_j w_j\). As a first step the integrals in the left hand side of (67) are examined. Using the weak estimates (58) leads to
\[
\int_0^T \int_\Omega v_m \cdot \tilde{v}_j \varphi(t) \, dx \, dt \xrightarrow{m \to +\infty} \int_0^T \int_\Omega v \cdot \tilde{v}_j \varphi(t) \, dx \, dt,
\]
\[
\int_0^T \int_\Omega \nabla v_m : \nabla \tilde{v}_j \varphi(t) \, dx \, dt \xrightarrow{m \to +\infty} \int_0^T \int_\Omega \nabla v : \nabla \tilde{v}_j \varphi(t) \, dx \, dt,
\]
\[
\int_0^T \int_\Omega (v_m \cdot \nabla v_m) \cdot \tilde{v}_j \varphi(t) \, dx \, dt \xrightarrow{m \to +\infty} \int_0^T \int_\Omega (v \cdot \nabla v_m) \cdot \tilde{v}_j \varphi(t) \, dx \, dt,
\]
\[
\int_0^T \int_\Omega (v_s \cdot \nabla v_m) \cdot \tilde{v}_j \varphi(t) \, dx \, dt \xrightarrow{m \to +\infty} \int_0^T \int_\Omega (v_s \cdot \nabla v) \cdot \tilde{v}_j \varphi(t) \, dx \, dt,
\]
for the linear terms. Further, since \(v_m\) converges to \(v\) in \(L^2(0, T; V(\Omega))\) weakly, and in \(L^2(0, T; L^2(\Omega))\) strongly, we can pass to the limit in the nonlinear term to
Thus, passing to the limit in (67) gives
\[ \int_0^T \int_\Omega (v_m \cdot \nabla v_m) \cdot \tilde{v}_j \varphi(t) \, dx \, dt \xrightarrow{m \to +\infty} \int_0^T \int_\Omega (v \cdot \nabla v) \cdot \tilde{v}_j \varphi(t) \, dx \, dt. \]  
(68)

As far as the right hand side of (67) is concerned. Using Lemma 2.1 and according to (57-a), we have \( \phi_{im} \in L^\infty(0, T) \). Then for a subsequence of \( \phi_{im} \) (still denoted by \( \phi_{im} \)):
\[ \phi_{im} \to \alpha_i \text{ weakly}^* \text{ in } L^\infty(0, T). \]  
(69)

Let us notice that the convergence of \( v_m \) in \( L^2([0, T] \times \Omega) \) implies its convergence in \( L^1(0, T; L^2(\Omega)) \). Hence
\[ \|v_m\| \to \|v\| \text{ in } L^1(0, T). \]  
(70)

Due to lemma 2.1, for all \( i \in I \), we have
\[ |\phi_{ip} - \phi_{iq}| \leq C_b \|v_p - v_q\|, \quad \forall v_p, v_q \in W_m, \]
and \( \phi_{im} \) is then a Cauchy sequence in \( L^1(0, T) \) and
\[ \phi_{im} \to \phi_i \text{ in } L^1(0, T). \]  
(71)

Further, according to (69) we have \( \phi_i = \alpha_i \in L^\infty(0, T) \) from [11, Proposition II.1.26] and since \( \phi_{im} \) is bounded in \( L^\infty(0, T) \), using (71) we obtain
\[ \phi_{im} \to \alpha_i \text{ in } L^p(0, T), \]
from [11, Corollaire II.1.24], for all \( p \in ]1, +\infty[ \).

Now we can pass to the limit in the following term:
\[ \int_0^T \alpha_i \phi_{im}^2 \varphi(t) \, dt \xrightarrow{m \to +\infty} \int_0^T \alpha_i \alpha_i^2 \varphi(t) \, dt, \]
and since \( z_m = v_m - \sum_{i=1}^N \phi_{im} w_i \), we have
\[ \int_0^T \alpha_i \langle w_i, z_m \rangle \varphi(t) \, dt \xrightarrow{m \to +\infty} \int_0^T \alpha_i \langle w_i, z \rangle \varphi(t) \, dt. \]
Consequently
\[ \int_0^T \alpha_i f(v_m) \varphi(t) \, dt \xrightarrow{m \to +\infty} \int_0^T \alpha_i f_i(v) \varphi(t) \, dt, \]
where
\[ f_i(v) = a_i \alpha_i^2 + b_i \alpha_i - \frac{\nu}{4} \lambda_{N+1} \left( \alpha_i \|w_i\|^2 + 2 \langle w_i, z \rangle + \sum_{j=1; j \neq i}^N \alpha_j \langle w_i, w_j \rangle \right). \]

Thus, passing to the limit in (67) gives
\[- \int_0^T \int_\Omega v \cdot \tilde{v}_j \varphi(t) \, dx \, dt - \int_0^T \int_\Omega v_0 \tilde{v}_j \varphi(0) \, dx + \nu \int_0^T \int_\Omega \nabla v : \nabla \tilde{v}_j \varphi(t) \, dx \, dt \]
\[+ \int_0^T \int_\Omega (v \cdot \nabla v) \cdot \tilde{v}_j \varphi(t) \, dx \, dt + \int_0^T \int_\Omega (v \cdot \nabla v_s) \cdot \tilde{v}_j \varphi(t) \, dx \, dt \]
\[+ \int_0^T \int_\Omega (v_s \cdot \nabla v) \cdot \tilde{v}_j \varphi(t) \, dx \, dt = \int_0^T \alpha_{ij} f_i(v) \varphi(t) \, dt. \]  
(72)

for all \( \tilde{v}_j = \tilde{\alpha}_j w_j \), \( j \in \mathbb{N}^* \). By linearity, equation (72) holds true for all \( \tilde{v} \) combination of finite \( \tilde{v}_j \) and by density, for any element of \( W(\Omega) \).  
\( \Box \)
4. **Concluding remarks.** In this work the global exponential stabilization of the two and three-dimensional Navier-Stokes equations in a bounded domain is studied around a given unstable equilibrium state, using a boundary feedback control. In order to determine a feedback law, an extended system coupling the Navier-Stokes equations with an equation satisfied by the control on the domain boundary is considered. We first assume that on $\Sigma_i$, $i \in I$, the i-th part of the domain boundary $\Sigma_b$, the trace of the fluid velocity is proportional to a given normal velocity profile $g_i$. The proportionality coefficient $\alpha_i$ measures the velocity flux at the interface, it is an unknown of the problem and it is written in feedback form. By using the Galerkin method, $\alpha_i$ is determined such that the Dirichlet boundary control $u_b = \alpha_i g_i$ is satisfied on $\Sigma_i$, and the stabilizing boundary control is built. The resulting nonlinear feedback control is proven to be globally exponentially stabilizing the unstable equilibrium state of the two and three-dimensional weak Navier-Stokes equations in the $L^2$-norm.

**REFERENCES**


Received August 2014; revised December 2014.

*E-mail address*: dioxleroi@hotmail.com

*E-mail address*: abdou.sene@ugb.edu.sn

*E-mail address*: dleroux@math.univ-lyon1.fr